首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kovář  Pavel  Kovářová  Marcela  Dostál  Petr  Herben  Tomáš 《Plant Ecology》2001,156(2):215-227
Vegetation in grasslands with well-developed long-lastingant-hills in the Slovenské Rudohorie Mts., Slovakia, was studiedin relation to (i) position on the mound, (ii) ant speciesforming the mound, and (iii) history of the mound. Permanent plotrecordings of mound size and dominant ant species started fifteen years priorthe study began provided information on the history of individual mounds.The mound vegetation bears a striking similarity to vegetation insimilar habitats across a large part of Europe due to presence of species suchas Agrostis capillaris, Dianthusdeltoides, Polytrichum commune agg.,Thymus pulegioides, and Veronicaofficinalis. Out of the three major ant species-groups presentat the site (Lasius flavus, Tetramoriumcaespitum and Formica spp.), L.flavus had the most pronounced and the most lasting effect on themound vegetation. The dominance of the plant species listed above increased withthe time span over which the mound was inhabited by L.flavus. The effects of other species on vegetation composition,though discernible from short-term observation, disappeared over severalyears. The mounds proper did not differ from the undisturbed grassland in theproportion of myrmecochorous plants or plants with specific seed size ordormancy type. However, there was a highly significant concentration ofmyrmecochorous plants in the grassland patches immediately neighbouring themounds; this is likely to be due to seeds deposited there by the workers fromthe nest after the elaiosomes had been consumed. The mound vegetation wascomposed mainly of species with long stolons or rhizomes; however, there was nosignificant difference in formation type or length of stolons/rhizomesbetween mounds and the rest of the grassland or among mounds formed by differentant species.  相似文献   

2.
Interactions between aboveground vertebrate herbivores and subterranean yellow meadow ants (Lasius flavus) can drive plant community patterns in grassland ecosystems. Here, we study the relative importance of the presence of ants (L. flavus) and ant mounds under different simulated grazing regimes for biomass production and species composition in plant communities. We set up a greenhouse experiment using intact soil cores with their associated vegetation.We found that plant biomass production in the short term was affected by an interaction between simulated grazing (clipping) and ant mound presence. Clipping homogenized production on and off mounds, while in unclipped situations production was higher off than on mounds. During the experiment, these differences in unclipped situations disappeared, because production on unclipped mounds increased. Plant species richness was on average higher in clipped treatments and patterns did not change significantly over the experimental period. Plant community composition was mainly affected by clipping, which increased the cover of grazing-tolerant plant species. The actual presence of yellow meadow ants did not affect plant community composition and production.We conclude that the interaction between ant mounds and clipping determined plant community composition and biomass production, while the actual presence of ants themselves was not important. Moreover, clipping can overrule effects of ant mounds on biomass production. Only shortly after the cessation of clipping biomass production was affected by ant mound presence, suggesting that only under low intensity clipping ant mounds may become important determining plant production. Therefore, under low intensity grazing ant mounds may drive the formation of small-scale plant patches.  相似文献   

3.
Abstract. Our objective was to evaluate the effects of burrowing activities by banner-tail kangaroo rats (Dipodomys spectabilis Merriam) on plant community structure and species dominance for two patch types at the ecotone between shortgrass steppe and desert grassland in New Mexico, USA. 10 mounds produced by kangaroo rats were selected in patches dominated by Bouteloua gracilis (the dominant in shortgrass steppe communities) and 10 mounds were selected in patches dominated by B. eriopoda (the dominant in Chihuahuan desert grasslands). Plant cover and density by species were sampled from three locations associated with each mound: the mound proper, the edge of the mound in the transition area, and the off-mound vegetation. Similar cover of B. eriopoda for the edges of mounds in both patch types indicates the ability of this species to respond to animal disturbances regardless of the amount of cover in the surrounding undisturbed vegetation. By contrast, cover of B. gracilis was low for all mounds and mound edges in patches dominated by this species. Much higher cover of B. eriopoda on mound edges compared to the undisturbed vegetation in B. gracilis-dominated patches indicates that kangaroo rats have important positive effects on this species. Lower cover of perennial grasses and higher cover of forbs, shrubs, and succulents on the edges of mounds in B. eriopoda-dominated patches compared to patches dominated by B. gracilis indicate the importance of surrounding vegetation to plant responses on disturbed areas. Our results show that kangaroo rats have important effects on both species dominance and composition for different patch types, and may provide a mechanism for small-scale dominance patterns at an ecotone; thus providing further support for their role as keystone species in desert grasslands.  相似文献   

