共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydroxylated Metabolites of 2,4-Dichlorophenol Imply a Fenton-Type Reaction in Gloeophyllum striatum
下载免费PDF全文

Dietmar Schlosser Kristina Fahr Wolfgang Karl Heinz-Georg Wetzstein 《Applied microbiology》2000,66(6):2479-2483
While degrading 2,4-dichlorophenol, two strains of Gloeophyllum striatum, a basidiomycetous fungus causing brown rot decay of wood, simultaneously produced 4-chlorocatechol and 3,5-dichlorocatechol. These metabolites were identified by comparing high-performance liquid chromatography retention times and mass spectral data with those of chemically synthesized standards. Under similar conditions, 3-hydroxyphthalic hydrazide was generated from phthalic hydrazide, a reaction assumed to indicate hydroxyl radical formation. Accordingly, during chemical degradation of 2,4-dichlorophenol by Fenton's reagent, identical metabolites were formed. Both activities, the conversion of 2,4-[U-14C]dichlorophenol into 14CO2 and the generation of 3-hydroxyphthalic hydrazide, were strongly inhibited by the hydroxyl radical scavenger mannitol and in the absence of iron. These results provide new evidence in favor of a Fenton-type degradation mechanism operative in Gloeophyllum. 相似文献
2.
Secondary metabolites from a Gloeophyllum species 总被引:1,自引:0,他引:1
Six new sesquiterpenoids, four rearranged illudalanes, one rearranged protoilludane and one sterpurane, were isolated from fermentations of Gloeophyllum sp. 97022. Their structures were elucidated by spectroscopy. Gloeophyllol B and C show weak antifungal activity, while 1-hydroxy-3-sterpurene shows weak antifungal, antibacterial and cytotoxic activities. 相似文献
3.
Wetzstein HG Stadler M Tichy HV Dalhoff A Karl W 《Applied and environmental microbiology》1999,65(4):1556-1563
Ciprofloxacin (CIP), a fluoroquinolone antibacterial drug, is widely used in the treatment of serious infections in humans. Its degradation by basidiomycetous fungi was studied by monitoring 14CO2 production from [14C]CIP in liquid cultures. Sixteen species inhabiting wood, soil, humus, or animal dung produced up to 35% 14CO2 during 8 weeks of incubation. Despite some low rates of 14CO2 formation, all species tested had reduced the antibacterial activity of CIP in supernatants to between 0 and 33% after 13 weeks. Gloeophyllum striatum was used to identify the metabolites formed from CIP. After 8 weeks, mycelia had produced 17 and 10% 14CO2 from C-4 and the piperazinyl moiety, respectively, although more than half of CIP (applied at 10 ppm) had been transformed into metabolites already after 90 h. The structures of 11 metabolites were elucidated by high-performance liquid chromatography combined with electrospray ionization mass spectrometry and 1H nuclear magnetic resonance spectroscopy. They fell into four categories as follows: (i) monohydroxylated congeners, (ii) dihydroxylated congeners, (iii) an isatin-type compound, proving elimination of C-2, and (iv) metabolites indicating both elimination and degradation of the piperazinyl moiety. A metabolic scheme previously described for enrofloxacin degradation could be confirmed and extended. A new type of metabolite, 6-defluoro-6-hydroxy-deethylene-CIP, provided confirmatory evidence for the proposed network of congeners. This may result from sequential hydroxylation of CIP and its congeners by hydroxyl radicals. Our findings reveal for the first time the widespread potential for CIP degradation among basidiomycetes inhabiting various environments, including agricultural soils and animal dung. 相似文献
4.
2,4-Dichlorophenol hydroxylase, an enzyme involved in the bacterial degradation of the herbicide 2,4-dichlorophenoxyacetate (2,4-D) was purified from two bacterial strains that harbored the same 2,4-D plasmid, pJP4. The purified enzymes (Mr 224 000) from the two transconjugants were indistinguishable; they contained FAD and were composed of non-identical subunits, Mr 67 000 and 45 000, respectively. Various substituted phenols were hydroxylated, using either NADH or NADPH. The amino acid composition of the native enzyme was determined. 相似文献
5.
