首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycogen phosphorylase from swine adipose tissue was purified nearly 700-fold using ethanol precipitation, DEAE-cellulose adsorption, AMP-agarose affinity chromatography, and agarose gel filtration. The purified enzyme migrated as one major and several minor components during polyacrylamide gel electrophoresis. Activity was associated with the major component and at least one of the minor components. The molecular weight of the disaggregated, reduced, and alkylated enzyme, estimated by polyacrylamide gel electrophoresis performed in the presence of sodium dodecyl sulfate, was 90,000. Stability of the purified enzyme was considerably increased in the presence of AMP. The isoelectric pH of the enzyme in crude homogenates was 6.3. The sedimentation coefficient of the purified enzyme (7.9 S) and that in crude homogenates (7.3 S) was determined by sucrose density gradient sedimentation. Optimal pH for activity was between pH 6.5 and 7.1. Apparent Km values for glycogen and inorganic phosphate were 0.9 mg/ml and 6.6 mM, respectively. The Ka for AMP was 0.21 mM. Enzyme activity was increased by K2SO4, KF, KCl, and MgCl2 and decreased by NaCl, Na2SO4, D-glucose, and ATP. Inhibition by glucose was noncompetitive with the activator AMP; inhibition by ATP was partially competitive with AMP. The purified enzyme was activated by incubation with skeletal muscle phosphorylase kinase. Enzyme in crude homogenates was activated by the addition of MgCl2 and ATP; activation was not blocked by addition of protein kinase inhibitor, suggesting that phosphorylase kinase in homogenates of swine adipose tissue is present largely in an activated form. Deactivation of phosphorylase a by phosphorylase phosphatase was studied using enzyme purified approximately 200-fold from swine adipose tissue by ethanol precipitation, DEAE-cellulose chromatography, and gel filtration. The Km of the adipose tissue phosphatase for skeletal muscle phosphorylase a was 6 muM. The purified swine adipose tissue phosphorylase, labeled with 32-P, was inactivated and dephosphorylated by the adipose tissue phosphatase. Dephosphorylation of both skeletal muscle and adipose tissue substrates was inhibited by AMP and glucose reversed this inhibition. Several lines of evidence suggest that AMP inhibition was due to an action on the substrate rather than on the enzyme. We have previously reported that the system for phosphorylase activation in rat fat cells differs in some important characteristics from that in skeletal muscle. However, both swine fat phosphorylase and phosphorylase phosphatase have major properties very similar to those described for the enzymes from skeletal muscle.  相似文献   

2.
Brown adipose tissue was identified in axillary, interscapular, subscapular, and cervical fat deposits of male and female cynomolgus monkeys (Macaca fascicularis) by histological and immunological techniques. Histology included staining of mitochondria with a Novelli stain and identification of mitochondria-rich multilocular cells. Immunological detection involved separation of homogenate proteins by sodium dodecyl sulphate--polyacrylamide gel chromatography, blotting on to nitrocellulose membranes, and identification of the specific uncoupling protein, unique to brown adipose tissue, with an antiserum to purified hamster uncoupling protein followed by detection with 125I-labelled protein A. The activity of thyroxine 5'-deiodinase in monkey brown adipose tissue homogenates was much higher than that seen previously in brown adipose tissue of rats, mice, and hamsters. This is the first demonstration of the presence of this enzyme in brown adipose tissue of a primate species.  相似文献   

3.
An antibody to a highly pure enzyme preparation was developed to facilitate detailed studies of rat adipose tissue lipoprotein lipase regulation. Lipoprotein lipase was purified by heparin-Sepharose affinity chromatography followed by preparative isoelectric focusing. The enzyme migrated as a single broad band on SDS disc gel and two-dimensional gel electrophoresis with an apparent molecular mass of 67 000 and 62 000 Da, respectively. The amino acid composition of the purified rat enzyme was virtually identical to that of bovine milk. A major protein component with no lipase activity co-eluted with the enzyme from the affinity column, but was separated by the isoelectric focusing step. The molecular mass was slightly lower (58 000 Da) but the amino acid composition of this protein was similar to that of the enzyme. An antibody raised against the purified rat enzyme was highly potent and was effective in inhibiting rat heart lipoprotein lipase, but not the salt-resistant hepatic lipase. Analysis of crude acetone-ether adipose tissue preparation on SDS slab polyacrylamide gel coupled to Western blotting revealed five protein bands = (62 000, 56 000, 41 700, 22 500, 20 000 Da). Similarly, following affinity purification by immunoadsorption, the purified antibody reacted with five equivalent protein bands. Fluorescent concanavalin A binding data indicated that the 56 kDa band is a glycosylated form of lipoprotein lipase. Pretreatment of adipose tissue with proteinase inhibitors revealed that the lower molecular mass proteins (41 700 and 20 000 Da) were degradation products of lipoprotein lipase, and the 22 500 Da band could be accounted for by non-specific binding.  相似文献   

