首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Retrovirus replication requires specialized transport mechanisms to export genomic mRNA from the nucleus to the cytoplasm of the infected cell. This regulation is mediated by a combination of viral and/or cellular factors that interact with cis-acting RNA export elements linking the viral RNA to the cellular CRM1 or NXF1 nuclear export pathways. Endogenous type D murine LTR retrotransposons (musD) were reported to contain an RNA export element located upstream of the 3'-LTR. Although functionally equivalent, the musD export element, termed the musD transport element, is distinct from the other retroviral RNA export elements, such as the constitutive transport element of simian/Mason-Pfizer monkey retroviruses and the RNA transport element found in rodent intracisternal A-particle LTR retrotransposons. We demonstrate here that the minimal RNA transport element (musD transport element) of musD comprises multiple secondary structure elements that presumably serve as recognition signals for the cellular export machinery. We identified two classes of tertiary interactions, namely kissing loops and a pseudoknot. This work constitutes the first example of an RNA transport element requiring such structural motifs to mediate nuclear export.  相似文献   

3.
4.
The constitutive transport elements (CTEs) of type D retroviruses are cis-acting elements that promote nuclear export of incompletely spliced mRNAs. Unlike the Rev response element (RRE) of human immunodeficiency virus type 1 (HIV-1), CTEs depend entirely on factors encoded by the host cell genome. We show that an RNA comprised almost entirely of the CTE of Mason-Pfizer monkey virus (CTE RNA) is exported efficiently from Xenopus oocyte nuclei. The CTE RNA and an RNA containing the RRE of HIV-1 (plus Rev) have little effect on export of one another, demonstrating differences in host cell requirements of these two viral mRNA export pathways. Surprisingly, even very low amounts of CTE RNA block export of normal mRNAs, apparently through the sequestration of cellular mRNA export factors. Export of a CTE-containing lariat occurs when wild-type CTE, but not a mutant form, is inserted into the pre-mRNA. The CTE has two symmetric structures, either of which supports export and the titration of mRNA export factors, but both of which are required for maximal inhibition of mRNA export. Two host proteins bind specifically to the CTE but not to non-functional variants, making these proteins candidates for the sequestered mRNA export factors.  相似文献   

5.
Nuclear export of incompletely spliced RNAs is a prerequisite for retroviral replication. Complex retroviruses like human immunodeficiency virus (HIV) encode a viral transport factor (Rev), which binds to its target sequence on the RNA genome and directs it into the Crm-1-mediated export pathway. Other retroviruses, like Mason-Pfizer monkey virus, contain cis-acting constitutive RNA transport elements (CTE) which achieve nuclear export of intron-containing RNA via cellular transport factors. Here, we describe the identification and characterization of a novel cis-acting orientation-dependent RNA expression element in the coding region of the murine intracisternal A-type particle (IAP) MIA14. This IAP expression element (IAPE) can functionally replace the Rev system in the expression of HIV-1 Gag proteins but functions independently of Crm-1. The presence of this element is needed for the expression of the IAP Gag proteins, indicating its biological significance. The IAPE can be functionally replaced by placing a CTE on the MIA14 RNA, further supporting its role in mRNA export. Northern blot analysis revealed that total RNA, as well as cytoplasmic RNA, was increased when the element was present. The element was mapped to a predicted stem-loop structure in the 3' part of the pol open reading frame. There was no overall homology between the IAPE and the CTE, but there was complete sequence identity between short putative single-stranded loops. Deletion of these loops from the IAPE severely reduced Rev-independent Gag expression.  相似文献   

6.
A common feature of gene expression in all retroviruses is that unspliced, intron-containing RNA is exported to the cytoplasm despite the fact that cellular RNAs which contain introns are usually restricted to the nucleus. In complex retroviruses, the export of intron-containing RNA is mediated by specific viral regulatory proteins (e.g., human immunodeficiency virus type 1 [HIV-1] Rev) that bind to elements in the viral RNA. However, simpler retroviruses do not encode such regulatory proteins. Here we show that the genome of the simpler retrovirus Mason-Pfizer monkey virus (MPMV) contains an element that serves as an autonomous nuclear export signal for intron-containing RNA. This element is essential for MPMV replication; however, its function can be complemented by HIV-1 Rev and the Rev-responsive element. The element can also facilitate the export of cellular intron-containing RNA. These results suggest that the MPMV element mimics cellular RNA transport signals and mediates RNA export through interaction with endogenous cellular factors.  相似文献   