Effects of 2,4-dichlorophenol on activated sludge 总被引:6,自引:0,他引:6
The effects of 2,4-dichlorophenol (2,4-DCP) on both acclimated and unacclimated activated sludge were investigated in batch reactors. The IC(50) values on the basis of maximum specific growth rate ( micro(m)), percent chemical oxygen demand (COD) removal efficiency and sludge activity were found to be 72, 60 and 47 mg l(-1), respectively, for unacclimated culture. The percent COD removal efficiencies of unacclimated culture were affected adversely, even at low concentrations, whereas culture acclimated to 75 mg 2,4-DCP l(-1) could tolerate about 200 mg 2,4-DCP l(-1)on the basis of COD removal efficiency. Although yield coefficient values of unacclimated culture increased surprisingly to very high values with the addition of 2,4-DCP, a linear decrease with respect to 2,4-DCP concentrations was observed for acclimated culture. Although no removal was observed with unacclimated culture, almost complete removal of 2,4-DCP up to a concentration of 148.7 mg l(-1) was observed with acclimated culture. It was showed that the culture could use 2,4-DCP as sole organic carbon source, although higher removal efficiencies in the presence of a readily degradable substrate were observed. Culture acclimated to 4-chlorophenol used 2,4-DCP as sole organic carbon source better than those acclimated to 2,4-DCP. 相似文献
6.
The ratios of hapten and bovine serum albumin (BSA) in an antigen conjugate were determined by matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectrometry. Hybridomas secreting monoclonal antibodies against 2,4-dichlorophenoxyacetic
acid (2,4-D) were produced by fusing 2,4-D-BSA conjugate-immunized splenocytes with a HAT-sensitive mouse myeloma cell line,
P3-X63-Ag8-653. A substantial cross-reaction was observed for 2,4-dichlorophenol (2,4-DP) when compared with that observed
for 2,4-D. The full measurement range for this assay is 0.2–3 μg ml−1 for 2,4-DP. On the other hand, the range for 2,4-D is between 1 and 20 μg ml−1.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
7.
8.
2,4-Dichlorophenol (2,4-DCP) was anaerobically degraded in freshwater lake sediments. From observed intermediates in incubated sediment samples and from enrichment cultures, the following sequence of transformations was postulated. 2,4-DCP is dechlorinated to 4-chlorophenol (4-CP), 4-CP is dechlorinated to phenol, phenol is carboxylated to benzoate, and benzoate is degraded via acetate to methane and CO2; at least five different organisms are involved sequentially. The rate-limiting step was the transformation of 4-CP to phenol. Sediment-free enrichment cultures were obtained which catalyzed only the dechlorination of 2,4-DCP, the carboxylation of phenol, and the degradation of benzoate, respectively. Whereas the dechlorination of 2,4-DCP was not inhibited by H2, the dechlorination of 4-CP, and the transformation of phenol and benzoate were. Low concentrations of 4-CP inhibited phenol and benzoate degradation. Transformation rates and maximum concentrations allowing degradation were determined in both freshly collected sediments and in adapted samples: at 31 degrees C, which was the optimal temperature for the dechlorination, the average adaptation time for 2,4-DCP, 4-CP, phenol, and benzoate transformations were 7, 37, 11 and 2 days, respectively. The maximal observed transformation rates for these compounds in acclimated sediments were 300, 78, 2, 130, and 2,080 micromol/liter(-1)/day(-1), respectively. The highest concentrations which still allowed the transformation of the compound in acclimated sediments were 3.1 m/M 2,4-DCP, 3.1 mM 4-CP, 13 mM phenol, and greater than 52 mM benzoate. The corresponding values were lower for sediments which had not been adapted for the transformation steps. 相似文献
9.
