首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to characterize the physicochemical and molecular properties of Staphylococcus aureus cells treated with nisin, allyl isothiocyanate (AITC), thymol, eugenol, and polyphenol during the transition from planktonic to biofilm growth as measured by hydrophobicity, auto-aggregation, and differential gene expression. Thymol exhibited the highest antimicrobial activity against planktonic, biofilm-forming, biofilm, and dispersed cells, showing 0.21, 0.22, 0.46, and 0.26 mg/ml of MIC values, respectively. The lowest hydrophobicity was observed in planktonic cells treated with polyphenol (16 %), followed by thymol (29 %). The auto-aggregation abilities were more than 85 % for nisin, AITC, eugenol, polyphenol, and the control. The cell-to-surface interaction was related positively to biofilm formation by S. aureus. The adhesion-related gene (clfA), virulence-related genes (spa and hla), and efflux-related gene (mdeA) were down-regulated in both planktonic and biofilm cells treated with AITC, thymol, and eugenol. The results suggest that the antimicrobial tolerance and virulence potential were varied in the cell states during the planktonic-to-biofilm transition. This study provides useful information for understanding the cellular and molecular responses of planktonic and biofilm cells to antimicrobial-induced stress.  相似文献   

2.
To improve the application of essential oils as natural antimicrobial preservatives, the objective of the present study was to determine physical, antimicrobial, and biophysical properties of eugenol after nanoencapsulation by sodium caseinate (NaCas). Emulsions were prepared by mixing eugenol in 20.0 mg/mL NaCas solution at an overall eugenol content of 5.0–137.9 mg/mL using shear homogenization. Stable emulsions were observed up to 38.5 mg/mL eugenol, which had droplet diameters of smaller than 125 nm at pH 5–9 after ambient storage for up to 30 days. The encapsulated eugenol had similar minimal inhibitory and minimal bactericidal concentrations as free eugenol against Escherichia coli O157:H7 ATCC 43895, Listeria monocytogenes Scott A, and Salmonella Enteritidis but showed better inhibition of E. coli O157:H7 than free eugenol during incubation at 37 °C for 48 h. After 20 min interaction at 21 °C, bacteria treated with encapsulated eugenol had a greater reduction of intracellular ATP and a greater increase of extracellular ATP than free eugenol, suggesting the enhanced permeation of eugenol after nanoencapsulation. However, such overall trend was not observed when examining bacterial morphology and uptake of crystal violet, suggesting the possible membrane adaptation. Findings from this study showed the feasibility of preparing nanoemulsions with high loading of eugenol using NaCas.  相似文献   

3.
A multiplex PCR and DNA array for quick detection of Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. was developed using specific genetic markers derived from virulence-related genes. The genetic markers of cytK, sei, prfA, rfB, and hilA gene specifically amplified DNA fragments of 320 bp, 500 bp, 700 bp, 1.0 kb and 1.2 kb from B. cereus, S. aureus, L. monocytogenes, E. coli O157:H7, and Salmonella spp., respectively. These markers are specific for the detection of the corresponding target pathogens. The sensitivity of the genetic markers was down to ~0.5 fg genomic DNA and ~101 CFU/ml (one bacterial cell per reaction) of bacterial culture. The combination of mPCR and DNA macroarray hybridization sensitively and specifically detected B. cereus, S. aureus, L. monocytogenes, E. coli O157:H7, and Salmonella spp., in complex mixed cultures and food matrices. Thus, this mPCR and macroarray-based approach serves as rapid and reliable diagnostic tool for the detection of these five pathogens.  相似文献   

4.
The specific biofilm formation (SBF) assay, a technique based on crystal violet staining, was developed to locate plant essential oils and their components that affect biofilm formation. SBF analysis determined that cinnamon, cassia, and citronella oils differentially affected growth-normalized biofilm formation by Escherichia coli. Examination of the corresponding essential oil principal components by the SBF assay revealed that cinnamaldehyde decreased biofilm formation compared to biofilms grown in Luria-Bertani broth, eugenol did not result in a change, and citronellol increased the SBF. To evaluate these results, two microscopy-based assays were employed. First, confocal laser scanning microscopy (CLSM) was used to examine E. coli biofilms cultivated in flow cells, which were quantitatively analyzed by COMSTAT, an image analysis program. The overall trend for five parameters that characterize biofilm development corroborated the findings of the SBF assay. Second, the results of an assay measuring growth-normalized adhesion by direct microscopy concurred with the results of the SBF assay and CLSM imaging. Viability staining indicated that there was reduced toxicity of the essential oil components to cells in biofilms compared to the toxicity to planktonic cells but revealed morphological damage to E. coli after cinnamaldehyde exposure. Cinnamaldehyde also inhibited the swimming motility of E. coli. SBF analysis of three Pseudomonas species exposed to cinnamaldehyde, eugenol, or citronellol revealed diverse responses. The SBF assay could be useful as an initial step for finding plant essential oils and their components that affect biofilm formation and structure.  相似文献   

