首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested that oxygen free radicals (OFR) depress the excitation-contraction coupling in cardiac muscle. It is possible that a decrease in the cardiac contractility in the failing heart may be due to an increased OFR producing activity of polymorphonuclear (PMN) leukocytes. We studied the OFR producing activity (chemiluminescence) of PMN leukocytes from blood in dogs with heart failure due to chronic volume overload. The animals were divided into two groups: I) normal, (n = 10): II) dogs with mitral insufficiency (MI) of 6 to 9 months duration, (n = 10). Hemodynamic studies were done to establish the presence of heart failure. Blood samples were collected to measure PMN leukocyte chemiluminescence. There was a decrease in the cardiac index and index of myocardial contractility (dp/dt/IIP) and an increase in the left ventricular end-diastolic pressure in dogs with MI indicating left ventricular failure. The peak chemiluminescent activity of the PMN leukocytes in blood of dogs with failure was about four folds greater than that in the blood from normal dogs. These results suggest that there may be an increased OFR generation in dogs with volume overload heart failure. The decrease in the myocardial contractility in the failing heart might be due to an increase in the OFR produced by the PMN leukocytes.  相似文献   

2.
The effect of neocuproine on cardiac injury was studied using retrogradely perfused isolated rat hearts in two experimental systems. In the first system, where hydrogen peroxide-induced damage was studied, neocuproine at the range of 40-175 microM provided protection at the level of 70-85%, as demonstrated by the reduced loss in the peak systolic pressure (P), in +dP/dt and in -dP/dt. In the second system, where ischemia/reperfusion-induced arrhythmias were studied, neocuproine (42 microM) provided a marked protection against cardiac injury as demonstrated by the lowering of the incidence in irreversible ventricular fibrillation, by decreasing the duration of ventricular fibrillation and by the concomitant increase of the duration of normal sinus rhythm, and by improving the post-ischemic recovery of P, +dP/dt and -dP/dt. Free radicals have already been implicated as causative agents in cardiac injury resulting from either hydrogen peroxide or ischemia followed by reperfusion. Additionally, iron and copper have already been shown to drastically exacerbate the injurious effects of free radicals. Thus, the results reported here with neocuproine, a highly effective chelator for both iron and copper, as well as with adventitious copper and with the combination of neocuproine and copper, are in accord with the mediatory role of transition metals in enhancing the deleterious effects induced by free radicals.  相似文献   

3.
During postischemic reperfusion, free radicals are produced and have deleterious effects in isolated rat hearts. We investigated whether melatonin (MEL) reduces the production of hydroxyl radical (*OH) in the effluent and aids in recovery of left ventricular (LV) function. Hearts were subjected to 30 min of ischemia followed by 30 min of reperfusion. Salicylic acid (SAL) was used as the probe for *OH, and its derivatives 2,5- and 2,3-dihydroxybenzoic acid (DHBA) were quantified using HPLC. In addition, thiobarbituric acid reactive substances (TBARS) in the myocardium was measured. Plateaus in the measurement of 2,5- and 2,3-DHBA were seen from 3 to 8 min after reperfusion in each group. The group that received 100 microM MEL+ SAL had significantly reduced amounts of 2,5- and 2,3-DHBA by multiple folds, compared to the SAL group. TBARS was significantly decreased in the 100 microM MEL group (1.20+/-0.36 vs 1.85+/-0.10 micromol/g of drug-free group, p<0.001). More importantly, the 100 microM MEL group significantly recovered in LV function (LV developed pressure, +dp/dt, and -dp/dt; 63.0%, 60.3%, and 59.4% in the 100 microM MEL group; 30.2%, 29.7%, and 31.5% in the drug-free group, respectively; p<0.05). Duration of ventricular tachycardia or ventricular fibrillation significantly decreased in the 100 microM MEL group (100 microM MEL, 159+/-67 sec; drug-free, 1244+/-233 sec; p<0.05). As a result of scavenging *OH and reducing the extent of lipid peroxidation, MEL is an effective agent for protection against postischemic reperfusion injury.  相似文献   