Phenolic compound wastes from a large number of industries big and small which are highly toxic and pose a direct threat to human and aquatic life are generally let into the rivers and coastal waters. 2,4-dichlorophenol is used in the manufacture of industrial and agricultural products such as pesticides, germicides, soil sterilants, seed disinfectants and antiseptics. A modified Rotating Biological Contactor (RBC) was used for the treatability studies of synthetic 2,4-di-chlorophenolic (2,4 CP) wastewaters. The RBC used was a four stage laboratory model and the discs were modified by attaching porous netlon sheets to enhance biofilm area and volume. Synthetic wastewaters were prepared with influent concentrations from 40 to 200?mg/l of 2,4 CP. Four hydraulic loads were used in the range of 0.024 to 0.065 m3.m-2.d-1 and the organic loads used were in the range of 2 to 13?g 2,4 CP.m-2.d-1. The RBC was operated at a speed of 12?rpm. Effect of hydraulic loadings and influent 2,4-dichlorophenol concentration on 2,4-dichlorophenol removal were discussed and showed maximum organic removal at hydraulic loads of 0.024 and 0.046?m3.m-2.d-1. Also, a correlation plot between 2,4 CP applied and 2,4 CP removed was presented. A mathematical model was proposed using regression analysis. 相似文献
10.
2,4-二氯苯酚在土壤与河流底泥中降解动力学 总被引:1,自引:0,他引:1
以南京化学工业园内四柳河沿岸土壤与河流底泥为研究对象,通过土壤灭菌、温度与污染物初始浓度调控,研究了2,4-二氯苯酚在土壤与河流底泥中降解动力学及其影响因子。结果表明:微生物对2,4-二氯苯酚降解起主导作用,在45d内,非灭菌土壤和河流底泥的降解率分别是灭菌条件下的1.5~3倍、1.4~2.8倍,土壤和河流底泥中的2,4-二氯苯酚微生物降解量分别为0.128~0.599和0.113~0.718mg·kg-1,非灭菌处理半衰期时间短于灭菌处理;(10±1)℃~(30±1)℃范围内,随着温度的增高,2,4-二氯苯酚降解加快,在(30±1)℃土壤与河流底泥中残留量最小,分别为0.305和0.203mg·kg-1,半衰期也最短;土壤与河流底泥中的2,4-二氯苯酚均在其浓度为0.5mg·kg-1时降解最快,随着初始浓度的增加,2,4-二氯苯酚降解速度呈现递减趋势,半衰期增长。 相似文献
11.
Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. 总被引:4,自引:11,他引:4
下载免费PDF全文

2,4-Dichlorophenol (2,4-DCP) was anaerobically degraded in freshwater lake sediments. From observed intermediates in incubated sediment samples and from enrichment cultures, the following sequence of transformations was postulated. 2,4-DCP is dechlorinated to 4-chlorophenol (4-CP), 4-CP is dechlorinated to phenol, phenol is carboxylated to benzoate, and benzoate is degraded via acetate to methane and CO2; at least five different organisms are involved sequentially. The rate-limiting step was the transformation of 4-CP to phenol. Sediment-free enrichment cultures were obtained which catalyzed only the dechlorination of 2,4-DCP, the carboxylation of phenol, and the degradation of benzoate, respectively. Whereas the dechlorination of 2,4-DCP was not inhibited by H2, the dechlorination of 4-CP, and the transformation of phenol and benzoate were. Low concentrations of 4-CP inhibited phenol and benzoate degradation. Transformation rates and maximum concentrations allowing degradation were determined in both freshly collected sediments and in adapted samples: at 31 degrees C, which was the optimal temperature for the dechlorination, the average adaptation time for 2,4-DCP, 4-CP, phenol, and benzoate transformations were 7, 37, 11 and 2 days, respectively. The maximal observed transformation rates for these compounds in acclimated sediments were 300, 78, 2, 130, and 2,080 micromol/liter(-1)/day(-1), respectively. The highest concentrations which still allowed the transformation of the compound in acclimated sediments were 3.1 m/M 2,4-DCP, 3.1 mM 4-CP, 13 mM phenol, and greater than 52 mM benzoate. The corresponding values were lower for sediments which had not been adapted for the transformation steps. 相似文献
12.
