首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Site-specific recombinases catalyze recombination between specific targeting sites to delete, insert, invert, or exchange DNA with high fidelity. In addition to the widely used Cre and Flp recombinases, the phiC31 integrase system from Streptomyces phage may also be used for these genetic manipulations in eukaryotic cells. Unlike Cre and Flp, phiC31 recognizes two heterotypic sites, attB and attP, for recombination. While the phiC31 system has been recently applied in mouse and human cell lines and in Drosophila, it has not been demonstrated whether it can also catalyze efficient DNA recombination in zebrafish. Here we show that phiC31 integrase efficiently induces site-specific deletion of episomal targets as well as chromosomal targets in zebrafish embryos. Thus, the phiC31 system can be used in zebrafish for genetic manipulations, expanding the repertoire of available tools for genetic manipulation in this vertebrate model.  相似文献   

2.
Site-specific recombination by the Cre recombinase takes place at a simple DNA site (loxP), requires no additional proteins and gives topologically simple recombination products. In contrast, cer and psi sites for Xer recombination contain approximately 150 bp of accessory sequences, require accessory proteins PepA, ArgR and ArcA, and the products are specifically linked to form a four-noded catenane. Here, we use hybrid sites consisting of accessory sequences of cer or psi fused to loxP to probe the function of accessory proteins in site-specific recombination. We show that PepA instructs Cre to produce four-noded catenane, but is not required for recombination at these hybrid sites. Mutants of Cre that require PepA and accessory sequences for efficient recombination were selected. PepA-dependent Cre gave products with a specific topology and displayed resolution selectivity. Our results reveal that PepA acts autonomously in the synapsis of psi and cer accessory sequences and is the main architectural element responsible for intertwining accessory site DNA. We suggest that accessory proteins can activate recombinases simply by synapsing the regulatory DNA sequences, thus bringing the recombination sites together with a specific geometry. This may occur without the need for protein-protein interactions between accessory proteins and the recombinases.  相似文献   

3.
The Flp and Cre recombinases are members of the integrase family of tyrosine recombinases. Each protein consists of a 13 kDa NH(2)-terminal domain and a larger COOH-terminal domain that contains the active site of the enzyme. The COOH-terminal domain also contains the major determinants for the binding specificity of the recombinase to its cognate DNA binding site. All family members cleave the DNA by the attachment of a conserved nucleophilic tyrosine residue to the 3'-phosphate group at the sites of cleavage. In order to gain further insights into the determinants of the binding specificity and modes of cleavage of Flp and Cre, we have made chimeric proteins in which we have fused the NH(2)-terminal domain of Flp to the COOH-terminal domain of Cre ("Fre") and the NH(2)-terminal domain of Cre to the COOH-terminal domain of Flp ("Clp"). These chimeras have novel binding specificities in that they bind strongly to hybrid sites containing elements from both the Flp and Cre DNA targets but poorly to the native target sites.In this study we have taken advantage of the unique binding specificities of Fre and Clp to examine the mode of cleavage by Cre, Flp, Fre and Clp. We find that the COOH-terminal domain of the recombinases determines their mode of cleavage. Thus Flp and Clp cleave in trans whereas Cre and Fre cleave in cis. These results agree with the studies of Flp and with the cocrystal structure of Cre bound to its DNA target site. They disagree with our previous findings that Cre could carry out trans cleavage. We discuss the variations in the experimental approaches in order to reconcile the different results.  相似文献   

4.
Cre and Flp site-specific recombinase variants harboring point mutations at their conserved catalytic pentad positions were characterized using single molecule tethered particle motion (TPM) analysis. The findings reveal contributions of these amino acids to the pre-chemical steps of recombination. They suggest functional differences between positionally conserved residues in how they influence recombinase-target site association and formation of ‘non-productive’, ‘pre-synaptic’ and ‘synaptic’ complexes. The most striking difference between the two systems is noted for the single conserved lysine. The pentad residues in Cre enhance commitment to recombination by kinetically favoring the formation of pre-synaptic complexes. These residues in Flp serve a similar function by promoting Flp binding to target sites, reducing non-productive binding and/or enhancing the rate of assembly of synaptic complexes. Kinetic comparisons between Cre and Flp, and between their derivatives lacking the tyrosine nucleophile, are consistent with a stronger commitment to recombination in the Flp system. The effect of target site orientation (head-to-head or head-to-tail) on the TPM behavior of synapsed DNA molecules supports the selection of anti-parallel target site alignment prior to the chemical steps. The integrity of the synapse, whose establishment/stability is fostered by strand cleavage in the case of Flp but not Cre, appears to be compromised by the pentad mutations.  相似文献   