4.
The enzyme UDP-glucose:dolichylphosphate glucosyltransferase has been purified 1700-fold from MOPC-315 plasmacytoma tissue. The purification combines differential detergent extraction of purified rough endoplasmic reticulum with subsequent ion exchange chromatography, dye affinity chromatography, and hydroxylapatite chromatography of the extract. The partially purified glucosyltransferase exhibits a Km of 0.79 microM for UDP-Glc and a Km of 0.65 microM for dolicholphosphate in the presence of 4 mg/ml of phosphatidylcholine. The reaction is dependent upon the addition of exogenous dolicholphosphate. The enzyme is activated by the choline containing lipids phosphatidylcholine, lysophosphatidylcholine, and sphingomyelin. The dye Remazol blue acts as a competitive inhibitor of the enzyme with respect to UDP-Glc. The molecular weight of the enzyme has been determined to be approximately 37,000. The sole reaction product has been identified as dolichylphosphate glucose by isolation of the product by DEAE-cellulose chromatography and subsequent analysis of the acid-hydrolyzed product by both Bio-Gel P2 gel filtration and paper chromatography.  相似文献   

5.
The NADH:(acceptor) oxidoreductase from membranes of bovine adrenal medulla chromaffin granules has been purified by column chromatography. After solubilization of the membranes with emulphogen, a nonionic detergent, the enzyme was purified by dye-ligand chromatography and gel filtration. The oxidoreductase appeared essentially homogeneous on two gel electrophoretic systems. On polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, the enzyme revealed a dimeric structure with a combined molecular weight of about 55,000. The enzyme eluted as a detergent-lipid-protein aggregate with a Stoke's radius of 43 Å on gel filtration columns in the presence of emulphogen. The amino acid composition of the oxidoreductase was found to be distinct from that of similar enzymes from other organelles. Topographical experiments indicated that the enzyme is a transmembrane protein.  相似文献   

6.
A membrane-bound phosphatidylinositol (PI) kinase (EC 2.7.1.67) was purified by affinity chromatography from bovine brain myelin. This enzyme activity was solubilized with non-ionic detergent and chromatographed on an anion-exchange column. Further purification was achieved by affinity chromatography on PI covalently coupled to epoxy-activated Sepharose, which was eluted with a combination of PI and detergent. The final step in the purification was by gel filtration on an Ultrogel AcA44 column. This procedure afforded greater than 5500-fold purification of the enzyme from whole brain myelin. The resulting activity exhibited a major silver-stained band on SDS/polyacrylamide-gel electrophoresis with an apparent Mr 45,000. The identity of this band as PI kinase was corroborated by demonstration of enzyme activity in the gel region corresponding to that of the stained protein. The purified enzyme exhibited a non-linear dependence on PI as substrate, with two apparent kinetic components. The lower-affinity component exhibited a Km similar to that observed for the phosphorylation of phosphatidylinositol 4-phosphate by the enzyme.  相似文献   