5.
In this report, Listeria monocytogenes isolates were evaluated for their ability to form biofilms, for adhesion/invasion of eukaryotic cells and for differential expression of internalin A (inl A) gene, which is related to virulence potential. The presence of bacteriocins of lactic acid bacteria and incubation at 5 °C were the main factors that influenced biofilm formation by L. monocytogenes, in comparison with BHI (control). In general, adhesion and invasion of Caco-2 cells were significantly lower in low pH (4.5), in incubation at 5 °C and in the presence of Oxgall 0.3 %. On the other hand, two L. monocytogenes isolates (INCQS 353 and Reg 26c) showed higher invasion rates when cultivated in the presence of NaCl 5 % (P < 0.05). One L. monocytogenes isolate (H-2) showed the strongest ability to form biofilm and to invade Caco-2 cells, under selected conditions, suggesting there is a relationship between biofilm formation and virulence potential. For all isolates, expression of inl A gene was down-regulated by the presence of bacteriocins, Oxgall 0.3 %, pH 4.5 and incubation at 5 °C. Nonetheless, for one L. monocytogenes isolate (HU 471), expression of inl A gene was eight times higher in the presence of sucrose, indicating that food components can increase the infectiveness of L. monocytogenes.  相似文献   

6.
Listeria monocytogenes is an important cause of human foodborne infections and its ability to form biofilms is a serious concern to the food industry. To reveal the effect of glucose conditions on biofilm formation of L. monocytogenes, 20 strains were investigated under three glucose conditions (0.1, 1.0, and 2.0% w v–1) by quantifying the number of cells in the biofilm and observing the biofilm structure after incubation for 24, 72, and 168 h. In addition, the biofilms were examined for their sensitivity to sodium hypochlorite. It was found that high concentrations of glucose reduced the number of viable cells in the biofilms and increased extracellular polymeric substance production. Moreover, biofilms formed at a glucose concentration of 1.0 or 2.0% were more resistant to sodium hypochlorite than those formed at a glucose concentration of 0.1%. This knowledge can be used to help design the most appropriate sanitation strategy.  相似文献   

7.
Listeria monocytogenes is a Gram-positive bacterium commonly associated with foodborne diseases. Due its ability to survive under adverse environmental conditions and to form biofilm, this bacterium is a major concern for the food industry, since it can compromise sanitation procedures and increase the risk of post-processing contamination. Little is known about the interaction between L. monocytogenes and Gram-negative bacteria on biofilm formation. Thus, in order to evaluate this interaction, Escherichia coli and L. monocytogenes were tested for their ability to form biofilms together or in monoculture. We also aimed to evaluate the ability of L. monocytogenes 1/2a and its isogenic mutant strain (ΔprfA ΔsigB) to form biofilm in the presence of E. coli. We assessed the importance of the virulence regulators, PrfA and σB, in this process since they are involved in many aspects of L. monocytogenes pathogenicity. Biofilm formation was assessed using stainless steel AISI 304 #4 slides immersed into brain heart infusion broth, reconstituted powder milk and E. coli preconditioned medium at 25 °C. Our results indicated that a higher amount of biofilm was formed by the wild type strain of L. monocytogenes than by its isogenic mutant, indicating that prfA and sigB are important for biofilm development, especially maturation under our experimental conditions. The presence of E. coli or its metabolites in preconditioned medium did not influence biofilm formation by L. monocytogenes. Our results confirm the possibility of concomitant biofilm formation by L. monocytogenes and E. coli, two bacteria of major significance in the food industry.  相似文献   

8.
Subtilosin, the cyclic lantibiotic protein produced by Bacillus subtilis KATMIRA1933, targets the surface receptor and electrostatically binds to the bacterial cell membrane. In this study, subtilosin was purified using ammonium sulfate ((NH4)2SO4) precipitation and purified via column chromatography. Subtilosin’s antibacterial minimum and sub-minimum inhibitory concentrations (MIC and sub-MIC) and anti-biofilm activity (biofilm prevention) were established. Subtilosin was evaluated as a quorum sensing (QS) inhibitor in Gram-positive bacteria using Fe(III) reduction assay. In Gram-negative bacteria, subtilosin was evaluated as a QS inhibitor utilizing Chromobacterium voilaceum as a microbial reporter. The results showed that Gardnerella vaginalis was more sensitive to subtilosin with MIC of 6.25 μg/mL when compared to Listeria monocytogenes (125 μg/mL). The lowest concentration of subtilosin, at which more than 90% of G. vaginalis biofilm was inhibited without effecting the growth of planktonic cells, was 0.78 μg/mL. About 80% of L. monocytogenes and more than 60% of Escherichia coli biofilm was inhibited when 15.1 μg/mL of subtilosin was applied. Subtilosin with 7.8–125 μg/mL showed a significant reduction in violacein production without any inhibitory effect on the growth of C. violaceum. Subtilosin at 3 and 4 μg/mL reduced the level of Autoinducer-2 (AI-2) production in G. vaginalis. However, subtilosin did not influence AI-2 production by L. monocytogenes at sub-MICs of 0.95–15.1 μg/mL. To our knowledge, this is the first report exploring the relationship between biofilm prevention and quorum sensing inhibition in G. vaginalis using subtilosin as a quorum sensing inhibitor.  相似文献   