7.
The constitutive transport element (CTE) of type D retroviruses serves as a signal of nuclear export of unspliced viral RNAs. The human TAP(NXF1) protein, a cellular mRNA export factor, directly binds to CTE and mediates nuclear export of CTE-containing RNAs. Here, we use genomic SELEX (systematic evolution of ligands by exponential enrichment) to show that the human genome encodes a family of high-affinity TAP ligands. These TAP-binding elements (TBE) are 15-bp minisatellite repeats that are homologous to the core TAP-binding sites in CTE. The repeats are positioned similarly in the RNA secondary structures of CTE and TBE. Like CTE, TBE is an active nuclear export signal. CTE elements of different species share sequence similarities to TBE in the regions that are neutral for CTE function. This conservation points to a possible common ancestry of the two elements, and in fact, TBE has properties expected from a primordial CTE. Additionally, a molecular fossil of a TBE-like minisatellite is found in the genome of a modern retroelement. These findings constitute direct evidence of an evolutionary link between TBE-related minisatellites and CTE.  相似文献   

8.
9.
Once transcribed, the nascent full-length RNA of HIV-1 must travel to the appropriate host cell sites to be translated or to find a partner RNA for copackaging to form newly generated viruses. In this report, we sought to delineate the location where HIV-1 RNA initiates dimerization and the influence of the RNA transport pathway used by the virus on downstream events essential to viral replication. Using a cell-fusion-dependent recombination assay, we demonstrate that the two RNAs destined for copackaging into the same virion select each other mostly within the cytoplasm. Moreover, by manipulating the RNA export element in the viral genome, we show that the export pathway taken is important for the ability of RNA molecules derived from two viruses to interact and be copackaged. These results further illustrate that at the point of dimerization the two main cellular export pathways are partially distinct. Lastly, by providing Gag in trans, we have demonstrated that Gag is able to package RNA from either export pathway, irrespective of the transport pathway used by the gag mRNA. These findings provide unique insights into the process of RNA export in general, and more specifically, of HIV-1 genomic RNA trafficking.  相似文献   

10.
Retroviral gene expression requires nuclear export and translation of incompletely spliced RNA. In the case of human immunodeficiency virus (HIV), this is facilitated by the viral Rev protein binding to its cognate RNA response element (RRE), while other retroviruses contain constitutive transport elements (CTE) binding to cellular factors. These CTE can substitute for the HIV-1 Rev/RRE system, albeit with reduced efficiency. Here, we show that multimeric copies of the CTE restore HIV-1 protein expression to levels comparable to or higher than Rev/RRE in various cell lines from different species. We suggest that multimerization of export factors is important for CTE function, as reported for Rev. CTE function was not affected when the element was displaced from its natural position close to the poly(A) signal, while insertion of an intron into the 3′-untranslated region (3′-UTR) severely reduced CTE activity. In this case, cytoplasmic RNA degradation was observed, which may be mediated by nonsense-mediated RNA decay. In contrast, Rev-dependent gene expression was insensitive to an intron in the 3′-UTR. Finally, we show that the putative CTE-binding protein RNA helicase A is not specifically translocated into the cytoplasm upon overexpression of CTE-containing RNA.  相似文献   

11.
12.
13.
14.
15.
16.
17.
The packaging signal (Ψ) and Rev-responsive element (RRE) enable unspliced HIV-1 RNAs' export from the nucleus and packaging into virions. For some retroviruses, engrafting Ψ onto a heterologous RNA is sufficient to direct encapsidation. In contrast, HIV-1 RNA packaging requires 5′ leader Ψ elements plus poorly defined additional features. We previously defined minimal 5′ leader sequences competitive with intact Ψ for HIV-1 packaging, and here examined the potential roles of additional downstream elements. The findings confirmed that together, HIV-1 5′ leader Ψ sequences plus a nuclear export element are sufficient to specify packaging. However, RNAs trafficked using a heterologous export element did not compete well with RNAs using HIV-1's RRE. Furthermore, some RNA additions to well-packaged minimal vectors rendered them packaging-defective. These defects were rescued by extending gag sequences in their native context. To understand these packaging defects' causes, in vitro dimerization properties of RNAs containing minimal packaging elements were compared to RNAs with sequence extensions that were or were not compatible with packaging. In vitro dimerization was found to correlate with packaging phenotypes, suggesting that HIV-1 evolved to prevent 5′ leader residues' base pairing with downstream residues and misfolding of the packaging signal. Our findings explain why gag sequences have been implicated in packaging and show that RRE's packaging contributions appear more specific than nuclear export alone. Paired with recent work showing that sequences upstream of Ψ can dictate RNA folds, the current work explains how genetic context of minimal packaging elements contributes to HIV-1 RNA fate determination.  相似文献   