7.
The Lubrol-dispersed guanylate cyclase from sea urchin sperm was purified and isolated essentially free of detergent by GTP affinity chromatography, DEAE-Sephadex chromatography, and gel filtration. After removal of the detergent, the enzyme remained in solution in the presence of 20% glycerol. The specific activity of the purified enzyme was about 12 mumol of guanosine 3':5'-monophosphate (cyclic GMP) formed - min-1 - mg of protein-1 at 30 degrees, an activity about 4600 times that of a soluble guanylate cyclase purified recently from Escherichia coli (Macchia V., Varrone, S., Weissbach, H., Miller, D.L., and Pastan, I. (1975) J. Biol. Chem. 250, 6214-6217). The cyclic GMP phosphodiesterase activity was negligible and adenosine 3':5'-monophosphate (cyclic AMP) phosphodiesterase was not detectable in the purified preparation. Cyclic AMP formation from ATP occurred at a rate of 0.002% of that of guanylate cyclase. In the absence of phosphodiesterase or guanosine triphosphatase inhibitors, 100% of the added GTP was converted to cyclic GMP. The purified enzyme required Mn2+ for maximum activity, the relative rates in the presence of Mg2+ or Ca2+ being less than 0.6% of the rates with Mn2+. The purified enzyme displayed classical Michaelis-Menten kinetics with respect to MnGTP (apparent Km is approximately equal to 170 muM) in contrast to the positively cooperative kinetic behavior displayed by the unpurified, detergent-dispersed, or particulate guanylate cyclase. The molecular weight of the purified enzyme was approximately 182,000 as estimated on Bio-Gel A-0.5m columns equilibrated in the presence or absence of 0.1 M NaCl. The unpurified, detergent-dispersed enzyme also migrated with an apparent molecular weight of 182,000 on columns equilibrated with 0.5% Lubrol WX and 0.1 M NaCl, but it migrated as a large aggregate (molecular weight is greater than 5 X 10(5)) on columns equilibrated in the absence of either the detergent of NaCl. After gel filtration, the unpurified, dispersed enzyme still yielded positive cooperative kinetic patterns as a function of MnGTP. Na dodecyl-SO4 gel electrophoresis of the enzyme after the DEAE-Sephadex or the gel filtration steps resulted in two major protein bands with estimated molecular weights of 118,000 and 75,000. Whether or not these protein bands represent the subunit molecular weights of guanylate cyclase is unknown at present.  相似文献   

8.
A new method to purify papain- or detergent-solubilized form (papain or detergent form) of γ-glutamyltransferase from rat hepatomas as well as from rat kidney by immuno-affinity column chromatography is presented. The antibody-column was prepared by coupling the anti-kidney papain form antibody, which had been purified by using a kidney papain form-Sepharose column, to CNBr-activated Sepharose 4B. The enzyme bound to the antibody-column was eluted with 0.04 M NH4OH. By this method, detergent forms were purified 300 and 1600-fold in approx. 50% yields from rat kidney and rat ascites hepatoma AH 13, respectively, and the papain form was also purified 16 000-fold in a similar yield from primary hepatoma which has a very low activity of this enzyme. Preparations thus obtained apparently did not contain any peptide other than heavy and light subunit peptides of this enzyme on SDS-polyacrylamide gel electrophoresis. The detergent form of kidney enzyme was preferentially adsorbed to a hydrophobic column of aminooctyl-Sepharose, while the papain form was not, suggesting that the detergent form might be adsorbed to the column through hydrophobic interaction of the membrane-binding domain. The domain peptide was also purified by the hydropholic column after release from the detergent form by papain treatment. The molecular weight of the peptide was estimated to be about 16 000 on SDS-polyacrylamide gel electrophoresis. On double immunodiffusion, the domain peptide reacted with anti-detergent form antibody but not with anti-papain form antibody. The domain-specific antibody was also purified from the anti-detergent form antibody.  相似文献   

9.
Purification of (Ca2+-Mg2+)-ATPase from rat liver plasma membranes   总被引:1,自引:0,他引:1  
The Ca2+-stimulated, Mg2+-dependent ATPase from rat liver plasma membranes was solubilized using the detergent polyoxyethylene 9 lauryl ether and purified by column chromatography using Polybuffer Exchanger 94, concanavalin A-Sepharose 4B, and Sephadex G-200. The molecular weight of the enzyme, estimated by gel filtration in the presence of the detergent on a Sephadex G-200 column, was 200,000 +/- 15,000. The enzyme was purified at least 300-fold from rat liver plasma membranes and had a specific activity of 19.7 mumol/mg/min. Polyacrylamide gel electrophoresis under nondenaturing conditions of the purified enzyme indicated that the enzymatic activity correlated with the major protein band. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, one major band in the molecular weight range of 70,000 +/- 5,000 was seen. The isoelectric point of the purified enzyme was 6.9 +/- 0.2 as determined by analytical isoelectric focusing. The enzyme was activated by Ca2+ with an apparent half-saturation constant of 87 +/- 2 nM for Ca2+. Calmodulin and trifluoperazine at the concentration of 1 microgram/ml and 100 microM, respectively, had no effect on the enzymatic activity.  相似文献   