4.
5.
Recent studies have demonstrated that volatile anesthetic postconditioning confers myocardial protection against ischemia-reperfusion (IR) injury through activation of the reperfusion injury salvage kinase (RISK) pathway. As RISK has been shown to be impaired in hypercholesterolemia. Therefore, we investigate whether anesthetic-induced cardiac protection was maintained in hypercholesterolemic rats. In the present study, normocholesteolemic or hypercholesterolemic rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. Animals received 2.4% sevoflurane for 5 min or 3 cycles of 10-s ischemia/10-s reperfusion. The hemodynamic parameters, including left ventricular developed pressure, left ventricular end-diastolic pressure and heart rate, were continuously monitored. The infarct size, apoptosis, p-Akt, p-ERK1/2, p-GSK3β were determined. We found that both sevoflurane and ischemic postconditioning significantly improved heart pump function, reduced infarct size and increased the phosphorylation of Akt, ERK1/2 and their downstream target of GSK3β in the healthy rats. In the hypercholesterolemic rats, neither sevoflurane nor ischemic postconditioning improved left ventricular hemodynamics, reduced infarct size and increased the phosphorylated Akt, ERK1/2 and GSK3β. In contrast, GSK inhibitor SB216763 conferred cardioprotection against IR injury in healthy and hypercholesterolemic hearts. In conclusions, hyperchoesterolemia abrogated sevoflurane-induced cardioprotection against IR injury by alteration of upstream signaling of GSK3β and acute GSK inhibition may provide a novel therapeutic strategy to protect hypercholesterolemic hearts against IR injury.  相似文献   

6.
The oxidative modification of low-density lipoprotein (LDL) plays an important role in atherosclerosis. Protecting LDL from oxidation has been shown to reduce the risk of coronary heart disease. In this study, we compared the protective effects of two lipophilic antioxidants (vitamin E and lazaroid) with two hydrophilic antioxidants (trolox and vitamin C) in the presence of several different free radical generating systems. Vitamin E (IC50 = 5.9 microM) and lazaroid (IC50 = 5.0 microM) were more effective in inhibiting lipid peroxidation caused by a Fe-ADP free radical generating system than vitamin C (IC50 = 5.2 x 10(3) microM) and trolox (IC5 = 1.2 x 10(3) microM). Preincubation of lipoproteins with a lipophilic antioxidant increased the protective effect against various free radicals. Preincubation with hydrophilic antioxidants did not have an effect. We also tested the efficacy of the antioxidants when the free radicals were generated within the lipid or the aqueous environment surrounding the LDL. For this purpose, we used the peroxyl generating azo-compounds AMVN (2,2'-azobis(2,4-dimethylvaleronitrile)) and AAPH (2,2'azobis(2-amidinopropane) dihydrochloride). All of the antioxidants tested were more effective against free radicals generated in a water soluble medium than they were against free radicals generated in a lipid environment. In conclusion, our data demonstrate that lipid solubility is an important factor for both the antioxidant and the free radical generating systems in determining the extent of lipid peroxidation in LDL. Our data also demonstrate that antioxidant efficacy in one set of experimental conditions may not necessarily translate into a similar degree of protection in another set of conditions where lipophilicity is a variable.  相似文献   