The cytogenetic effect of 2,4-dichlorophenoxy acetic acid (2,4-D) and its metabolite 2,4-dichlorophenol (2,4-DCP) was studied in bone-marrow, germ cells and sperm head abnormalities in the treated mice. Swiss mice were treated orally by gavage with 2,4-D at 1.7, 3.3 and 33 mg kg(-1)BW (1/200, 1/100 and 1/10 of LD(50)). 2,4-DCP was intraperitoneally (i.p.) injected at 36, 72 and 180 mg kg(-1)BW (1/10, 1/5, 1/2 of LD(50)). A significant increase in the percentage of chromosome aberrations in bone-marrow and spermatocyte cells was observed after oral administration of 2,4-D at 3.3 mg kg(-1)BW for three and five consecutive days. This percentage increased and reached 10.8+/-0.87 (P<0.01) in bone-marrow and 9.8+/-0.45 (P<0.01) in spermatocyte cells after oral administration of 2,4-D at 33 mg kg(-1)BW for 24 h. This percentage was, however, lower than that induced in bone-marrow and spermatocyte cells by mitomycin C (positive control). 2,4-D induced a dose-dependent increase in the percentage of sperm head abnormalities. The genotoxic effect of 2,4-DCP is weaker than that of 2,4-D, as indicated by the lower percentage of the induced chromosome aberrations (in bone-marrow and spermatocyte cells) and sperm head abnormalities. Only the highest tested concentration of 2,4-DCP (180 mg kg(-1)BW, 1/2 LD(50)) induced a significant percentage of chromosome aberrations and sperm head abnormalities after i.p. injection. The obtained results indicate that 2,4-D is genotoxic in mice in vivo under the conditions tested. Hence, more care should be given to the application of 2,4-D on edible crops since repeated uses may underlie a health hazard. 相似文献
13.
The biodegradation kinetics of 2,4-dichlorophenol (2,4-DCP) by culture (Culture M) acclimated to mixture of 4-chlorophenol (4-CP) and 2,4-DCP and the culture (Culture 4) acclimated to 4-CP only were investigated in aerobic batch reactors. Also, pure strains isolated from mixed cultures were searched for their ability towards the biodegradation of 2,4-DCP. Culture 4 was able to completely degrade 2,4-DCP up to 80 mg/L within 30 h and removal efficiency dropped to 21% upon increasing initial concentration to 108.8 mg/L. When the Culture M was used, complete degradation of 2,4-DCP in the range of 12.5-104.4 mg/L was attained. A linear relationship between time required for complete degradation and initial 2,4-DCP concentrations was observed for both mixed cultures. It was observed that the Haldane equation can be used to predict specific degradation rate (SDR) (R(2)>0.99) as a function of initial 2,4-DCP concentrations and it adequately describes 2,4-DCP concentration profiles. Both of the mixed cultures settled well, which is important to maintain good removal efficiency for longer periods of time for real full-scale applications. Although the pure strains isolated from mixed cultures were found to have higher SDR of 2,4-DCP compared to mixed cultures, they did not settle well under quiescent conditions. 相似文献
14.
Esmeralda Yoshico Arakaki Okino Tereza Cristina Monteiro Pastore José Arlete Alves Camargos Marcus Vinícius da Silva Alves Paulo Henrique de Oliveira dos Santos Divino Eterno Teixeira Marcos Antonio Eduardo Santana 《International biodeterioration & biodegradation》2009,63(1):41-45
The objective of this work was to examine quantitatively the color changes of six clones of Hevea brasiliensis (IAN 717, IAN 873, GT 711, AVROS 1301, RRIM 600, and Tjir 16) and two cypresses (Cupressus sp. and Cupressus glauca) upon fungal attack. Samples were exposed to the fungi Gloeophyllum striatum and Phanerochaete chrysosporium according to ASTM D 2017. Wood color was measured in the L1a1b system. Changes in the colorimetric parameters were calculated by the difference between attacked and control samples. None of the rubberwood clones showed weight loss below 25% and therefore could not be classified as resistant, but clones AVROS 1301, RRIM 600, and Tjir 16 were borderline. Both cypresses were resistant to P. chrysosporium, but only Cupressus sp. was resistant to G. striatum. The red tint of all samples exposed to both fungi was slightly intensified (Δa1 > 0), except for RRIM 600. The yellowish tint was intensified as well, except for RRIM 600 and Tjir 16 exposed to G. striatum. Samples attacked by G. striatum were darker than controls (ΔL1 < 0), while samples infected by P. chrysosporium were lighter (ΔL1 > 0). Color variation mean values (ΔE1) ranged from 3.98 to 12.33, attaining the levels appreciable to very appreciable color difference. Extraction of the attacked samples with ethanol–toluene plus hot water removed red and yellow chromophore pigments, causing color variations perceptible to the naked eye. 相似文献
15.