10.
A new method to purify papain- or detergent-solubilized form (papain or detergent form) of gamma-glutamyltransferase from rat hepatomas as well as from rat kidney by immuno-affinity column chromatography is presented. The antibody-column was prepared by coupling the anti-kidney papain form antibody, which had been purified by using a kidney papain form-Sepharose column, to CNBr-activated Sepharose 4B. The enzyme bound to the antibody-column was eluted with 0.04 M NH4OH. By this method, detergent forms were purified 300 and 1600-fold in approx. 50% yields from rat kidney and rat ascites hepatoma AH 13, respectively, and the papain form was also purified 16 000-fold in a similar yield from primary hepatoma which has a very low activity of this enzyme. Preparations thus obtained apparently did not contain any peptide other than heavy and light subunit peptides of this enzyme on SDS-polyacrylamide gel electrophoresis. The detergent form of kidney enzyme was preferentially absorbed to a hydrophobic column of aminooctyl-Sepharose, while the papain form was not, suggesting that the detergent form might be adsorbed to the column through hydrophobic interaction of the membrane-binding domain. The domain peptide was also purified by the hydrophobic column after release from the detergent form by papain treatment. The molecular weight of the peptide was estimated to be about 16 000 on SDS-polyacrylamide gel electrophoresis. On double immunodiffusion, the domain peptide reacted with anti-detergent form antibody but not with anti-papain form antibody. The domain-specific antibody was also purified from the anti-detergent form antibody.  相似文献   

11.
The major molecular form of acetylcholinesterase (AChE) from chicken brain is a membrane-bound glycoprotein with an apparent sedimentation coefficient of 11.4 S. Analysis of the purified protein by gel filtration, velocity sedimentation, and sodium dodecyl sulfate-gel electrophoresis shows that the solubilized enzyme is a globular tetramer with an apparent Mr = 420,000. This membrane-bound form of AChE is hydrophobic and readily aggregates in the absence of detergent. These aggregates are concentration-dependent, relatively stable in the presence of high salt concentrations, yet readily dissociate upon addition of detergent to the 11.4 S form, indicating that the interactions are hydrophobic. Polyclonal and monoclonal antibodies raised against chicken brain AChE purified by ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis precipitate AChE enzyme activity. However, these antibodies do not cross-react with the enzyme from chicken muscle which preferentially hydrolyses butyrylcholine. Immunoprecipitation of isotopically labeled enzyme molecules from tissue cultured brain cells and analysis by sodium dodecyl sulfate-gel electrophoresis shows that AChE consists of two polypeptide chains with apparent Mr = 105,000 (alpha) and 100,000 (beta) in a 1:1 ratio. Immunoblotting of brain AChE with either the polyclonal or monoclonal antibodies indicates that the alpha and beta chains share antigenic determinants. Furthermore, both polypeptide chains can be labeled with [3H]diisopropyl fluorophosphate, indicating that they each contain a catalytic site. This is the first indication that globular forms of AChE may consist of multiple polypeptide chains.  相似文献   

12.
R R Russell 《Microbios》1978,23(93-94):136-146
The glycosyltransferases of S. mutans strain Ingbritt have been resolved by SDS-polyacrylamide gel electrophoresis, followed by incubation in the presence of non-ionic detergent to restore enzyme activity. A group of high molecular weight proteins synthesizing glucans has been identified, as well as three distinct fructan-synthesizing activities. The glucan-forming enzymes have been purified by affinity chromatography on insoluble glucan, followed by gel chromatography in SDS, and antiserum to the purified enzymes has shown that they are antigenically identical within serotypes c, e and f, and cross-react strongly with serotype b.  相似文献   

13.
Phosphatidylinositol (PI) kinase activity of platelet membranes was solubilized and partially purified by anion-exchange chromatography to measure the initial enzymatic rates. Kinetic studies were performed in the presence of Triton X-100 to obtain mixed micelles. The partially purified enzyme exhibited a Michaelian behaviour towards ATP, with a Km of 58 microM. The enzymatic rates were dependent upon Triton concentrations. Upon increasing its concentration, this detergent exhibited an activating effect followed by an inhibitory one. The optimal micellar Triton concentration was proportionnal to the PI concentration used in the assay. Conversely, the behaviour of the enzyme towards PI was dependent upon the Triton concentration. However, when PI concentration was expressed as its surfacic concentration within the micelles, the activity became independent of the detergent concentration, and a Km value of 0.09 mol/mol was estimated. Therefore, in vitro phosphorylation of phosphatidylinositol by PI kinase is rate-limited by an intramicellar reaction, and provides a study model for the in vivo reaction.  相似文献   