7.
Various methods have been used in the past to assess the implication of oxygen free radicals (OFR) in ischemia-reperfusion-induced cardiac injury. Luminol-enhanced tert-butyl-initiated chemiluminescence in cardiac tissue reflects oxidative stress and is a very sensitive method. It was used to elucidate the role of OFR in cardiac injury due to ischemia and reperfusion. Studies were conducted on perfused isolated rabbit hearts in three groups (n = 8 in each): I, control; II, submitted to global ischemia for 30 min; III, submitted to ischemia for 30 min followed by reperfusion for 60 min. The heart tissue was then assayed for chemiluminescence (CL); content of malondialdehyde (MDA), an indicator of OFR-induced cardiac injury; and activity of tissue levels of antioxidants [superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px)].The control values for left and right ventricular CL and malondialdehyde were 81.1 ± 15.4 (S.E.) and 182.4 ± 50.3 (S.E.), mv-min-mg protein–1; and 0.024 ± 0.006 (S.E.) and 0.324 ± 0.005 (S.E.) nmoles-mg protein–1 respectively. Ischemia produced an increase in the cardiac CL (3.3 to 4.4 fold) and MDA content (2 to 2.6 fold). Reperfusion following ischemia also produced similar changes in CL and MDA content. The control values for activity of left ventricular SOD, catalase, and GSH-Px were 45.77 ± 1.73 (S.E.) U-mg protein–1 5.35 ± 0.51 (S.E.) K-10–3-sec–1-mg protein–1, and 77.50 ± 7.70 (S.E.) nmoles NADPH-min–1-mg protein–1 respectively. Activities of SOD and catalase decreased during ischemia but were similar to control values in ischemic-reperfused hearts. The GSH-Px activity of left ventricle was unaffected by ischemia, and ischemia-reperfusion. GSH-Px activity of the right ventricle increased with ischemia, and ischemic-reperfusion.These results indicate that cardiac tissue chemiluminescence would be a useful and sensitive tool for the detection of oxygen free radical-induced cardiac injury.  相似文献   

8.
Although the involvement of serotonin in exacerbating vascular abnormalities in ischemic heart disease has been established, its role in mediating changes in cardiac function due to ischemia reperfusion (IR) is poorly understood. The aim of this study was to investigate the effect of a serotonin blocker, sarpogrelate (5-HT2A antagonist), in preventing cardiac injury due to IR. Isolated rat hearts were subjected to 30 min of global ischemia followed by 1 h of reperfusion. Sarpogrelate (50 nM-0.9 microM) was infused 10 min before ischemia as well as during the reperfusion period. The IR-induced changes in left ventricular developed pressure, left ventricular end diastolic pressure, rate of pressure development, and rate of pressure decay were attenuated (P < 0.05) with sarpogrelate treatment. Sarpogrelate also decreased the ultrastructural damage and improved the high energy phosphate level in the IR hearts (P < 0.05). This study provides evidence for the attenuation of IR-induced cardiac injury by 5-HT2A receptor blockade and supports the view that serotonin may contribute to the deleterious effects of IR in the heart.  相似文献   

9.
Myocardial ischemia-reperfusion injury is a medical problem occurring as damage to the myocardium following blood flow restoration after a critical period of coronary occlusion. Oxygen free radicals (OFR) are implicated in reperfusion injury after myocardial ischemia. The antioxidant enzyme, Cu, Zn-superoxide dismutase (Cu, Zn-SOD, also called SOD1) is one of the major means by which cells counteract the deleterious effects of OFR after ischemia. Recently, we reported that a PEP-1-SOD1 fusion protein was efficiently delivered into cultured cells and isolated rat hearts with ischemia-reperfusion injury. In the present study, we investigated the protective effects of the PEP-1-SOD1 fusion protein after ischemic insult. Immunofluorescecnce analysis revealed that the expressed and purified PEP-1-SOD1 fusion protein injected into rat tail veins was efficiently transduced into the myocardium with its native protein structure intact. When injected into Sprague-Dawley rat tail veins, the PEP-1- SOD1 fusion protein significantly attenuated myocardial ischemia-reperfusion damage; characterized by improving cardiac function of the left ventricle, decreasing infarct size, reducing the level of malondialdehyde (MDA), decreasing the release of creatine kinase (CK) and lactate dehydrogenase (LDH), and relieving cardiomyocyte apoptosis. These results suggest that the biologically active intact forms of PEP-1-SOD1 fusion protein will provide an efficient strategy for therapeutic delivery in various diseases related to SOD1 or to OFR.  相似文献   