5.
Geometric arrangements of Tn3 resolvase sites   总被引:8,自引:0,他引:8  
Site-specific recombination by Tn3 resolvase normally occurs in vitro and in vivo only between directly repeated res sites on the same supercoiled DNA molecule. However, with multiply interlinked catenane substrates consisting of two DNA rings each containing a single res site, resolvase efficiently carried out intermolecular recombination. The topology of the knots produced by several rounds of this reaction proves that the DNA within the synaptic intermediate is coiled in an interwound (plectonemic) fashion rather than wrapped solenoidally around resolvase as in previously characterized supercoiled DNA-protein complexes. The synaptic intermediate can contain equivalently supercoil, catenane, or knot crossings as long as the res sites have a right-handed coiling and a particular relative orientation. The structure of the product knots and catenanes also shows the path the DNA takes during strand exchange. Intermolecular recombination within multiply linked catenanes required negative supercoiling, as does the standard intramolecular reaction.  相似文献   

6.
We have probed the association of Flp recombinase with its DNA target using protein footprinting assays. The results are consistent with the domain organization of the Flp protein and with the general features of the protein-DNA interactions revealed by the crystal structures of the recombination intermediates formed by Cre, the Flp-related recombinase. The similarity in the organization of the Flp and Cre target sites and in their recognition by the respective recombinases implies that the overall DNA-protein geometry during strand cleavage in the two systems must also be similar. Within the functional recombinase dimer, it is the interaction between two recombinase monomers bound on either side of the strand exchange region (or spacer) that provides the allosteric activation of a single active site. Whereas Cre utilizes the cleavage nucleophile (the active site tyrosine) in cis, Flp utilizes it in trans (one monomer donating the tyrosine to its partner). By using synthetic Cre and Flp DNA substrates that are geometrically restricted in similar ways, we have mapped the positioning of the active and inactive tyrosine residues during cis and trans cleavage events. We find that, for a fixed substrate geometry, Flp and Cre cleave the labile phosphodiester bond at the same spacer end, not at opposite ends. Our results provide a model that accommodates local heterogeneities in peptide orientations in the two systems while preserving the global functional architecture of the reaction complex.  相似文献   

7.
Flp site-specific recombination between two target sites (FRTs) harboring non-homology within the strand exchange region does not yield stable recombinant products. In negatively supercoiled plasmids containing head-to-tail sites, the reaction produces a series of knots with odd-numbered crossings. When the sites are in head-to-head orientation, the knot products contain even-numbered crossings. Both types of knots retain parental DNA configuration. By carrying out Flp recombination after first assembling the topologically well defined Tn3 resolvase synapse, it is possible to determine whether these knots arise by a processive or a dissociative mechanism. The nearly exclusive products from head-to-head and head-to-tail oriented “non-homologous” FRT partners are a 4-noded knot and a 5-noded knot, respectively. The corresponding products from a pair of native (homologous) FRT sites are a 3-noded knot and a 4-noded catenane, respectively. These results are consistent with non-homology-induced two rounds of dissociative recombination by Flp, the first to generate reciprocal recombinants containing non-complementary base pairs and the second to produce parental molecules with restored base pairing. Single molecule fluorescence resonance energy transfer (smFRET) analysis of geometrically restricted FRTs, together with single molecule tethered particle motion (smTPM) assays of unconstrained FRTs, suggests that the sites are preferentially synapsed in an anti-parallel fashion. This selectivity in synapse geometry occurs prior to the chemical steps of recombination, signifying early commitment to a productive reaction path. The cumulative topological, smFRET and smTPM results have implications for the relative orientation of DNA partners and the directionality of strand exchange during recombination mediated by tyrosine site-specific recombinases.  相似文献   