Xenobiotic chlorinated phenols have been found in fresh and marine waters and are toxic to many aquatic organisms. Metabolism of 2,4-dichlorophenol (2,4-DCP) in the marine microalga Tetraselmis marina was studied. The microalga removed more than 1mM of 2,4-DCP in a 2l photobioreactor over a 6 day period. Two metabolites, more polar than 2,4-DCP, were detected in the growth medium by reverse phase HPLC and their concentrations increased at the expense of 2,4-DCP. The metabolites were isolated by a C8 HPLC column and identified as 2,4-dichlorophenyl-beta-d-glucopyranoside (DCPG) and 2,4-dichlorophenyl-beta-d-(6-O-malonyl)-glucopyranoside (DCPGM) by electrospray ionization-mass spectrometric analysis in a negative ion mode. The molecular structures of 2,4-DCPG and 2,4-CPGM were further confirmed by enzymatic and alkaline hydrolyses. Thus, it was concluded that the major pathway of 2,4-DCP metabolism in T. marina involves an initial conjugation of 2,4-DCP to glucose to form 2,4-dichlorophenyl-beta-d-glucopyranoside, followed by acylation of the glucoconjugate to form 2,4-dichlorophenyl-beta-d-(6-O-malonyl)-glucopyranoside. The microalga ability to detoxify dichlorophenol congeners other than 2,4-DCP was also investigated. This work provides the first evidence that microalgae can use a combined glucosyl and malonyl transfer to detoxify xenobiotics such as dichlorophenols. 相似文献
16.
Biological treatment of 2,4-dichlorophenol containing synthetic wastewater using a rotating brush biofilm reactor 总被引:2,自引:0,他引:2
A newly developed rotating brush biofilm reactor was used for DCP, COD and toxicity removal from 2,4-dichlorophenol (DCP) containing synthetic wastewater at different feed COD, TCP concentrations and A/Q (biofilm surface area/feed flow rate) ratios. A Box-Wilson statistical experiment design was used by considering the feed DCP (50-500 mg l(-1)), COD (2000-6000 mg l(-1)) and A/Q ratio (73-293 m2 d m(-3)) as the independent variables while percent DCP, COD, and toxicity removals were the objective functions. The experimental data were correlated by a quadratic response function and the coefficients were determined by regression analysis. Percent DCP, COD and toxicity removals calculated from the response functions were in good agreement with the experimental data. DCP, COD and toxicity removals increased with increasing A/Q ratio and decreasing feed DCP concentrations. The optimum A/Q ratio resulting in the highest COD (90%), DCP (100%) and toxicity (100%) removals with the highest feed COD (6000 mg l(-1)) and DCP (500 mg l(-1)) contents was nearly 210 m2 d m(-3). 相似文献
17.
Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate 总被引:4,自引:0,他引:4
In the presence of added sulfate, 2,4-dichlorophenol and 4-chlorophenol were transformed stoichiometrically to 4-chlorophenol and phenol, respectively, in anaerobic freshwater lake sediments between 18 and 40 degrees C. The concomitantly occurring sulfate reduction reduced the initial sulfate concentration from 25 mM to about 6 to 8 mM and depressed methane formation. 相似文献
18.