14.
Partially purified rat liver plasma membranes were enriched to yield a more glucagon-sensitive membrane fraction which was solubilized with Lubrol-PX. The supernate obtained after centrifugation at 165,000g was subjected to O-diethylaminoethyl anion exchange chromatography. An adenylate cyclase fraction was eluted and purified further by chromatography on agarose-hexane-GTP. The enzyme adsorbed to the affinity resin and was eluted with 0.5 m Tris-HCl. The protein isolated by chromatography on the affinity resin was homogenous by conventional acrylamide gel electrophoresis; one band was observed in sodium dodecyl sulfate. The purified enzyme was free of nucleotide phosphohydrolases found in the parent solubilized membrane preparation. The anion exchange product was not sensitive to glucagon; Lubrol-PX and 5′-guanylylimidodiphosphate [Gpp(NH)p] decreased the activity of this fraction. In the presence of detergent or guanyl nucleotide, glucagon, at 10?6m, increased enzyme activity by 30 and 21%, respectively, to a statistically significant degree, but not above basal levels. Adenylate cyclase was also purified by subjecting the 165,000g supernate directly to agarose-hexane-GTP; agarose-hexane-ATP or agarose-hexane was not effective. The affinity-derived material was associated with 85 nmol of Lubrol-PX/mg of protein. When calculated on the basis of a molecular weight of 150,000 for detergent-free protein after gel filtration on Bio-Gel A-0.5 m, there was 13 mol of detergent/mol of the enzyme obtained by chromatography on the affinity resin. The direct affinity product was insensitive to glucagon and Gpp(NH)p; enzyme activity varied as a function of Lubrol concentration.  相似文献   

15.
The cytosol of rat heart has been previously shown to contain phospholipase A activity in substantial amounts. This paper describes the isolation and partial purification of rat heart cytosolic phospholipase A. After homogenization of rat heart followed by centrifugation to remove membraneous material, the phospholipase A activity was isolated by ammonium sulfate precipitation and further purified by gel permeation chromatography with Sephadex G-100 in the presence of 5 mM taurodeoxycholate. Two peaks were isolated: a minor peak at the void volume and major peak corresponding to a molecular weight of 45,000. The molecular weight observed in HPLC gel permeation chromatography experiments was also Mr 45,000 and was not significantly affected by the nature of the detergent used. Phospholipase A was purified 77-fold over the crude cytosol. Further purification could not be attained due to lability of the phospholipase A activity. The enzyme is a phospholipase of the A1 type which does not require Ca2+ and lacks lipase or transacylase activity. It is unusual for the phospholipases A described to date, since it is inhibited by thiol reagents and is protected by beta-mercaptoethanol, suggesting the presence of essential sulfhydryl residues.  相似文献   

16.
It was found that phospholipase A2 and lysophospholipase, both of which were released from thrombin-stimulated rat platelets, had high affinity to insolubilized heparin. Phospholipase A2 released from rat platelets was purified by the sequential use of column chromatography on heparin-Sepharose and TSK gel G2000SW (high-performance liquid chromatography, HPLC). The enzyme was near homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and HPLC, and its Mr was estimated to be 13,500. The purified enzyme was labile and lost its activity within 1 h when incubated at 37 degrees C. Phospholipids or detergent in the solution protected the enzyme against inactivation. Phospholipase activity was inhibited by p-bromophenacylbromide, but not by diisopropylfluorophosphate or iodoacetamide. Lysophospholipase, which was also released from rat platelets, was separated from phospholipase A2 by chromatography on heparin-Sepharose.  相似文献   

17.
Dimethyl sulfoxide reductase, a terminal electron transfer enzyme, was purified from anaerobically grown Escherichia coli harboring a plasmid which codes for dimethyl sulfoxide reductase. The enzyme was purified to greater than 90% homogeneity from cell envelopes by a three-step purification procedure involving extraction with the detergent Triton X-100, chromatofocusing, and DEAE ion-exchange chromatography. The purified enzyme was composed of three subunits with molecular weights of 82,600, 23,600, and 22,700 as identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular weight was determined by gel electrophoresis to be 155,000. The purified enzyme contained 7.5 atoms of iron and 0.34 atom of molybdenum per mol of enzyme. The presence of molybdopterin cofactor in dimethyl sulfoxide reductase was identified by reconstitution of cofactor-deficient NADPH nitrate reductase activity from Neurospora crassa nit-I mutant and by UV absorption and fluorescence emission spectra. The enzyme displayed a very broad substrate specificity, reducing various N-oxide and sulfoxide compounds as well as chlorate and hydroxylamine.  相似文献   