8.
The Flp recombinase of yeast and the Cre recombinase of bacteriophage P1 both belong to the lambda-integrase (Int) family of site-specific recombinases. These recombination systems recognize recombination-target sequences that consist of two 13bp inverted repeats flanking a 6 or 8bp spacer sequence. Recombination reactions involve particular geometric and topological relationships between DNA target sites at synapsis, which we investigate using nicked-circular DNA molecules. Examination of the tertiary structure of synaptic complexes formed on nicked plasmid DNAs by atomic-force microscopy, in conjunction with detailed topological analysis using the mathematics of tangles, shows that only a limited number of recombination-site topologies are consistent with the global structures of plasmids bearing directly and inversely repeated sites. The tangle solutions imply that there is significant distortion of the Holliday-junction intermediate relative to the planar structure of the four-way DNA junction present in the Flp and Cre co-crystal structures. Based on simulations of nucleoprotein structures that connect the two-dimensional tangle solutions with three-dimensional models of the complexes, we propose a recombination mechanism in which the synaptic intermediate is characterized by a non-planar, possibly near-tetrahedral, Holliday-junction intermediate. Only modest conformational changes within this structure are needed to form the symmetric, planar DNA junction, which may be characteristic of shorter-lived intermediates along the recombination pathway.  相似文献   

9.
We developed two new site-specific recombination systems named VCre/VloxP and SCre/SloxP for genome engineering. Their recognition sites are different from Cre recognition sites because VCre and SCre recombinases share less protein similarity with Cre, even though the basic 13-8-13 structures of their recognition sites are identical. Mutant VloxP and SloxP, which have the same uses as mutant loxP, were also developed. VCre/VloxP and SCre/SloxP in combination with Cre/loxP and Flp/FRT systems can serve as powerful tools for genome engineering, especially when used to genetically modify both alleles of a single gene in mouse and human cells.  相似文献   

10.
Bacteriophage P1 contains a site-specific recombination system consisting of a site, loxP, and a recombinase protein Cre. We have shown that with purified Cre protein we can carry out recombination between two loxP sites in vitro. When that recombination occurs between two sites in direct orientation on the same DNA molecule, we observed the production of free and catenated circular molecules. In this paper we show that recombination between sites in opposite orientation leads to both knotted and unknotted circular products. We also demonstrate that the production of catenanes and knots is influenced by two factors: (1) supercoiling in the DNA substrate, supercoiled DNA substrates yield significantly more catenated and knotted products than nicked circular substrates; and (2) mutations in the loxP site, a class of mutations have been isolated that carry out recombination but result in a distribution of products in which the ratio of catenanes to free circles is increased over that observed with a wild-type site. A more detailed analysis of the products from recombination between wild-type sites indicates: (1) that the catenanes or knots produced by recombination are both simple and complex; (2) that the ratio of free products to catenanes is independent of the distance between the two directly repeated loxP sites; and (3) that for DNA substrates with four loxP sites significant recombination between non-adjacent sites occurs to give free circular products. These observations provide insights into how two loxP sites are brought together during recombination.  相似文献   

11.
Bacteriophage lambda integrase (Int) is a versatile site-specific recombinase. In concert with other proteins, it mediates phage integration into and excision out of the bacterial chromosome. Int recombines intramolecular sites in inverse or direct orientation or sites on separate DNA molecules. This wide spectrum of Int-mediated reactions has, however, hindered our understanding of the topology of Int recombination. By systematically analyzing the topology of Int reaction products and using a mathematical method called tangles, we deduce a unified model for Int recombination. We find that, even in the absence of (-) supercoiling, all Int reactions are chiral, producing one of two possible enantiomers of each product. We propose that this chirality reflects a right-handed DNA crossing within or between recombination sites in the synaptic complex that favors formation of right-handed Holliday junction intermediates. We demonstrate that the change in linking number associated with excisive inversion with relaxed DNA is equally +2 and -2, reflecting two different substrates with different topology but the same chirality. Additionally, we deduce that integrative Int recombination differs from excisive recombination only by additional plectonemic (-) DNA crossings in the synaptic complex: two with supercoiled substrates and one with relaxed substrates. The generality of our results is indicated by our finding that two other members of the integrase superfamily of recombinases, Flp of yeast and Cre of phage P1, show the same intrinsic chirality as lambda Int.  相似文献   

