首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of toxicants on naturally stable two-species communities are studied. Persistence-extinction thresholds are given for populations in the toxicant stressed Lotka-Volterra model of two interacting species. The threshold results are expressed in terms of relationships involving the population intrinsic growth rates, dose-response parameters, and interaction rates.Research supported by the fund of Chinese Natural Science  相似文献   

2.
We will elaborate the evolutionary course of an ecosystem consisting of a population in a chemostat environment with periodically fluctuating nutrient supply. The organisms that make up the population consist of structural biomass and energy storage compartments. In a constant chemostat environment a species without energy storage always out-competes a species with energy reserves. This hinders evolution of species with storage from those without storage. Using the adaptive dynamics approach for non-equilibrium ecological systems we will show that in a fluctuating environment there are multiple stable evolutionary singular strategies (ss's): one for a species without, and one for a species with energy storage. The evolutionary end-point depends on the initial evolutionary state. We will formulate the invasion fitness in terms of Floquet multipliers for the oscillating non-autonomous system. Bifurcation theory is used to study points where due to evolutionary development by mutational steps, the long-term dynamics of the ecological system changes qualitatively. To that end, at the ecological time scale, the trait value at which invasion of a mutant into a resident population becomes possible can be calculated using numerical bifurcation analysis where the trait is used as the free parameter, because it is just a bifurcation point. In a constant environment there is a unique stable equilibrium for one species following the "competitive exclusion" principle. In contrast, due to the oscillatory dynamics on the ecological time scale two species may coexist. That is, non-equilibrium dynamics enhances biodiversity. However, we will show that this coexistence is not stable on the evolutionary time scale and always one single species survives.  相似文献   

3.
4.
5.
Fitness consequences of avian personalities in a fluctuating environment   总被引:10,自引:0,他引:10  
Individual animals differ in the way they cope with challenges in their environment, comparable with variation in human personalities. The proximate basis of variation in personality traits has received considerable attention, and one general finding is that personality traits have a substantial genetic basis. This poses the question of how variation in personality is maintained in natural populations. We show that selection on a personality trait with high heritability fluctuates across years within a natural bird population. Annual adult survival was related to this personality trait (behaviour in novel environments) but the effects were always opposite for males and females, and reversed between years. The number of offspring surviving to breeding was also related to their parents' personalities, and again selection changed between years. The observed annual changes in selection pressures coincided with changes in environmental conditions (masting of beeches) that affect the competitive regimes of the birds. We expect that the observed fluctuations in environmental factors lead to fluctuations in competition for space and food, and these, in association with variations in population density, lead to a variation in selection pressure, which maintains genetic variation in personalities.  相似文献   

6.
The physiological strategies that enable organisms to thrive in habitats where environmental factors vary dramatically on a daily basis are poorly understood. One of the most variable and unpredictable habitats on earth is the marine rocky intertidal zone located at the boundary between the terrestrial and marine environments. Mussels dominate rocky intertidal habitats throughout the world and, being sessile, endure wide variations in temperature, salinity, oxygen, and food availability due to diurnal, tidal, and climatic cycles. Analysis of gene-expression changes in the California ribbed mussel (Mytilus californianus) at different phases in the tidal cycle reveals that intertidal mussels exist in at least four distinct physiological states, corresponding to a metabolism and respiration phase, a cell-division phase, and two stress-response signatures linked to moderate and severe heat-stress events. The metabolism and cell-division phases appear to be functionally linked and are anticorrelated in time. The magnitudes and timings of these states varied by vertical position on the shore and appear to be driven by microhabitat conditions. The results provide new insights into the strategies that allow life to flourish in fluctuating environments and demonstrate the importance of time course data collected from field animals in situ in understanding organism-environment interactions.  相似文献   

7.
The interaction between mobile DNA sequences and their hosts raises important questions in the context of hosts which reproduce clonally with only rare horizontal transmission between clones. The activity of some mobile DNAs as reversible mutators of genes raises the possibility that, in a fluctuating environment, cells may gain an advantage if they have mobile DNAs which mutate genes whose inactivation is favoured in one of the environments that the population encounters. Here we analyse a model of this process and ask what would be the optimal rate of transposition in a population whose elements are maintained by this mechanism. We also examine the impact of horizontal transfer on such a population. With movement of elements between cells, we can imagine elements with differing rates of transposition and host cells with differing rates of transposition. We find that evolution in the population of elements favours a rapid rate of transposition, and evolution of the host cells favours cells in which this rapid rate of element-dependent transposition results in an optimal rate of transposition per cell. However, when horizontal transfer rates are high, some unexpected features of the model are observed. In particular, a polymorphism between cell types (some with an optimal rate of transposition and some with no transposition at all from endogenous elements) can be stably maintained. We consider the possible biological predictions of this analysis.  相似文献   