10.
Glyceryl trinitrate (GTN) and pentaerythrityl tetranitrate (PETN) are among the most known organic nitrates that are used in cardiovascular therapy as vasodilators. However, anti-ischemic therapy with organic nitrates is complicated by the induction of nitrate tolerance. When nitrates are metabolized to release nitric oxide (NO), there is considerable coproduction of superoxide radicals in vessels leading to inactivation of NO. However, nitrate-induced increase of superoxide radical formation in vivo has not been reported. In this work, the authors studied the in vivo formation of superoxide radicals induced by treatment with PETN or GTN and determined the antioxidant effect of vitamin C. The formation of superoxide radicals was determined by the oxidation of 1-hydroxy-3-carboxy-pyrrolidine (CP-H) to paramagnetic 3-carboxy-proxyl (CP) using electron spin resonance spectroscopy. CP-H (9 mg/kg intravenous bolus and 0.225 mg/kg per minute continuous intravenous GTN or PETN 130 microg/kg) were infused into anesthetized rabbits. Every 5 min, blood samples were obtained from Arteria carotis to measure the CP formation. Both PETN and GTN showed similar vasodilator effects. Formation of CP in blood after infusions of GTN and PETN were 2.0+/-0.4 microM and 0.98+/-0.23 microM, respectively. Pretreatment with 30 mg/kg vitamin C led to a significant decrease in CP formation: 0.27+/-0.14 microM (vitamin C plus GTN) and 0.34+/-0.15 microM (vitamin C plus PETN). Pretreatment of animals with superoxide dismutase (15,000 units/kg) significantly inhibited nitrate-induced nitroxide formation. Therefore, in vivo infusion of GTN or PETN in rabbits increased the formation of superoxide radicals in the vasculature. PETN provoked a minimal stimulation of superoxide radical formation without simultaneous development of nitrate tolerance. The data suggest that the formation of superoxide radicals induced by organic nitrate correlates with the development of nitrate tolerance. The effect of vitamin C on CP formation leads to the conclusion that vitamin C can be used as an effective antioxidant for protection against nitrate-induced superoxide radical formation in vivo.  相似文献   

11.
A number of investigations have implicated free radicals in the progression of ischemic/reperfusion injury. alpha-Tocopherol has been found to attenuate alterations due to ischemia and reperfusion in an isolated heart model. The present study was intended to directly examine neonatal rat cardiac ventricular cell cultures exposed to a free radical generating system catalyzed by xanthine oxidase. The effectiveness of alpha-tocopherol in the attenuation of the resultant changes and the mechanism by which the effects of alpha-tocopherol may be exerted were evaluated. Cultures were either nontreated or pretreated for 18 h with 20 microM alpha-tocopherol or the subcomponents of the alpha-tocopherol molecule, phytol and Trolox. Exposure of cell cultures to free radicals resulted in significant increases in lipid peroxidation products, release of both lactate dehydrogenase and 3H-arachidonate, and structural alterations. Pretreatment with alpha-tocopherol showed significant attenuation of the changes associated with exposure to free radicals. Trolox and phytol at equal molar doses were not as effective as alpha-tocopherol in protecting the myocytes against injury. Thus, alpha-tocopherol seems beneficial in its ability to reduce free radical-mediated changes by functioning as a lipophilic antioxidant. Additionally, the intact, native alpha-tocopherol molecule exceeded the protective capabilities of either of its subcomponents.  相似文献   

12.
During 24-h in vitro heart preservation and reperfusion, irreversible tissue damage occurs caused by reactive oxygen intermediates, such as superoxide radicals, singlet oxygen, hydrogen peroxide, hydroperoxyl, hydroxyl radicals, as well as the peroxynitrite radical. Reduction of the related oxidative damage of reperfused ischemic tissue by free radical scavengers and metal chelators is of primary importance in maintaining heart function. We assessed whether deferoxamine (DFR) added to a cardioplegia solution decreased free radical formation during 24-h cold (5 degrees C) heart preservation and normothermic reperfusion (37 degrees C) in the Langendorff isolated perfused rat heart. The deferoxamine treated hearts were significantly (p less than .001) better preserved than the control hearts after 24 h of preservation with regard to recovery of left ventricular diastolic pressure, contractility (+dP/dt), relaxation (-dP/dt), creatine kinase release, and lipid peroxidation. DFR preserved cell membrane integrity and maintained 93% of left ventricular contractility. The evidence suggests that DFR reduces lipid peroxidation damage by reducing free radical formation and thereby maintaining normal coronary perfusion flow and myocardial function.  相似文献   

