首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Age-related, non-communicable chronic inflammatory diseases represent the major 21st century health problem. Especially in Western countries, the prevalence of non-communicable diseases like chronic obstructive pulmonary disease, cardiovascular disease, type 2 diabetes and osteoporosis are exponentially rising as the population ages. These diseases are determined by common risk factors and share an age-related onset. The affected organs display evidence of accelerated ageing, and are hallmarked by chronic inflammation and oxidative stress. The receptor for advanced glycation end products (RAGE) has been implicated in a number of inflammatory diseases and plays a central role in amplifying inflammatory responses. Advanced glycation end product (AGE) formation and accumulation is accelerated under these conditions. Advanced glycation end products are not only linked to RAGE signaling and inflammation, but to various hallmarks of the ageing process. In addition to these biological functions, circulating levels of the soluble form of RAGE and of advanced glycation end products are candidate biomarkers for many age-related inflammatory diseases. The purpose of this review is to provide an overview of the mechanistic connections between RAGE and advanced glycation end products and the processes of inflammation and ageing. Furthermore, through the presented overview of AGE-RAGE alterations that have been described in clinical studies in chronic obstructive pulmonary disease, cardiovascular disease, type 2 diabetes and osteoporosis, and insight obtained from mechanistic in vitro and animal studies, it can be concluded that these AGE-RAGE disturbances are a common contributing factor to the inflammatory state and pathogenesis of these various conditions.  相似文献   

3.
4.
5.
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily being expressed as a cell surface molecule and binding a variety of ligands. One of these ligands is high-mobility group box chromosomal protein 1, a potent proinflammatory cytokine, expression of which is increased in synovial tissue and in synovial fluid of rheumatoid arthritis (RA) patients. The interaction of high-mobility group box chromosomal protein 1 with cell-surface RAGE leads to an inflammatory response. In contrast, the presence of soluble RAGE (sRAGE) may abrogate cellular activation since the ligand is bound prior to interaction with the surface receptor.  相似文献   

6.
Recent studies suggested that interruption of the interaction of advanced glycation end products (AGEs), with the signal-transducing receptor receptor for AGE (RAGE), by administration of the soluble, extracellular ligand-binding domain of RAGE, reversed vascular hyperpermeability and suppressed accelerated atherosclerosis in diabetic rodents. Since the precise molecular target of soluble RAGE in those settings was not elucidated, we tested the hypothesis that predominant specific AGEs within the tissues in disorders such as diabetes and renal failure, N(epsilon)-(carboxymethyl)lysine (CML) adducts, are ligands of RAGE. We demonstrate here that physiologically relevant CML modifications of proteins engage cellular RAGE, thereby activating key cell signaling pathways such as NF-kappaB and modulating gene expression. Thus, CML-RAGE interaction triggers processes intimately linked to accelerated vascular and inflammatory complications that typify disorders in which inflammation is an established component.  相似文献   

7.
Advanced glycation end products (AGEs) are known to be involved in the pathogenesis of several diseases, in particular diabetes, via signaling through their receptor. Numerous studies have been carried out on protein-sugar interactions at very high concentrations of the latter. The objective of this investigation was to determine the effects of nonenzymatic glycation induced by reducing sugars on the secondary structure of human serum albumin (HSA) under different physiological conditions and to correlate that with expression of RAGE (receptor for advanced glycation end products) on HUVECs (human umbilical vein endothelial cells) in a controlled hemodynamic environment. Our results indicate that RAGE expression is shear stress modulated and that glycated HSA enhances the expression further. The secondary structure of AGE-HSA derived from glucose at 20 mM contains higher α-helical content and elicits maximum expression of the receptor. The effect of shear stress at 10 dynes cm(-2) is independent of AGE-HSA.  相似文献   