4.
We analysed the habitat preferences of adult stages and oviposition electivity of Melitaea aurelia in calcareous grasslands in the Diemel Valley (central Germany) to assess the key factors for successful management. Egg-laying and adult habitats of M. aurelia were more or less congruent. Oviposition electivity at the host plant (Plantago media) was best explained by a combination of host plant quantity and vegetation structure. Habitat quality, isolation and patch area explained 86% of the current patch occupancy of M. aurelia. With M. aurelia preferentially inhabiting transitional vegetation types, management requires a balance between abandonment and disturbance. Disturbances provide open soil that facilitates germination of the host plant Plantago media. On the other hand, immature and adult stages of M. aurelia perform best on calcareous grasslands with a high amount of host plants and low disturbance intensity. Traditional rough grazing regimes seem to be the most favourable tool for developing the necessary spatial and temporal heterogeneity in patches. The best results may be achieved by rotational grazing where only a subset of inhabited patches is grazed intensively each year. Our analysis of patch occupancy indicates that it would be desirable to restore patches in close proximity to occupied sites.  相似文献   

5.
Petr Dostl 《Flora》2005,200(2):148-158
The effect of three ant species (Lasius flavus, Formica spp., Tetramorium caespitum) on soil seed bank formation was studied in temperate mountain grassland. Seed removal experiments, analysis of soil seed content and seed survival experiments were carried out to evaluate the influence of ground ants on the seed fate. In the seed removal experiment seeds of 16 species, including 5 species with elaiosome-bearing seeds (myrmecochores), were exposed and their removal followed for 39 h. On average, ants removed 63.8% of myrmecochorous seeds and 10.9% of seeds without adaptation to ant dispersal. Analysis of soil seed content revealed that myrmecochores, in spite of expectations that they would accumulate in nests of seed dispersing ants, were most abundant in the soil of control plots. Evidence on seed relocation to the ant nests was obtained from a comparison of mounds of seed dispersing and seed non-dispersing ant species, as more seeds were found in the mounds of Formica spp. and Tetramorium caespitum (seed dispersers) in comparison with the mounds of Lasius favus (non-disperser).The soil seed bank of the compared microhabitats (control plots and mounds of 3 ant species) differed in their species composition, seed abundance and vertical distribution. The most distinct qualitative differences were between seed flora of control plots and mounds of Tetramorium caespitum. Control plots had approximately 30,000 propagules per m2, which was double the number of seeds found in the ant mounds. In control plots, abundance and diversity of seeds steeply declined with depth; this trend was not observed in the mounds probably due to bioturbation. In the seed survival experiment, more seeds (2 out of 3 species) survived in control plots, which may also contribute to the higher seed abundance in this microhabitat.This study showed that seed relocation by ants does not contribute significantly to seed bank build-up at this study site. Ants may, however, increase the regeneration success of myrmecochores, mainly by dispersal for distance and placement in a larger spectrum of microsites, in contrast to species not adapted for myrmecochory.  相似文献   

6.
Question: What is the role of mound‐building ants (Lasius flavus) in successional changes of a grassland ecosystem towards a spruce forest? Location: Slovenské Rudohorie Mountains, Slovakia; ca. 950 m a.s.l. near the Obrubovanec point (1020 m a.s.l.; 48°41′N, 19°39′E). Methods: Both chronosequence data along a successional gradient and temporal data from long‐term permanent plots were collected on ants, spruce establishment, and vegetation structure, together with additional data on spruce growth. Results: There are more spruce seedlings on ant mounds (4.72 m?2) than in the surrounding vegetation (0.81 m?2). Spruce seedlings grow faster on these mounds compared to surrounding areas. The first colonization wave of seedlings was rapid and probably occurred when grazing prevailed over mowing. Ant colony presence, mound volume, and plant species composition change along the successional gradient. Mounds become bigger when partly shaded but shrink in closed forest, when ant colonies disappear. Shade‐tolerant acidophylic species replace grassland plants both on the mounds and in surrounding areas. Conclusions: The massive occurrence of Lasius flavus anthills contributes to a runaway feedback process that accelerates succession towards forest. The effect of ants as ecosystem engineers is scale‐dependent: although they stabilize the system at the scale of an individual mound, they may destabilize the whole grassland system over a longer time scale if combined with changes in mowing regime.  相似文献   