Photosynthesis-dependent removal of 2,4-dichlorophenol by Chlorella fusca var. vacuolata 总被引:3,自引:0,他引:3
Of 7 green algae, Chlorella fusca var. vacuolata removed about 23% of 2,4-dichlorophenol (DCP) at 10–80 M after 4 d when grown photoautotrophically. Removal of DCP was growth-dependent and was suppressed dose-dependently by the photosynthesis inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea. 相似文献
19.
Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. 总被引:21,自引:3,他引:21
下载免费PDF全文

Under secondary metabolic conditions the white rot basidiomycete Phanerochaete chrysosporium mineralizes 2,4-dichlorophenol (I). The pathway for the degradation of 2,4-dichlorophenol (I) was elucidated by the characterization of fungal metabolites and of oxidation products generated by purified lignin peroxidase and manganese peroxidase. The multistep pathway involves the oxidative dechlorination of 2,4-dichlorophenol (I) to yield 1,2,4,5-tetrahydroxybenzene (VIII). The intermediate 1,2,4,5-tetrahydroxybenzene (VIII) is ring cleaved to produce, after subsequent oxidation, malonic acid. In the first step of the pathway, 2,4-dichlorophenol (I) is oxidized to 2-chloro-1,4-benzoquinone (II) by either manganese peroxidase or lignin peroxidase. 2-Chloro-1,4-benzoquinone (II) is then reduced to 2-chloro-1,4-hydroquinone (III), and the latter is methylated to form the lignin peroxidase substrate 2-chloro-1,4-dimethoxybenzene (IV). 2-Chloro-1,4-dimethoxybenzene (IV) is oxidized by lignin peroxidase to generate 2,5-dimethoxy-1,4-benzoquinone (V), which is reduced to 2,5-dimethoxy-1,4-hydroquinone (VI). 2,5-Dimethoxy-1,4-hydroquinone (VI) is oxidized by either peroxidase to generate 2,5-dihydroxy-1,4-benzoquinone (VII) which is reduced to form the tetrahydroxy intermediate 1,2,4,5-tetrahydroxybenzene (VIII). In this pathway, the substrate is oxidatively dechlorinated by lignin peroxidase or manganese peroxidase in a reaction which produces a p-quinone. The p-quinone intermediate is then recycled by reduction and methylation reactions to regenerate an intermediate which is again a substrate for peroxidase-catalyzed oxidative dechlorination. This unique pathway apparently results in the removal of both chlorine atoms before ring cleavage occurs. 相似文献
20.
Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures 总被引:4,自引:0,他引:4
Anaerobic degradation of 2,4-dichlorophenol (2,4-DCP) between 5 and 72 degrees C was investigated. Anaerobic sediment slurries prepared from local freshwater pond sediments were partitioned into anaerobic tubes or serum vials, which then were incubated separately at the various temperatures. Reductive 2,4-DCP dechlorination occurred only in the temperature range between 5 and 50 degrees C, although methane was formed up to 60 degrees C. In sediment samples from two sites and at all tested temperatures from 5 to 50 degrees C, 2,4-DCP was transformed to 4-chlorophenol (4-CP). The 4-CP intermediate was subsequently degraded after an extended lag period in the temperature range from 15 to 40 degrees C. Adaptation periods for 2,4-DCP transformation decreased between 5 and 25 degrees C, were essentially constant between 25 and 35 degrees C, and increased in the tubes incubated at temperatures between 35 and 40 degrees C. The degradation rates increased exponentially between 15 and 30 degrees C, had a second peak at 35 degrees C, and decreased to about 5% of the peak activity by 40 degrees C. In tubes from one sediment sample, incubated at temperatures above 40 degrees C, an increase in the degradation rate was observed following the minimum at 40 degrees C. This suggests that at least two different organisms were involved in the transformation of 2,4-DCP to 4-CP. Storage of the original sediment slurries for 2 months at 12 degrees C resulted in increased adaptation times, but did not affect the degradation rates. 相似文献