8.
RAGE: a single receptor fits multiple ligands   总被引:1,自引:0,他引:1  
The receptor for advanced glycation end products (RAGE) is a central signaling molecule in the innate immune system and is involved in the onset and sustainment of the inflammatory response. RAGE belongs to a class of pattern recognition receptors that recognize common features rather than a specific ligand. Recent structural information on the extracellular portion (ectodomain) of RAGE shed new light on this unusual ability. X-ray crystallographic, NMR and biochemical data suggest that ligand binding is driven largely by electrostatic interactions between the positively charged surface of the ectodomain and negatively charged ligands. In this article, I propose a putative mechanism of RAGE ligand recognition of receptor activation.  相似文献   

9.
Coronary artery disease remains the leading cause of mortality in adult diabetic population with however, a high predominance also in non-diabetic subjects. In search of common molecular mechanisms and metabolic by-products with potential pathogenic role, increased advanced glycation end products (AGEs) present a critical biomarker for CAD development in both cases. Interaction of AGEs with their transmembrane cell receptor, RAGE in endothelial and smooth muscle cells as well as in platelets, activates intracellular signaling that leads to endothelial injury, modulation of vascular smooth muscle cell function and altered platelet activity. Furthermore, tissue accumulation of AGEs affects current treatment approaches being involved in stent restenosis. The present review provides an update of AGE-induced molecular mechanisms involved in CAD pathophysiology while it discusses emerging therapeutic interventions targeting AGE reduction and AGE-RAGE signaling with beneficial clinical outcome.  相似文献   

10.
Kang R  Tang D  Lotze MT  Zeh HJ 《Autophagy》2011,7(4):442-444
The receptor for advanced glycation end products (RAGE) plays a crucial role in several disease processes including diabetes, inflammation, and cancer. Compared with apoptosis ("programmed cell death"), autophagy is a genetically programmed, evolutionarily conserved cell survival process that degrades long-lived cellular proteins and organelles ("programmed cell survival"). Recently we reported that RAGE is an important regulator of oxidative stress in pancreatic cancer cells. Upregulation of RAGE expression by the nuclear factor (NF)-κB pathway decreases reactive oxygen species (ROS)-induced oxidative injury. In contrast, suppression of RAGE expression increases pancreatic tumor cell sensitivity to oxidative injury. Furthermore, RAGE is a positive regulator of autophagy, and negative regulator of apoptosis during oxidative stress. These findings provide insight into how crosstalk between apoptosis and autophagy is mediated via ROS signaling with a process involving RAGE.  相似文献   

11.
The receptor for advanced glycation end products (RAGE) is thought to be involved in the pathogenesis of a broad range of inflammatory, degenerative and hyperproliferative diseases. It binds to diverse ligands and activates multiple intracellular signaling pathways. Despite these pivotal functions, molecular events just downstream of ligand-activated RAGE have been surprisingly unknown. Here we show that the cytoplasmic domain of RAGE is phosphorylated at Ser391 by PKCζ upon binding of ligands. TIRAP and MyD88, which are known to be adaptor proteins for Toll-like receptor-2 and -4 (TLR2/4), bound to the phosphorylated RAGE and transduced a signal to downstream molecules. Blocking of the function of TIRAP and MyD88 largely abrogated intracellular signaling from ligand-activated RAGE. Our findings indicate that functional interaction between RAGE and TLRs coordinately regulates inflammation, immune response and other cellular functions.  相似文献   

12.
The receptor for advanced glycation end products (RAGE) is a multiligand cell surface macromolecule that plays a central role in the etiology of diabetes complications, inflammation, and neurodegeneration. The cytoplasmic domain of RAGE (C-terminal RAGE; ctRAGE) is critical for RAGE-dependent signal transduction. As the most membrane-proximal event, mDia1 binds to ctRAGE, and it is essential for RAGE ligand-stimulated phosphorylation of AKT and cell proliferation/migration. We show that ctRAGE contains an unusual α-turn that mediates the mDia1-ctRAGE interaction and is required for RAGE-dependent signaling. The results establish a novel mechanism through which an extracellular signal initiated by RAGE ligands regulates RAGE signaling in a manner requiring mDia1.  相似文献   