7.
Veen GF  Geuverink E  Olff H 《Oecologia》2012,168(2):511-518
Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales interact with small-scale aboveground–belowground interactions on plant community heterogeneity. Here, we investigate how cattle (Bos taurus) modify the effects of interactions between yellow meadow ants (Lasius flavus) and European brown hares (Lepus europaeus) on the formation of small-scale heterogeneity in vegetation composition. In the absence of cattle, hares selectively foraged on ant mounds, while under combined grazing by hares and cattle, vertebrate grazing pressure was similar on and off mounds. Ant mounds that were grazed by only hares had a different plant community composition compared to their surroundings: the cover of the grazing-intolerant grass Elytrigia atherica was reduced on ant mounds, whereas the relative cover of the more grazing-tolerant and palatable grass Festuca rubra was enhanced. Combined grazing by hares and cattle, resulted in homogenization of plant community composition on and off ant mounds, with high overall cover of F. rubra. We conclude that hares can respond to local ant–soil–vegetation interactions, because they are small, selective herbivores that make their foraging decisions on a local scale. This results in small-scale plant patches on mounds of yellow meadow ants. In the presence of cattle, which are less selective aboveground herbivores, local plant community patterns triggered by small-scale aboveground–belowground interactions can disappear. Therefore, cattle modify the consequences of aboveground–belowground interactions for small-scale plant community composition.  相似文献   

8.
Soil-disturbing ecosystem engineers play an important role in plant-species diversity in grasslands as they increase vegetation heterogeneity by creating gaps due to burrowing or mound-building activities. However, knowledge of the ecological importance of these microsites for arthropods is still rare. In this study, we analyse the role of ant-nest mounds of the yellow meadow ant (Lasius flavus) for oviposition-site selection of the silver-spotted skipper (Hesperia comma). Ant mounds were searched for H. comma eggs. Microclimatic and vegetation parameters were ascertained at occupied sites and control sites within the matrix vegetation. Furthermore, we analysed the habitat requirements of L. flavus by means of nest counting and the sampling of environmental parameters within different sites. L. flavus occurred most frequently in abandoned and less steep sites with deeper soils. Mean egg occupancy rates of H. comma on ant hills were 32 %, nearly twice as high as at control sites (18 %). In contrast to the surrounding vegetation, nest mounds were characterized by a lower vegetation cover and litter and a higher proportion of bare ground. Furthermore, they had a higher cover of host plants compared with control samples. These microhabitats offered the following essential key factors for the larval development of H. comma: (1) a suitable microclimate due to open vegetation and (2) a high amount of host plants. This study highlights the importance of L. flavus as an ecosystem engineer within central European grasslands because this species increases vegetation heterogeneity.  相似文献   

9.
Plant communities in the continental tropics have suffered less from exotic plant invasions than their oceanic island counterparts. Most studies have focused on near-pristine communities. By contrast, we examine the resistance of semi-natural continental plant communities in Hong Kong, which have been suffering from chronic and massive human impacts. We compiled a list of all naturalized non-native species recorded in Hong Kong and then sampled the plant communities for exotic species along roadsides, a stream through semi-natural vegetation, and in semi-natural vegetation away from both roads and streams on Tai Mo Shan, Hong Kong’s highest peak (957 m). Similar surveys were repeated in other areas of Hong Kong. More than 162 naturalized exotic plant species have been recorded in Hong Kong. On Tai Mo Shan, 29 exotic species were recorded in roadside vegetation, with the diversity but not percentage cover declining significantly with altitude. Fifteen exotic species were found along the stream, including two not found along the roadside. Only six exotic species were found away from roads and streams, all in unshaded areas disturbed by feral cattle. In all surveys, no exotics were found in closed woody vegetation or in open areas without feral cattle, except for one species. The shade-tolerant tropical Asian tree Syzygium jambos was found invading along some streamsides without anthropogenic disturbance. Despite centuries of massive human impacts, exotic plant invasions in Hong Kong are still largely confined to habitats that suffer from chronic human disturbance. Feral cattle promote invasion where people are absent, but this problem still seems potentially reversible. Only Syzygium jambos is of possible current conservation concern.  相似文献   