18.
A detergent solubilised sucrase from monkey small intestine has been purified 388-fold to gel electrophoretic homogeneity with an overall recovery of 36%. The molecular weight of the enzyme was 263 kDa by gel filtration. Electrophoresis in the presence of SDS indicates that the enzyme is a hetero-dimer. Mixed substrate inhibition studies and inhibition by PCMB and Tris suggest the presence of two catalytically active sites in the form of maltase and sucrase with isomaltase activity being common to both sites. Polyclonal antiserum against the purified enzyme showed a single continuous precipitin line with the purified antigen.  相似文献   

19.
In crude extracts of adipose tissue the protein kinase dissociates slowly at 30 degrees into regulatory and catalytic subunits in the presence of 700 mug per ml of histone or 0.5 M NaCl. If the kinase is first dissociated by adding 10 muM adenosine 3':5'-monophosphate (cAMP), reassociation occurs instantaneously after removal of the cAMP by Sephadex G-25 chromatography. In contrast, in crude xtracts of heart, the protein kinase dissociates rapidly in the presence of 700 mug per ml of histone or 0.5 M NaCl and reassociates slowly after removal of cAMP. These differences are accounted for by the existence of two types of protein kinases in these tissues, referred to as types I and II. DEAE-cellulose chromatography of extracts of adipose tissue produces only one peak of cAMP-dependent protein kinase activity (type II) which elutes between 0.15 and 0.25 M NaCl. Similar chromatography of heart extracts resolves enzyme activity into two peaks; a type I enzyme which elutes between 0.05 and 0.1 M and predominates (greater than 75% of total activity), and a type II enzyme which elutes between 0.15 and 0.25 M NaCl. The dissociation properties of the types I and II enzymes from heart and adipose tissue are retained after partial purification by DEAE-cellulose and Sepharose 6B chromatography. Rechromatography of the separated peaks of the cardiac enzymes does not change the elution pattern. Sucrose density gradient centrifugation and gel filtration studies indicate that the molecular weights of these enzymes are very similar. The type II enzyme isolated by DEAE-cellulose chromatography of heart extracts resembles the adipose tissue enzyme, i.e. it undergoes slow dissociation at 30 degrees in the presence of histone or 0.5 M NaCl. The adipose tissue kinase and the heart type II kinase are not identical, however, since they do not elute at exactly the same point on DEAE-cellulose columns. A survey of several tissues indicates the presence of type I and II protein kinases similar to the enzymes in adipose tissue and heart as determined by DEAE-cellulose chromatography of crude extracts and by dissociation of the enzymes with histone. The presence of MgATP prevents dissociation of type I enzyme from heart by 0.5 M NaCl or histone. The profile of the enzyme on DEAE-cellulose, however, is not changed...  相似文献   

20.
Inorganic pyrophosphatase was purified from the vacuolar membrane of mung bean hypocotyl tissue by solubilization with lysophosphatidylcholine and QAE-Toyopearl chromatography. The molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 73,000 daltons. Among the amino-terminal first 30 amino acids are 25 nonpolar hydrophobic residues. For maximum activity, the purified pyrophosphatase required 1 mM Mg2+ and 50 mM K+. The enzyme reaction was stimulated by exogenous phospholipid in the presence of detergent. Excess pyrophosphate as well as excess magnesium inhibited the pyrophosphatase. The enzyme reaction was strongly inhibited by ATP, GTP, and CTP at 2 mM, and the inhibition was reversed by increasing the Mg2+ concentration. An antibody preparation raised in a rabbit against the purified enzyme inhibited both the reactions of pyrophosphate hydrolysis of the purified preparation and the pyrophosphate-dependent H+ translocation in the tonoplast vesicles. N,N'-Dicyclohexylcarbodiimide became bound to the purified pyrophosphatase and inhibited the reaction of pyrophosphate hydrolysis. It is concluded that the 73-kDa protein in vacuolar membrane functions as an H+-translocating inorganic pyrophosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号