13.
The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor involved in?inflammatory processes and is associated with diabetic complications, tumor outgrowth, and neurodegenerative disorders. RAGE induces cellular signaling events upon binding of a variety of ligands, such as glycated proteins, amyloid-β, HMGB1, and S100 proteins. The X-ray crystal structure of the VC1 ligand-binding region of the human RAGE ectodomain was determined at 1.85?? resolution. The VC1 ligand-binding surface was mapped onto the structure from titrations with S100B monitored by heteronuclear NMR spectroscopy. These NMR chemical shift perturbations were used as input for restrained docking calculations to generate a model for the VC1-S100B complex. Together, the arrangement of VC1 molecules in the crystal and complementary biochemical studies suggest a role for self-association in RAGE function. Our results enhance understanding of the functional outcomes of S100 protein binding to RAGE and provide insight into mechanistic models for how the receptor is activated.  相似文献   

14.
The age-dependent accumulation of advanced glycation end products (AGEs) has proposed to be involved in the mechanism for the accelerated development of osteoarthritis (OA). Although numerous studies have been made on the effects of extracelluar AGEs and AGEs/RAGE mediated signaling pathway, few attention was paid to the intracellular AGEs. Recently, ERM proteins (ezrin, radixin and moesin) have been identified as novel receptors of intracellular AGEs. Recent analyses of the structure and functions of ERM proteins have revealed that these molecules are involved not only in cytoskeletal organization but also in signal transduction. The ERM phosphorylation induced by many stimuli plays a crucial role in the actin cytoskeleton arrangement, cell shape alterations, cell attachment and adhesion. Therefore, we hypothesize that the intracellular AGE–ERM interaction may be a possible mechanism for link between advanced glycation end products and the accelerated development of osteoarthritis. Furthermore, we would like to propose the possible ways to test our hypotheses for outlining a theoretic framework for future studies.  相似文献   

15.
16.
Accumulation of advanced glycation end products (AGEs) in joints is important in the development of cartilage destruction and damage in age-related osteoarthritis (OA). The aim of this study was to investigate the roles of peroxisome proliferator-activated receptor γ (PPARγ), toll-like receptor 4 (TLR4), and receptor for AGEs (RAGE) in AGEs-induced inflammatory signalings in human OA chondrocytes. Human articular chondrocytes were isolated and cultured. The productions of metalloproteinase-13 and interleukin-6 were quantified using the specific ELISA kits. The expressions of related signaling proteins were determined by Western blotting. Our results showed that AGEs enhanced the productions of interleukin-6 and metalloproteinase-13 and the expressions of cyclooxygenase-2 and high-mobility group protein B1 and resulted in the reduction of collagen II expression in human OA chondrocytes. AGEs could also activate nuclear factor (NF)-κB activation. Stimulation of human OA chondrocytes with AGEs significantly induced the up-regulation of TLR4 and RAGE expressions and the down-regulation of PPARγ expression in a time- and concentration-dependent manner. Neutralizing antibodies of TLR4 and RAGE effectively reversed the AGEs-induced inflammatory signalings and PPARγ down-regulation. PPARγ agonist pioglitazone could also reverse the AGEs-increased inflammatory signalings. Specific inhibitors for p38 mitogen-activated protein kinases, c-Jun N-terminal kinase and NF-κB suppressed AGEs-induced PPARγ down-regulation and reduction of collagen II expression. Taken together, these findings suggest that AGEs induce PPARγ down-regulation-mediated inflammatory signalings and reduction of collagen II expression in human OA chondrocytes via TLR4 and RAGE, which may play a crucial role in the development of osteoarthritis pathogenesis induced by AGEs accumulation.  相似文献   