10.
Nest-mounds of the harvester ant Messor capensis occur on and around nutrient-rich patches, along minor drainage lines in nutrient-rich soils, and on the plains, generally in nutrient-poor soils. Nest-site selection is related to the presence of suitable deep soils, the presence of stones and the distance from the nearest neighbouring nest. Two plant species, Galenia fruticosa and Pteronia pallens, were significantly associated with Messor capensis nest-mounds, both in numbers of mounds occupied and in numbers of individuals. A third species, Drosanthemum montaguense, was also more common in numbers of individuals, while a fourth species, Rhinephyllum macradenium was negatively associated with these mounds. The analysis of species guilds by soil type shows that significantly more species of nutrient-rich soils are present on M. capensis nest-mounds. Also, significantly more taller, woody species occurred on nest-mounds than in inter-mound spaces. Two species, Pteronia pallens and Osteospermum sinuatum, growing on ant nest-mounds had significantly longer inter-nodes than the same species growing off mounds. However, two other species, Pteronia cf. empetrifolia and Galenia fruticosa showed no difference in inter-node lengths between plants growing on and off mounds. Six of the nine species of plants sampled on ant nest-mounds had significantly higher seed production than plants of the same species growing in inter-mound spaces. The other three species showed a tendency towards more seeds per plant on ant nest-mounds. The proportions of live and dead plants on mounds differed between species. Only Ruschia spinosa showed a significant difference between the numbers of dead plants in the population on and off mounds, with more dead plants occurring on mounds. Significantly more seeds set on individuals of Pteronia pallens growing on ant nest-mounds than those growing off nest-mounds, but no such difference occurred in P. cf. empetrifolia. There was no significant difference in the proportion of seeds parasitized by the tephritid fly Desmella anceps for individuals of P. pallens and P. cf. empetrifolia growing on and off mounds.  相似文献   

11.
Oedipoda caerulescens (blue-winged grasshopper) and Cicindela hybrida (northern dune tiger beetle) are protected insects in Germany and elsewhere. They are known to occur on sparsely vegetated, sandy soil. Populations of the two insects were evaluated in relation to physical soil disturbance on four military training areas in Germany to determine if the military disturbance regime occurring there is conducive to the survival of the species and to provide insight into the nature of the disturbance that may be necessary as conservationists seek ways to maintain, establish or re-establish suitable habitat. Adults of O. caerulescens exhibited statistically significant preference for areas with between 60% and 100% surface disturbance, corresponding to 50–70% plant cover, depending on the location. C. hybrida adults preferentially occupied areas with >40% disturbance resulting in an average of 61% plant cover. The results confirm suggestions that both species are disturbance-dependent. Military training areas represent some of the last, large remnants of sparse, dry, sandy grasslands in Europe. The nature of land-based military training creates suitable habitat patches as well as habitat connectivity needed for the maintenance of metapopulations. As a result, military training areas represent some of the last remaining vestiges of a habitat and disturbance regime that are highly favored by O. caerulescens and C. hybrida and other species with similar habitat requirements.  相似文献   

12.
We studied vegetation responses to disturbances originated by ants and voles in subalpine grasslands in the Eastern Pyrenees. We compared the effects of these small-scale disturbances with those of a large-scale disturbance caused by ploughing. We wanted to know if these soil disturbances promoted species richness through the existence of a specific guild of plants colonizing these areas, and if this guild was the same for all soil disturbances, independently of their extent. In general, grassland vegetation seemed to recover relatively quickly from soil-displacement disturbances, and the effects could be scaled up in time and space in terms of species richness and composition. Vole mound composition was similar to that in the surrounding grassland, suggesting that mounds were rapidly colonized by the neighbouring vegetation. Vegetation composition differed between the grassland and the ant mounds. Grasses and erect dicots coped well with repeated disturbance, while rosette-forming species and sedges were very sensitive to it. Landscape processes could be important to understanding recolonization. Species from xeric grasslands were found in mesic grasslands when disturbed by ploughing and on the tops of active ant mounds. Furrows in mesic grasslands recovered well, but decades after disturbance showed long persistence of some xeric species and increased species richness compared to terraces, while xeric grasslands showed decreased richness. This suggests that, because of those disturbances, within-habitat diversity was increased, although landscape diversity was not. However, specific disturbances showed idiosyncratic effects, which could enhance the species richness globally. In ant-affected areas, the grassland itself showed the highest plant species richness, partially associated to the presence of some species with elaiosomes not, or only rarely, found in adjacent grasslands without ant mounds. Therefore, soil disturbances occurring at different spatial scales contributed to complexity in vegetation patterns in addition to abiotic factors and grazing. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nomenclature of the species follows Tutin et al. (1964–1980) and Bolòs et al. (1993).  相似文献   