13.
In this study, we sought to determine whether there was any evidence for the idea that cardiac ATP-sensitive K+ (K(ATP)) channels play a role in the training-induced increase in the resistance of the heart to ischemia-reperfusion (I/R) injury. To do so, the effects of training and an K(ATP) channel blocker, glibenclamide (Glib), on the recovery of left ventricular (LV) contractile function after 45 min of ischemia and 45 min of reperfusion were examined. Female Sprague-Dawley rats were sedentary (Sed; n = 18) or were trained (Tr; n = 17) for >20 wk by treadmill running, and the hearts from these animals used in a Langendorff-perfused isovolumic LV preparation to assess contractile function. A significant increase in the amount of 72-kDa class of heat shock protein was observed in hearts isolated from Tr rats. The I/R protocol elicited significant and substantial decrements in LV developed pressure (LVDP), minimum pressure (MP), rate of pressure development, and rate of pressure decline and elevations in myocardial Ca(2+) content in both Sed and Tr hearts. In addition, I/R elicited a significant increase in LV diastolic stiffness in Sed, but not Tr, hearts. When administered in the perfusate, Glib (1 microM) elicited a normalization of all indexes of LV contractile function and reductions in myocardial Ca(2+) content in both Sed and Tr hearts. Training increased the functional sensitivity of the heart to Glib because LVDP and MP values normalized more quickly with Glib treatment in the Tr than the Sed group. The increased sensitivity of Tr hearts to Glib is a novel finding that may implicate a role for cardiac K(ATP) channels in the training-induced protection of the heart from I/R injury.  相似文献   

14.
To explore the cardiac effects of iron with or without hydrogen peroxide, the isolated perfused rat heart and enzymatically isolated ventricular cardiomyocyte were used. It was shown that treatment with cell-permeable iron (Fe-HQ) for 10 min reduced the contractile amplitude and velocity and end diastolic cell length in the cardiomyocyte and increased the contents of lactate dehydrogenase (LDH) and creatine kinase (CK) in the coronary effluent and malondialdehyde (MDA) in the myocardium. The left ventricular developed pressure (LVDP), ± dP/dtmax, and heart rate and coronary flow are showed a biphasic phase, an increase at first followed by a decline. Treatment with hydrogen peroxide for 10 min following Fe-HQ augmented the effect of iron with an increase in coronary LDH and CK release and myocardial MDA content, and decrease in LVDP, ± dP/dtmax and heart rate. Perfusion of reduced glutathione with hydrogen peroxide counteracted these effects of Fe-HQ and hydrogen peroxide while dimethyl sulfoxide had no effect on the injury induced by Fe-HQ and hydrogen peroxide in the isolated rat heart. This suggests that augmentation of myocardial injury as a result of an increase in intracellular iron by hydrogen peroxide might involve the dysfunction of sulfydryl group containing proteins but not the hydroxyl radicals.  相似文献   

15.
The effects of a diet rich in fish oil on arterial blood pressure, body weight, left ventricular weight and heart rate have been investigated in 8 month old spontaneously hypertensive male rats (SHR) as compared to age-matched hypertensive controls. A diet containing 10% fish oil decreased blood pressure by about 40 mmHg within 20 days of starting the experiment, and this effect persisted over the observation period of 80 days. Permitting the animals free access to food, the body weight of the diet group increased by 25%. The degree of hypertrophy as evaluated by relating left ventricular weight to tibial length was significantly reduced (10%) in the diet fed group. Heart rate was increased by 53%. The study demonstrates that a diet rich in fish oil can lower arterial blood pressure over several weeks without a recognizable loss in function despite a considerable increase in body weight. It can be assumed that a more marked regression of left ventricular hypertrophy is counteracted by a reflex increase in sympathetic efferentation to the heart.  相似文献   