17.
Nuclear factor kappa-B (NF-kappaB)-regulated inflammatory genes, such as TNF-alpha (tumor necrosis factor-alpha), play key roles in the pathogenesis of inflammatory diseases, including diabetes and the metabolic syndrome. However, the nuclear chromatin mechanisms are unclear. We report here that the chromatin histone H3-lysine 4 methyltransferase, SET7/9, is a novel coactivator of NF-kappaB. Gene silencing of SET7/9 with small interfering RNAs in monocytes significantly inhibited TNF-alpha-induced inflammatory genes and histone H3-lysine 4 methylation on these promoters, as well as monocyte adhesion to endothelial or smooth muscle cells. Chromatin immunoprecipitation revealed that SET7/9 small interfering RNA could reduce TNF-alpha-induced recruitment of NF-kappaB p65 to inflammatory gene promoters. Inflammatory gene induction by ligands of the receptor for advanced glycation end products was also attenuated in SET7/9 knockdown monocytes. In addition, we also observed increased inflammatory gene expression and SET7/9 recruitment in macrophages from diabetic mice. Microarray profiling revealed that, in TNF-alpha-stimulated monocytes, the induction of 25% NF-kappaB downstream genes, including the histone H3-lysine 27 demethylase JMJD3, was attenuated by SET7/9 depletion. These results demonstrate a novel role for SET7/9 in inflammation and diabetes.  相似文献   

18.
Chronic hyperglycemia and activation of receptor for advanced glycation end products (RAGE) are known risk factors for microvascular disease development in diabetic retinopathy. Thioredoxin‐interacting protein (TXNIP), an endogenous inhibitor of antioxidant thioredoxin (TRX), plays a causative role in diabetes and its vascular complications. Herein we investigate whether HG and RAGE induce inflammation in rat retinal endothelial cells (EC) under diabetic conditions in culture through TXNIP activation and whether epigenetic mechanisms play a role in inflammatory gene expression. We show that RAGE activation by its ligand S100B or HG treatment of retinal EC induces the expression of TXNIP and inflammatory genes such as Cox2, VEGF‐A, and ICAM1. TXNIP silencing by siRNA impedes RAGE and HG effects while stable over‐expression of a cDNA for human TXNIP in EC elevates inflammation. p38 MAPK‐NF‐κB signaling pathway and histone H3 lysine (K) nine modifications are involved in TXNIP‐induced inflammation. Chromatin immunoprecipitation (ChIP) assays reveal that TXNIP over‐expression in EC abolishes H3K9 tri‐methylation, a marker for gene inactivation, and increases H3K9 acetylation, an indicator of gene induction, at proximal Cox2 promoter bearing the NF‐κB‐binding site. These findings have important implications toward understanding the molecular mechanisms of ocular inflammation and endothelial dysfunction in diabetic retinopathy. J. Cell. Physiol. 221: 262–272, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

19.
20.
Both aging and diabetes are characterized by the formation of advanced glycation end products (AGEs). Both exhibit other similarities including deficits in wound healing that are associated with higher rates of fibroblast apoptosis. In order to investigate a potential mechanism for enhanced fibroblast apoptosis in diabetes and aged individuals, experiments were carried out to determine whether the predominant advanced glycation end product in skin, N-epsilon-(carboxymethyl) lysine (CML)-collagen, could induce fibroblast apoptosis. In vivo experiments established that CML-collagen but not unmodified collagen induced fibroblast apoptosis and that apoptosis was dependent upon caspase-3, -8, and -9 activity. In vitro experiments demonstrated that CML-collagen but not control collagen induced a time- and dose-dependent increase in fibroblast apoptosis. By use of blocking antibodies, apoptosis was shown to be mediated through receptor for AGE signaling. AGE-induced apoptosis was largely dependent on the effector caspase, caspase-3, which was activated through both cytoplasmic (caspase-8-dependent) and mitochondrial (caspase-9) pathways. CML-collagen had a global effect of enhancing mRNA levels of pro-apoptotic genes that included several classes of molecules including ligands, receptors, adaptor molecules, mitochondrial proteins, and others. However, the pattern of expression was not identical to the pattern of apoptotic genes induced by tumor necrosis factor alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号