13.
刘晓娟  孙学刚  田青 《生态学报》2016,36(10):2905-2913
在甘肃盐池湾国家级自然保护区内海拔4137 m处,选择典型的囊种草垫状植被设置研究样地,研究了垫状植物囊种草对群落物种组成和群落物种多样性的影响,并且定量的研究了囊种草对群落物种丰富度的影响能力和维持潜力。研究结果表明:囊种草为群落中增加了新的植物种类,并且提高了部分生境一般种的多度;囊种草的出现提高了群落物种密度和物种丰富度,进而提高了群落物种多样性;囊种草斑块的增加将会引起景观水平物种丰富度的增加,表明囊种草具有为群落中引入新的植物种类进而提高群落物种丰富度的能力;在景观水平,囊种草所创造的生境多样性则成为一种保障,可以维持景观中物种丰富度从而降低物种损失的风险,表明囊种草具有较高的群落物种丰富度维持潜力。  相似文献   

14.
In intensively used landscapes, remnant grassland fragments are often restricted to places unsuitable for agricultural cultivation. Such refuges are the ancient burial mounds called “kurgans,” which are typical landscape elements of the Eurasian steppe and forest steppe zone. Due to their hill‐like shape, loose soil structure and undisturbed status kurgans provide proper habitats for burrowing mammals. Accordingly, grassland vegetation on kurgans is often exposed to bioturbation, which can influence the habitat structure and plant species pool. In our study, we explored the effect of fox burrows and landscape context on the habitat properties and vegetation composition of small landscape elements, using kurgans as model habitats. We surveyed the vegetation of fox burrows and that of the surrounding grassland on five kurgans situated in cleared landscapes surrounded by arable lands and five kurgans in complex landscapes surrounded by grazed grasslands. We recorded the percentage cover of vascular plants, the amount of litter, and soil moisture content in twelve 0.5 m × 0.5 m plots per kurgan, in a total of 120 plots. We found that foxes considerably transformed habitat conditions and created microhabitats by changing the soil nutrient availability and reducing total vegetation cover and litter. Several grassland specialist species, mostly grasses (Agropyron cristatum, Elymus hispidus, and Stipa capillata) established in the newly created microhabitats, although the cover of noxious species was also considerable. We found that landscape context influenced the sort of species which could establish on kurgans by affecting the available species pool and soil moisture. Our results revealed that foxes act as ecosystem engineers on kurgans by transforming abiotic and biotic conditions by burrowing. Their engineering activity maintains disturbance‐dependent components of dry grasslands and increases local environmental heterogeneity.  相似文献   

15.
Wu H T  Wu D H  Lu X G  Yin X M 《农业工程》2010,30(5):270-275
Ants constitute a dominant element of soil mesofauna due to their biomass, abundance, richness of species and distribution within terrestrial ecosystems. They are important regulators of soil aggregate structure as they translocate large amounts of soil from the bottom to the soil surface. In doing so, they form biogenic structures (BS) made up of aggregates of different sizes and characteristics, i.e. ant mounds. These BS have varying characteristics according to the ant species and the soil where they carry their activities. Ants are considered soil engineers because of their effects on soil properties, availability of resource and flow of energy and nutrients in soil. Thus, it is important to gain information on their distribution and abundance. Relatively little is known about the spatial distribution of mounds and their role in the soil physical properties in wetlands of the Sanjiang plain, China. We conducted a survey of ant mounds and measured the density, height, and diameter and material composition of different ant mounds. The ecological characteristics of wetlands that ant mounds wide occurrence were also investigated, including soil type, hydrology characters and plant composition. Differences in soil particle composition, bulk density and soil moisture between ant mound and natural meadow were measured to assess the influences of ant mounds on soil physical properties. We also studied the effects of ant mounds on the microtopography of meadows. Ant mounds were found mainly in the transition zone between terrestrial and aquatic habitats, with wetland type, including Calamagrostis augustifolia wet meadow, C.augustifolia marsh meadow, shrubs marsh meadow and Carexmeyeriana–Carexappendiculata wetland, being a significant factor. Most of the mounds detected were inhabited by Lasius flavus Fabricius, Lasius niger Linnaeus and Formica sanguinea Latreille, which occupied 52.9%, 26.5% and 20.6% of the mounds surveyed, respectively. The density, height, diameter and mound composition were significantly different among the mounds of F. sanguinea Latreille, L. flavus Fabricius and L. niger Linnaeus. The average density and diameter of L. flavus mounds was significantly higher than those of other ant mounds. The average height of F. sanguinea mounds was highest among the mounds detected. Mound building activities changed soil particle size distribution, with the silt and clay content of mounds higher than for non-mound soil. Compared with adjacent, non-mound soil, the bulk density (0–30 cm) and water content (0–25 cm) of mound soil were significantly lower, but there were no significant differences between the mound soil of F. sanguinea Latreille and L. flavus Fabricius. The spatial distribution of ant mounds with different height and diameter also changed the micro-geomorphology of the soil surface, increasing the degree of fluctuation of the microtopography. The ant distribution characteristics and their ecological roles respond to a wide range of environmental alterations. The biogenic structures of ant and the specific environment associated with them have been defined as the “functional domain”, a sphere of influence that may significantly affect soil processes at certain spatial and temporal scales. Our results suggest that the distribution and structure of ant mounds can indicate wetland environmental changes, with mounds influencing ecosystem functions and enhancing wetland degradation.  相似文献   