12.
Strategies of directed evolution and combinatorial mutagenesis applied to the Flp site-specific recombinase have yielded recombination systems that utilize bi-specific hybrid target sites. A hybrid site is assembled from two half-sites, each harboring a distinct binding specificity. Satisfying the two specificities by a binary combination of Flp variants, while necessary, may not be sufficient to elicit recombination. We have identified amino acid substitutions that foster interprotomer collaboration between partner Flp variants to potentiate strand exchange in hybrid sites. One such substitution, A35T, acts specifically in cis with one of the two partners of a variant pair, Flp(K82M) and Flp(A35T, R281V). The same A35T mutation is also present within a group of mutations that rescue a Flp variant, Flp(Y60S), that is defective in establishing monomer-monomer interactions on the native Flp target site. Strikingly, these mutations are localized to peptide regions involved in interdomain and interprotomer interactions within the recombination complex. The same group of mutations, when transferred to the context of wild-type Flp, can relax its specificity to include non-native target sites. The hybrid Flp systems described here mimic the naturally occurring XerC/XerD recombination system that utilizes two recombinases with distinct DNA binding specificities. The ability to overcome the constraints of binding site symmetry in Flp recombination has important implications in the targeted manipulations of genomes.  相似文献   

13.
Summary: A classical feature of the tyrosine recombinase family of proteins catalyzing site-specific recombination, as exemplified by the phage lambda integrase and the Cre and Flp recombinases, is the ability to recombine substrates sharing very limited DNA sequence identity. Decades of research have established the importance of this short stretch of identity within the core regions of the substrates. Since then, several new enzymes that challenge this paradigm have been discovered and require the role of sequence identity in site-specific recombination to be reconsidered. The integrases of the conjugative transposons such as Tn916, Tn1545, and CTnDOT recombine substrates with heterologous core sequences. The integrase of the mobilizable transposon NBU1 performs recombination more efficiently with certain core mismatches. The integration of CTX phage and capture of gene cassettes by integrons also occur by altered mechanisms. In these systems, recombination occurs between mismatched sequences by a single strand exchange. In this review, we discuss literature that led to the formulation of the current strand-swapping isomerization model for tyrosine recombinases. The review then focuses on recent developments on the recombinases that challenged the paradigm that was derived from the studies of early systems.  相似文献   

14.
We analyzed the structure of open-circular and supercoiled dimeric DNA catenanes generated by site-specific recombination in vitro. Electron microscopy of open-circular catenanes shows that the number of duplex crossings in a plane is a linear function of the number of catenane interlinks (Ca/2), and that the length of the catenane axis is constant, independent of Ca. These relationships are similar to those observed with supercoiled DNA. Statistical analyses reveal, however, that the conformations of the individual rings of the catenanes are similar to those of unlinked circles. The distribution of distances between randomly chosen points on separate rings depends strongly on Ca and is consistent with a sharp decrease in the center-of-mass separation between rings with increasing Ca. Singly linked supercoiled catenanes are seen by microscopy to be linked predominantly through terminal loops in the respective superhelices. The observations suggest that chain entropy is a major factor determining the conformation of DNA catenanes.  相似文献   

15.
Cre recombinase is a prototypical member of the tyrosine recombinase family of site-specific recombinases. Members of this family of enzymes catalyze recombination between specific DNA sequences by cleaving and exchanging one pair of strands between the two substrate sites to form a 4-way Holliday junction (HJ) intermediate and then resolve the HJ intermediate to recombinant products by a second round of strand exchanges. Recently, hexapeptide inhibitors have been described that are capable of blocking the second strand exchange step in the tyrosine recombinase recombination pathway, leading to an accumulation of the HJ intermediate. These peptides are active in the lambda-integrase, Cre recombinase, and Flp recombinase systems and are potentially important tools for both in vitro mechanistic studies and as in vivo probes of cellular function. Here we present biochemical and crystallographic data that support a model where the peptide inhibitor binds in the center of the recombinase-bound DNA junction and interacts with solvent-exposed bases near the junction branch point. Peptide binding induces large conformational changes in the DNA strands of the HJ intermediate, which affect the active site geometries in the recombinase subunits.  相似文献   

16.
Targeted modification of mammalian genomes   总被引:5,自引:0,他引:5  
The stable and site-specific modification of mammalian genomes has a variety of applications in biomedicine and biotechnology. Here we outline two alternative approaches that can be employed to achieve this goal: homologous recombination (HR) or site-specific recombination. Homologous recombination relies on sequence similarity (or rather identity) of a piece of DNA that is introduced into a host cell and the host genome. In most cell types, the frequency of homologous recombination is markedly lower than the frequency of random integration. Especially in somatic cells, homologous recombination is an extremely rare event. However, recent strategies involving the introduction of DNA double-strand breaks, triplex forming oligonucleotides or adeno-associated virus can increase the frequency of homologous recombination.