9.
The indiscriminate use of biocides for general disinfection has contributed to the increased incidence of antimicrobial tolerant microorganisms. This study aims to assess the potential of seven phytochemicals (tyrosol, caffeic acid, ferulic acid, cinnamaldehyde, coumaric acid, cinnamic acid and eugenol) in the control of planktonic and sessile cells of Staphylococcus aureus and Escherichia coli. Cinnamaldehyde and eugenol showed antimicrobial properties, minimum inhibitory concentrations of 3–5 and 5–12 mM and minimum bactericidal concentrations of 10–12 and 10–14 mM against S. aureus and E. coli, respectively. Cinnamic acid was able to completely control adhered bacteria with effects comparable to peracetic acid and sodium hypochlorite and it was more effective than hydrogen peroxide (all at 10 mM). This phytochemical caused significant changes in bacterial membrane hydrophilicity. The observed effectiveness of phytochemicals makes them interesting alternatives and/or complementary products to commonly used biocidal products. Cinnamic acid is of particular interest for the control of sessile cells.  相似文献   

10.
This study assessed the effect of temperature on the release of essential oil components incorporated by melt compounding into polymeric films. Specifically, polyethylene-co-vinylacetate (EVA) films containing carvacrol (CAR) and cinnamaldehyde (ALD), alone and in combination, were prepared and their surface and mechanical properties and antibacterial and anti-biofilm activity against Escherichia coli and Staphylococcus aureus were evaluated. The addition of ALD and CAR did not provoke variation in the surface morphology of EVA and allowed their delivery. At 37°C, films containing CAR, ALD or their combination (25+75%) were found to have the strongest bactericidal effect, whereas at lower temperatures a lower killing rate was observed. There was no clear evidence of the influence of temperature on the anti-biofilm activity of the essential oil component-based polymeric films. The biomass formed on EVA containing ALD, CAR or their combination (25+75) was significantly lower (60–80% reduction) than that formed on the EVA control at both 37° and 22°C.  相似文献   

11.
Enterococcus faecalis B3A-B3B produces the bacteriocin B3A-B3B with activity against Listeria monocytogenes, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium perfringens, but apparently not against fungi or Gram-negative bacteria, except for Salmonella Newport. B3A-B3B enterocin has two different nucleotides but similar amino acid composition to the class IIb MR10A-MR10B enterocin. B3A-B3B consists of two peptides of predicted molecular mass of 5176.31 Da (B3A) and 5182.21 Da (B3B). Importantly, B3A-B3B impeded biofilm formation of the foodborne pathogen L. monocytogenes 162 grown on stainless steel. The antimicrobial treatment of stainless steel with nisin (1 or 16 mg ml?1) decreased the cell numbers by about 2 log CFU ml?1, thereby impeding the biofilm formation by L. monocytogenes 162 or its nisin-resistant derivative strain L. monocytogenes 162R. Furthermore, the combination of nisin and B3A-B3B enterocin reduced the MIC required to inhibit this pathogen grown in planktonic or biofilm cultures.  相似文献   