16.
Myeloperoxidase (MPO) is involved in myocardial ischemia-reperfusion (IR) injury and vascular peroxidase (VPO) is a newly identified isoform of MPO. This study was conducted to explore whether VPO is involved in IR-induced cardiac dysfunction and apoptosis. In a rat Langendorff model of myocardial IR, the cardiac function parameters (left ventricular pressure and the maximum derivatives of left ventricular pressure and coronary flow), creatine kinase (CK) activity, apoptosis, VPO1 activity were measured. In a cell (rat-heart-derived H9c2 cells) model of hypoxia-reoxygenation (HR), apoptosis, VPO activity, and VPO1 mRNA expression were examined. In isolated heart, IR caused a marked decrease in cardiac function and a significant increase in apoptosis, CK, and VPO activity. These effects were attenuated by pharmacologic inhibition of VPO. In vitro, pharmacologic inhibition of VPO activity or silencing of VPO1 expression significantly suppressed HR-induced cellular apoptosis. Our results suggest that increased VPO activity contributes to IR-induced cardiac dysfunction and inhibition of VPO activity may have the potential clinical value in protecting the myocardium against IR injury.  相似文献   

17.
Gao S  Oh YB  Park BM  Park WH  Kim SH 《Peptides》2012,36(2):199-205
Urotensin II (UII) is a vasoactive peptide which is bound to a G protein-coupled receptor. UII and its receptor are upregulated in ischemic and chronic hypoxic myocardium, but the effect of UII on ischemic reperfusion (I/R) injury is still controversial. The aim of the present study was to investigate whether UII protects heart function against I/R injury. Global ischemia was performed using isolated perfused Langendorff hearts of Sprague-Dawley rats. Hearts were perfused with Krebs-Henseleit buffer for 20min pre-ischemic period followed by a 20min global ischemia and 50min reperfusion. Pretreatment with UII (10nM) for 10min increased recovery percentage of the post-ischemic left ventricular developed pressure and ±dp/dt, and decreased post-ischemic left ventricular end-diastolic pressure as compared with I/R group. UII decreased infarct size and an increased lactate dehydrogenase level during reperfusion. Cardioprotective effects of UII were attenuated by pretreatment with UII receptor antagonist. The hydrogen peroxide activity was increased in UII-treated heart before ischemia. The Mn-SOD, catalase, heme oxygenase-1 and Bcl-2 levels were increased, and the Bax and caspase-9 levels were decreased in UII-treated hearts. These results suggest that UII has cardioprotective effects against I/R injury partly through activating antioxidant enzymes and reactive oxygen species.  相似文献   

18.
过氧化氢加重铁对心肌的损伤作用及其机制   总被引:6,自引:4,他引:2  
Chen YY  Shen YL  Cao CM  Xu WH  Qian ZM  Xia Q 《生理学报》2001,53(3):175-182
采用Langendorff灌流心脏和酶解分离的心肌细胞为实验模型,研究铁对心肌的损伤作用,以及过氧化氢对铁的心肌作用的影响及其可能机制.结果显示(1)羟基喹啉铁复合物(Fe-HQ)引起分离心肌细胞舒张期缩短,心肌细胞的收缩幅度和速度降低,离体灌流心脏左室发展压(LVDP)、±dp/dtmax、心率、冠脉流量呈现双相变化;冠脉流出液中乳酸脱氢酶(LDH)、肌酸激酶(CK)释放量和心肌丙二醛(MDA)增高.(2)H2O2可加重Fe-HQ对心脏的损伤,冠脉流出液中LDH、CK释放量和心肌MDA增高,而LVDP、±dp/dtmax和心率明显降低.(3)还原型谷胱甘肽可对抗Fe-HQ+H2O2对心肌的损伤作用,DMSO对Fe-HQ+H2O2致离体心脏损伤无明显作用.结果提示,心肌细胞内铁增加可引起心肌功能受损,H2O2可加重铁对心肌的损伤作用,其主要机制可能与@OH无关,而主要与含巯基的蛋白质受损有关.  相似文献   