8.
《Animal behaviour》1988,36(1):87-105
The problem of how animals keep track of unpredictable changes in the profitability of foraging sites was studied. An optimality model was used to predict the frequency with which a forager should sample a foraging site in which the probability of reward fluctuates randomly between high and low. The alternative foraging site is stable and offers an intermediate probability of reward. The model was tested with pigeons in a shuttle-box the two ends of which represented the two foraging sites. The pigeons succeeded in tracking the changes in the fluctuating site and the payoff attained was close to the optimum. Variations in the frequency of sampling between experimental treatments were in qualitative agreement with the model for some treatments but not others. The quantitative details of sampling behaviour were not as predicted by the optimality model, but many features could be accounted for by a mechanistic model of choice. The pigeons' choice rule, although different from that of the optimality model, is one that produces near-optimal payoffs under the conditions of this experiment.  相似文献   

9.
An important biological feature of cyclic populations of voles and lemmings is phase-related changes in average body mass, with adults in high-density phases being 20-30% heavier than those in low-density phases of a cycle. This observation, called the "Chitty effect," is considered to be a ubiquitous feature of cyclic populations. It has been argued that understanding the Chitty effect is fundamental to unraveling the enigma of population cycles. However, there exists no agreement among biologists regarding the causes of the Chitty effect. Here, I propose a simple hypothesis to explain the Chitty effect, based on phase-related, dynamic allocation of energy between reproductive and somatic effort. The essence of the hypothesis is that: (1) reproduction is suppressed in animals born or raised in the later part of the increase phase by environmental factors, including social influences; (2) suppression of reproduction limits the amount of energy that is diverted for reproductive effort, and forces a disproportionately greater amount of surplus power (the energy left after the energetic costs of standard and active metabolism are met) to be allocated for somatic effort; (3) the surplus energy, above and beyond what is required for routine biological activities, will allow continuous growth and deposition of additional body mass, which causes an increase in body mass; and (4) animals grow to a larger size as a population enters the peak density phase, causing an increase in the average body mass. The Chitty effect is predicted to be most pronounced at the late increase or peak phase of a population cycle. Possible causes of reproductive suppression include direct or indirect influences of the environmental factors. The Chitty effect may be a consequence, not a cause, of population cycles in small mammals.  相似文献   

10.
The evolution of population dynamics in a stochastic environment is analysed under a general form of density-dependence with genetic variation in r and K, the intrinsic rate of increase and carrying capacity in the average environment, and in σe2, the environmental variance of population growth rate. The continuous-time model assumes a large population size and a stationary distribution of environments with no autocorrelation. For a given population density, N, and genotype frequency, p, the expected selection gradient is always towards an increased population growth rate, and the expected fitness of a genotype is its Malthusian fitness in the average environment minus the covariance of its growth rate with that of the population. Long-term evolution maximizes the expected value of the density-dependence function, averaged over the stationary distribution of N. In the θ-logistic model, where density dependence of population growth is a function of Nθ, long-term evolution maximizes E[Nθ]=[1−σe2/(2r)]Kθ. While σe2 is always selected to decrease, r and K are always selected to increase, implying a genetic trade-off among them. By contrast, given the other parameters, θ has an intermediate optimum between 1.781 and 2 corresponding to the limits of high or low stochasticity.  相似文献   

11.
The interaction of genetic drift, mutation, and selection in a random environment is investigated using an asymptotic analysis based on assumptions of weak mutation and strong selection. It is shown that genetic drift can be a potent force for removing variation from the population when the random environment tends to occasionally push alleles down to low frequencies.  相似文献   

12.
There is substantial evidence that evolutionary diversification can occur in allopatric conditions through reduction in the degree of phenotypic plasticity when an isolated population encounters a novel, more stable environment. Plasticity is no longer favored in the new environment, either because it carries an inherent physiological cost or because it leads to production of suboptimal phenotypes. In order to explore the role of phenotypic plasticity in sympatric diversification, we modeled the ecological and evolutionary dynamics of Escherichia coli bacteria in batch cultures. Our results describe an evolutionary pathway leading to metabolic diversification in a sympatric environment without spatial structure. In an environment that fluctuates widely and predictably, evolutionary branching leads to diversification and stable coexistence of generalist and specialist ecotypes for some combinations of parameters. Diversification and stable coexistence occur when reaction norms are steep and trade-offs between metabolic pathways are convex. We conclude that, in principle, diversification due to reduced plasticity can occur without allopatric isolation, reduced environmental variability, or an explicit cost of plasticity.  相似文献   