16.
Braschler B  Baur B 《Oecologia》2005,143(2):291-300
Different species may respond differently to habitat fragmentation. Theory predicts that abundant generalist species should be less affected by fragmentation than specialist species. In ant communities, the most abundant species is often behaviourally dominant. Thus, habitat fragmentation could alter competitive interactions between the dominant ant species and the other species. We tested this hypothesis in a long-term grassland fragmentation experiment. Fragments of different size (20.25 and 2.25 m2) were isolated by a 5-m wide strip of frequently mown vegetation. Control plots were situated in adjacent undisturbed grassland. Ant density and species composition were assessed 3 and 6 years after initiation of the experimental fragmentation. The effect of the dominant ant species on the resource use of the other species was examined at natural sugar resources (aphids and extrafloral nectaries) and at artificial sugar baits. Lasius paralienus was the most abundant ant species (72% of nests) in the grasslands examined. Species richness and forager density in the other species decreased with increasing density of L. paralienus in fragments but not in control plots. The overall forager density of the other species was positively related to their habitat niche overlap with L. paralienus. The density of foragers of the other species at sugar resources was not affected by L. paralienus forager density. The experimental fragmentation resulted in an increase in natural sugar resources in fragments. This may have reduced the intensity of interspecific competition for sugar resources. Our study shows that the grassland fragmentation altered interactions between the dominant L. paralienus and the other ant species.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
Luca Borghesio 《Plant Ecology》2009,201(2):723-731
This study focuses on the effect of fire on lowland heathlands at the extreme southern edge of their European distribution (Vauda Nature Reserve, NW Italy). Forty-nine plots (50 m radius) were surveyed between 1999 and 2006. Each year, fire occurrences were recorded and per cent cover of four vegetation types (grassland, heath, low shrubland, and tall shrubland) was estimated in each plot. Vascular plant species richness was also recorded in 255, 1 m2 quadrats. After a fire, grassland vegetation expanded, but then declined rapidly as heath and shrubland recovered: 7 years after a fire, tall shrubland encroached on to more than 40% of the plots, and grassland declined from 50% to 20% cover. Between 1999 and 2006, Betula pendula shrubland greatly expanded, while grassland decreased over most of the Reserve, even where fire frequency was high. Tall shrubland had low plant diversity and was dominated by widespread species of lower conservation value. By contrast, early successional vegetation (grassland and low shrubland) had higher richness and more narrowly distributed species, indication that the development of tall shrubland causes significant species loss in the heathland. Italian lowland heathlands are characterized by high rates of shrubland encroachment that threatens both habitat and species diversity. Burning frequencies of once in 3–6 years seem appropriate in this habitat, but burning alone might not suffice without actions to increase herbivore grazing.  相似文献   