19.
Positive inotropic drugs may attenuate or exacerbate the deleterious effects of ischemia and reperfusion (IR) injury on excitation-contraction coupling in hearts. We 1) quantified the phase-space relationship between simultaneously measured myoplasmic Ca2+ concentration ([Ca2+]) and isovolumetric left ventricular pressure (LVP) using indexes of loop area, orientation, and position; and 2) quantified cooperativity by linearly modeling the phase-space relationship between [Ca2+] and rate of LVP development in intact hearts during administration of positive inotropic drugs before and after global IR injury. Unpaced, isolated guinea pig hearts were perfused at a constant pressure with Krebs-Ringer solution (37 degrees C, 1.25 mM CaCl2). [Ca2+] was measured ratiometrically by indo 1 fluorescence by using a fiber-optic probe placed at the left ventricular free wall. LVP was measured by using a saline-filled latex balloon and transducer. Drugs were infused for 2 min, 30 min before, and for 2 min, 30 min after 30-min global ischemia. IR injury worsened Ca2+-contraction coupling, as seen from decreased orientation and repositioning of the loop rightward and downward and reduced cooperativity of contraction and relaxation with or without drugs. Dobutamine (4 microM) worsened, whereas dopamine (8 microM) improved Ca2+-contraction coupling before and after IR injury. Dobutamine and dopamine improved cooperativity of contraction and relaxation after IR injury, whereas only dopamine increased cooperativity of relaxation before IR injury. Digoxin (1 microM) improved Ca2+-contraction coupling and cooperativity of contraction after but not before ischemia. Levosimendan (1 microM) did not alter Ca2+-contraction coupling or cooperativity, despite producing concomitant increases in contractility, relaxation, and Ca2+ flux before and after ischemia. Dynamic indexes based on LVP-[Ca2+] diagrams (area, shape, position) can be used to identify and measure alterations in Ca2+-contraction coupling during administration of positive inotropic drugs in isolated hearts before and after IR injury.  相似文献   

20.
To determine whether sarcolemmal and/or mitochondrial ATP-sensitive potassium (K(ATP)) channels (sarcK(ATP), mitoK(ATP)) are involved in stretch-induced protection, isolated isovolumic rat hearts were assigned to the following protocols: nonstretched hearts were subjected to 20 min of global ischemia (Is) and 30 min of reperfusion, and before Is stretched hearts received 5 min of stretch + 10 min of no intervention. Stretch was induced by a transient increase in left ventricular end-diastolic pressure (LVEDP) from 10 to 40 mmHg. Other hearts received 5-hydroxydecanoate (5-HD; 100 microM), a selective inhibitor of mitoK(ATP), or HMR-1098 (20 microM), a selective inhibitor of sarcK(ATP), before the stretch protocol. Systolic function was assessed through left ventricular developed pressure (LVDP) and maximal rise in velocity of left ventricular pressure (+dP/dt(max)) and diastolic function through maximal decrease in velocity of left ventricular pressure (-dP/dt(max)) and LVEDP. Lactate dehydrogenase (LDH) release and ATP content were also measured. Stretch resulted in a significant increase of postischemic recovery and attenuation of diastolic stiffness. At 30 min of reperfusion LVDP and +dP/dt(max) were 87 +/- 4% and 92 +/- 6% and -dP/dt(max) and LVEDP were 95 +/- 9% and 10 +/- 4 mmHg vs. 57 +/- 6%, 53 +/- 6%, 57 +/- 10%, and 28 +/- 5 mmHg, respectively, in nonstretched hearts. Stretch increased ATP content and did not produce LDH release. 5-HD did not modify and HMR-1098 prevented the protection achieved by stretch. Our results show that the beneficial effects of stretch on postischemic myocardial dysfunction, cellular damage, and energetic state involve the participation of sarcK(ATP) but not mitoK(ATP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号