Site-specific recombination makes use of enzymes (recombinases, transposases, integrases), which catalyse DNA strand exchange between DNA molecules that have only limited sequence homology. The recognition sites of site-specific recombinases (e.g. Cre, Flp or ΦC31 integrase) are usually 30–50 bp. In contrast, retroviral integrases only require a specific dinucleotide sequence to insert the viral cDNA into the host genome. Depending on the individual enzyme, there are either innumerable or very few potential target sites for a particular integrase/recombinase in a mammalian genome. A number of strategies have been utilised successfully to alter the site-specificity of recombinases. Therefore, site-specific recombinases provide an attractive tool for the targeted modification of mammalian genomes.  相似文献   


17.
18.
Tyrosine recombinases participate in diverse biological processes by catalyzing recombination between specific DNA sites. Although a conserved protein fold has been described for the catalytic (CAT) domains of five recombinases, structural relationships between their core-binding (CB) domains remain unclear. Despite differences in the specificity and affinity of core-type DNA recognition, a conserved binding mechanism is suggested by the shared two-domain motif in crystal structure models of the recombinases Cre, XerD and Flp. We have found additional evidence for conservation of the CB domain fold. Comparison of XerD and Cre crystal structures showed that their CB domains are closely related; the three central α-helices of these domains are superposable to within 1.44 Å. A structure-based multiple sequence alignment containing 25 diverse CB domain sequences provided evidence for widespread conservation of both structural and functional elements in this fold. Based upon the Cre and XerD crystal structures, we employed homology modeling to construct a three-dimensional structure for the λ integrase CB domain. The model provides a conceptual framework within which many previously identified, functionally important amino acid residues were investigated. In addition, the model predicts new residues that may participate in core-type DNA binding or dimerization, thereby providing hypotheses for future genetic and biochemical experiments.  相似文献   

19.
Currently two site-specific recombinases are available for engineering the mouse genome: Cre from P1 phage and Flp from yeast. Both enzymes catalyze recombination between two 34-base pair recognition sites, lox and FRT, respectively, resulting in excision, inversion, or translocation of DNA sequences depending upon the location and the orientation of the recognition sites. Furthermore, strategies have been designed to achieve site-specific insertion or cassette exchange. The problem with both recombinase systems is that when they insert a circular DNA into the genome (trans event), two cis-positioned recognition sites are created, which are immediate substrates for excision. To stabilize the trans event, functional mutant recognition sites had to be identified. None of the systems, however, allowed efficient selection-free identification of insertion or cassette exchange. Recently, an integrase from Streptomyces phage phiC31 has been shown to function in Schizosaccharomyces pombe and mammalian cells. This enzyme recombines between two heterotypic sites: attB and attP. The product sites of the recombination event (attL and attR) are not substrates for the integrase. Therefore, the phiC31 integrase is ideal to facilitate site-specific insertions into the mammalian genome.  相似文献   

20.
Flp, a tyrosine site-specific recombinase coded for by the selfish two micron plasmid of Saccharomyces cerevisiae, plays a central role in the maintenance of plasmid copy number. The Flp recombination system can be manipulated to bring about a variety of targeted DNA rearrangements in its native host and under non-native biological contexts. We have performed an exhaustive analysis of the Flp recombination pathway from start to finish by using single-molecule tethered particle motion (TPM). The recombination reaction is characterized by its early commitment and high efficiency, with only minor detraction from ‘non-productive’ and ‘wayward’ complexes. The recombination synapse is stabilized by strand cleavage, presumably by promoting the establishment of functional interfaces between adjacent Flp monomers. Formation of the Holliday junction intermediate poses a rate-limiting barrier to the overall reaction. Isomerization of the junction to the conformation favoring its resolution in the recombinant mode is not a slow step. Consistent with the completion of nearly every initiated reaction, the chemical steps of strand cleavage and exchange are not reversible during a recombination event. Our findings demonstrate similarities and differences between Flp and the mechanistically related recombinases λ Int and Cre. The commitment and directionality of Flp recombination revealed by TPM is consistent with the physiological role of Flp in amplifying plasmid DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号