18.
Transport of macromolecules across the nuclear envelope is an essential activity in eukaryotic cells. RNA molecules within cells are found complexed with proteins and the bound proteins likely contain signals for RNA export. RNAs microinjected into Xenopus oocyte nuclei are readily exported, and their export can be competed by self RNA but not by RNAs of other classes. This indicates that the rate-limiting step in RNA export is the interaction of RNAs with class-specific proteins, at least when substrate RNAs are present at saturating levels. Export of host mRNAs is inhibited following infection by some animal viruses, while the export of viral RNAs occurs. The HIV-1 RNA-binding protein, Rev, mediates the export of intron-containing viral RNAs that would normally be retained in nuclei. This requires a nuclear export signal (NES) within Rev and an element within the RNA to which Rev binds. In yeast, heat shock causes accumulation of poly(A)(+)RNA within nuclei but heat-shock mRNAs are transcribed and exported efficiently. This requires elements within heat shock mRNA that probably interact with a cellular protein to facilitate RNA export. In these cases, the proteins that recognize critical sequences in the RNAs probably direct the RNAs to an RNA export pathway not generally used for mRNA export. This would circumvent the general retention of most poly(A)(+)mRNAs following heat shock in yeast and the need for complete splicing of viral mRNAs that travel through the normal mRNA export pathway.  相似文献   

19.
Human TAP is implicated in mRNA nuclear export and is used by simian type D retroviruses to export their unspliced genomic RNA to the cytoplasm of the host cell. We have determined the crystal structure of the minimal TAP fragment that binds the constitutive transport element (CTE) of retroviral RNAs. Unexpectedly, we find the fragment consists of a ribonucleoprotein (RNP) domain, which is not identifiable by its sequence, and a leucine-rich repeat (LRR) domain. The non-canonical RNP domain functions as the general RNA-binding portion of the fragment. The LRR domain is required in cis to the RNP domain for CTE RNA binding. The structural and biochemical properties of the domains point to a remarkable similarity with the U2B"(RNP)-U2A'(LRR) spliceosomal heterodimer. Our in vitro and in vivo functional studies using structure-based mutants suggest that a phylogenetically conserved surface of the LRR domain of TAP may have different roles in the export of viral and cellular RNAs.  相似文献   

20.
Plus-strand RNA virus replication requires the assembly of the viral replicase complexes on intracellular membranes in the host cells. The replicase of Cucumber necrosis virus (CNV), a tombusvirus, contains the viral p33 and p92 replication proteins and possible host factors. In addition, the assembly of CNV replicase is stimulated in the presence of plus-stranded viral RNA (Z. Panaviene et al., J. Virol. 78:8254-8263, 2004). To define cis-acting viral RNA sequences that stimulate replicase assembly, we performed a systematic deletion approach with a model tombusvirus replicon RNA in Saccharomyces cerevisiae, which also coexpressed p33 and p92 replication proteins. In vitro replicase assays performed with purified CNV replicase preparations from yeast revealed critical roles for three RNA elements in CNV replicase assembly: the internal p33 recognition element (p33RE), the replication silencer element (RSE), and the 3'-terminal minus-strand initiation promoter (gPR). Deletion or mutagenesis of these elements reduced the activity of the CNV replicase to a minimal level. In addition to the primary sequences of gPR, RSE, and p33RE, formation of two alternative structures among these elements may also play a role in replicase assembly. Altogether, the role of multiple RNA elements in tombusvirus replicase assembly could be an important factor to ensure fidelity of template selection during replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号