18.
We investigated successional trends on windthrow mounds in two old-growth Tsuga heterophylla-Picea sitchensis forests in northern southeast Alaska to determine the influence of windthrow disturbance on the maintenance of plant diversity. We were particularly interested in assessing the value of mosses in detecting long-term effects of disturbance in temperate rainforests. Mosses established a dense carpet on windthrow mounds within the first few decades after the disturbance. No consistent changes were noted in total moss and vascular plant cover, moss biomass, or species diversity between young mounds (±50 yrs), intermediate mounds (±150 yrs) or old mounds (> 200 yrs), or between mounds and the undisturbed forest floor, despite consistent differences in soils development.Classification and ordination of the vegetation data did not show a consistent relationship between soil surface age or soil depth and overall species composition on the two sites. Young mounds were the most compositionally distinctive, primarily due to moss species. Pogonatum alpinum var. sylvaticum, P. contortum and Polytrichum formosum were generally confined to young mounds with unstable substrata, while Dicranum majus and Sphagnum girgensohnii were associated with old soil surfaces and deep organic soils. Vascular plant species with affinities for riparian or deep shade habitats (Tiarella trifoliata, Coptis asplenifolia and Dryopteris expansa) showed a general preference for the forest floor. Gymnocarpium dryopteris was the only vascular plant with a significant association with young mounds.Mosses comprised approximately 25% of understory plant biomass and as much as 50% of understory productivity. In cool temperate forests, the inclusion of mosses in vegetation analysis may provide valuable insights into the nature of vegetation patterns over subtle environmental gradients. The distinctiveness of the temperate rainforest type and the unique ecological effects of windthrow disturbance in this type are also suggested by this study.Abbreviations HR = Heintzleman Ridge (study site) - OP = Outer Point (study site)  相似文献   

19.
Plant species in fragmented populations are affected by landscape structure because persistence within and migration among inhabited patches may be influenced by the identity and configuration of surrounding habitat elements. This may also be true for species of the semi-natural vegetation in agricultural landscapes. To determine the effect of landscape elements we analyzed Wood Avens (Geum urbanum L.) populations within three 4×4 km2 agricultural landscapes in Germany, Switzerland and Estonia, which differ in levels of land use intensity and habitat fragmentation. Genetic variation was determined in 15 randomly selected populations in each landscape using 10 microsatellite loci. The landscape structure was assessed at two circles around each population, with radii defined by the range limits of spatial genetic autocorrelation. Multiple regression analysis was used to determine the influence of landscape structure variables for inter- and intrapopulation genetic diversity. Gene diversity was equally high in Germany (He=0.27) and Switzerland (He=0.26) but lower in Estonia (He=0.16). A high overall inbreeding coefficient (FIS=0.89) was found, as expected for a selfing breeding system in G. urbanum. Genetic differentiation among populations was high (overall FST=0.43, 0.48, and 0.45 in Estonia, Switzerland and Germany, respectively), and did not differ among the three landscapes. Only a moderate influence of individual land use types on genetic diversity within and among populations was found with some idiosyncratic relationships. Genetic variation within populations was correlated to the amount of hedgerows positively in Estonia but negatively in Switzerland. The study demonstrates that the distribution of individual land use types affects the genetic pattern of a common plant species. However, different variables were identified to influence the genetic structure in three different landscapes. This indicates a major influence of landscape-specific land use history and stochastic processes determining gene flow and plant population structure.  相似文献   

20.
Both land use intensification and abandonment within grasslands lead to a homogenisation of vegetation structure. Therefore, specially structured microsites such as vegetation gaps with bare ground play an important role for species conservation within grasslands. Vegetation gaps are crucial for the establishment of low-competitive plant species and offer special microclimatic conditions essential for the development of the immature stages of many invertebrate species. The influence of small-scale soil disturbance in the form of mounds created by ecosystem engineers such as ants or moles on biodiversity is therefore of special scientific concern. The effects of mound-building species on plant species diversity have been extensively studied. However, knowledge on the significance of these species for the conservation of other animals is rare. In this study we analyse the importance of mounds created by the European mole (Talpa europaea) as an oviposition habitat for the small copper (Lycaena phlaeas) within Central European mesotrophic grasslands. Our study showed that host plants occurring at molehills were preferred for oviposition. Oviposition sites were characterised by an open vegetation structure with a high proportion of bare ground (with a mean coverage of about 50 %), a low cover of herbs and low-growing vegetation (mean height: 4.5 cm). Our study clearly illustrates the importance of small-scale soil disturbance for immature stages of L. phlaeas and the conservation of this species within mesotrophic grasslands. Mound-building ecosystem engineers, such as T. europaea, act as important substitutes for missing dynamics within mesotrophic grasslands by diversifying vegetation structure and creating small patches of bare soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号