13.
Regulation of starch biosynthesis in response to a fluctuating environment   总被引:3,自引:0,他引:3  
Geigenberger P 《Plant physiology》2011,155(4):1566-1577
  相似文献   

14.
The survival advantage of olfaction in a competitive environment   总被引:1,自引:0,他引:1  
Olfaction is generally assumed to be critical for survival because this sense allows animals to detect food and pheromonal cues. Although the ability to sense sex pheromones [1, 2, 3] is likely to be important for insects, the contribution of general odor detection to survival is unknown. We investigated the extent to which the olfactory system confers a survival advantage on Drosophila larvae foraging for food under conditions of limited resources and competition from other larvae.  相似文献   

15.
Abstract. New techniques for haemolymph analysis under field conditions have permitted studies of short-term changes in the body fluid concentrations of insects, in association with ambient conditions.
The haemolymph of four species of caterpillar changes in relation to the prevailing relative humidity, but the magnitude of these changes was correlated with the degree of exposure to the environment characteristic of each species and instar. In larvae habitually fully exposed to ambient conditions, haemolymph concentrations normally changed predictably through a day in relation to the humidity. However, osmoregulatory mechanisms operated to keep the increments in osmolality within acceptable limits. For those larvae which inhabit protected microenvironments with constant high humidity, either in association with plants or in conspecific aggregations, ambient humidity had little effect on the blood when this was sampled in situ. But when removed from such habitats, blood osmolality increases were large and rapid, and the larvae often succumbed to desiccation.
The role of biochemical, physiological, behavioural and ecological strategies in establishing the water balance of an insect in its natural surroundings are considered in the light of these findings.  相似文献   

16.
Phenotypic variability in a microorganism population is thought to be advantageous in fluctuating environments, however much remains unknown about the precise conditions for this advantage to hold. In particular competition for a growth-limiting resource and the dynamics of that resource in the environment modify the tradeoff between different effects of variability. Here we investigate theoretically a model system for variable populations under competition for a flowing resource that governs growth (chemostat model) and changes with time. This environment generally induces density-dependent selection among competing sub-populations. We characterize quantitatively the transient dynamics in this system, and find that equilibration between total population density and environment can occur separately and with a distinct timescale from equilibration between competing sub-populations. We analyze quantitatively the two opposing effects of heterogeneity-transient response to change, and fitness at equilibrium-and find the optimal strategy in a fluctuating environment. We characterize the phase diagram of the system in term of its optimal strategy and find it to be strongly dependent on the typical timescale of the environment and weakly dependent on the internal parameters of the population.  相似文献   

17.
A periodically fluctuating environment is assumed in a population-modeling process that generates nonautonomous difference equations. The existence and uniqueness of periodic solutions are studied. A sufficient condition for existence and a necessary condition for uniqueness are obtained. Stability of the periodic solutions is investigated. Several numerical examples are given to illustrate the basic results, and a brief discussion is presented.  相似文献   

18.
19.
20.
Bacteria were isolated from lake water, and their ability to remain viable in a dilute, nutrient-deficient environment was tested by a method that permits suspension of test bacteria between two appressed microporous membranes in an aqueous environment. This approach permitted separation of the lake isolates into two categories. Members of the tribe Klebsielleae were shown to have a prolonged survival rate of 40% or better after 24 h, whereas nonsurvivors were not viable for much longer than 24 h. These nonsurvivors belonged to the genera Acinetobacter, Aeromonas, Alcaligenes, Erwinia, Escherichia, Flavobacterium, and Pseudomonas. Differences in ribonuclease and adenosine triphosphatase levels between Escherichia coli (nonsurvivor) and Klebsiella (survivor) cells were detected. At pH 7.5, stressed E. coli cells contained 14% of the adenosine triphosphatase activity detected in the control, whereas at pH 5.5, in the presence of calcium ions, these same cells contained 50% of the control adenosine triphosphatase levels. At pH 7.2, E. coli cells were strongly inhibited by an adenosine triphosphatase inhibitor, bathophenanthroline (88%); oligomycin (64%); and the proton ionophore carbonyl- cyanide-m-chlorophenyl hydrazone (67%). Both sodium azide and valinomycin were only moderately inhibitory (15 and 28%, respectively). Although the ability to scavenge internal endogenous reserves seems important, we postulate that certain enteric bacteria are capable of utilizing acidic conditions (pH 5.5) as an electrochemical gradient to generate necessary high-energy intermediates for prolongation of survival beyond that possible in environments of near-neutraL pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号