12.
Listeria monocytogenes is a food-borne pathogen which causes listeriosis and is difficult to eradicate from seafood processing environments; therefore, more effective control methods need to be developed. This study investigated the effectiveness of three bacteriophages (LiMN4L, LiMN4p and LiMN17), individually or as a three-phage cocktail at ≈9 log10 PFU/ml, in the lysis of three seafood-borne L. monocytogenes strains (19CO9, 19DO3 and 19EO3) adhered to a fish broth layer on stainless steel coupon (FBSSC) and clean stainless steel coupon (SSC), in 7-day biofilm, and dislodged biofilm cells at 15 ± 1 °C. Single phage treatments (LiMN4L, LiMN4p or LiMN17) decreased bacterial cells adhered to FBSSC and SSC by ≈3–4.5 log units. Phage cocktail reduced the cells on both surfaces (≈3.8–4.5 and 4.6–5.4 log10 CFU/cm2, respectively), to less than detectable levels after ≈75 min (detection limit = 0.9 log10 CFU/cm2). The phage cocktail at ≈5.8, 6.5 and 7.5 log10 PFU/cm2 eliminated Listeria contamination (≈1.5–1.7 log10 CFU/cm2) on SSC in ≈15 min. One-hour phage treatments (LiMN4p, LiMN4L and cocktail) in three consecutive applications resulted in a decrease of 7-day L. monocytogenes biofilms (≈4 log10 CFU/cm2) by ≈2–3 log units. Single phage treatments reduced dislodged biofilm cells of each L. monocytogenes strain by ≈5 log10 CFU/ml in 1 h. The three phages were effective in controlling L. monocytogenes on stainless steel either clean or soiled with fish proteins which is likely to occur in seafood processing environments. Phages were more effective on biofilm cells dislodged from the surface compared with undisturbed biofilm cells. Therefore, for short-term phage treatments of biofilm it should be considered that some disruption of the biofilm cells from the surface prior to phage application will be required.  相似文献   

13.
The aim of this study was to evaluate the effect of poly-ethylene-co-vinyl acetate (EVA) films incorporating different concentrations (0.1%, 0.5% and 1%) of nisin on the biofilm-forming ability of Listeria monocytogenes ATCC 7644, Staphylococcus aureus 815 and Staphylococcus epidermidis ATCC 35984. Nisin was incorporated into two grades of EVA (EVA14 and EVA28) in the melt during a common film-blowing operation. The efficacy of EVA/nisin films was evaluated by biofilm biomass measurements and Live/Dead staining in combination with fluorescence microscopy. In order to evaluate whether the nisin incorporation could modify the film surface properties, contact angle measurements and scanning electron microscopy were performed. The results revealed the efficacy of EVA14/nisin films in reducing biofilm formation on their surfaces with more evident effect for S. epidermidis than L. monocytogenes and S. aureus strains. In contrast, EVA28/nisin films showed unsatisfactory activity. Fluorescence microscopy confirmed poor biofilm formation on EVA14/nisin films, also characterised by the presence of dead cells. The data presented in this study offer new potential applications for developing strategies aimed to improve the effect of antimicrobial agents.  相似文献   

14.
The coding sequence, which corresponds to the mature antimicrobial peptide ranalexin from the frog Rana catesbeiana, was chemically synthesized with preferred codons for expression in Escherichia coli. It was cloned into the vector pET32c (+) to express a thioredoxin-ranalexin fusion protein which was produced in soluble form in E. coli BL21 (DE3) induced under optimized conditions. After two purification steps through affinity chromatography, about 1 mg of the recombinant ranalexin was obtained from 1 L of culture. Mass spectrometrical analysis of the purified recombinant ranalexin demonstrated its identity with ranalexin. The purified recombinant ranalexin is biologically active. It showed antibacterial activities similar to those of the native peptide against Staphylococcus aureus, Streptococcus pyogenes, E. coli, and multidrug-resistant strains of S. aureus with minimum inhibitory concentration values between 8 and 128 μg/ml. The recombinant ranalexin is also cytotoxic in HeLa and COS7 human cancer cells (IC50?=?13–15 μg/ml).  相似文献   

15.
In the present study, the efficacy of generally recognised as safe (GRAS) antimicrobial plant metabolites in regulating the growth of Staphylococcus aureus and S. epidermidis was investigated. Thymol, carvacrol and eugenol showed the strongest antibacterial action against these microorganisms, at a subinhibitory concentration (SIC) of ≤ 50 μg ml?1. Genistein, hydroquinone and resveratrol showed antimicrobial effects but with a wide concentration range (SIC = 50–1,000 μg ml?1), while catechin, gallic acid, protocatechuic acid, p-hydroxybenzoic acid and cranberry extract were the most biologically compatible molecules (SIC ≥ 1000 μg ml?1). Genistein, protocatechuic acid, cranberry extract, p-hydroxybenzoic acid and resveratrol also showed anti-biofilm activity against S. aureus, but not against S. epidermidis in which, surprisingly, these metabolites stimulated biofilm formation (between 35% and 1,200%). Binary combinations of cranberry extract and resveratrol with genistein, protocatechuic or p-hydroxibenzoic acid enhanced the stimulatory effect on S. epidermidis biofilm formation and maintained or even increased S. aureus anti-biofilm activity.  相似文献   

16.
The purpose of the present study was to prepare new nanocomposites with antibacterial activities by surface modification of montmorillonite using quaternary ammonium compounds that are widely applied as disinfectants and antiseptics in food-processing environments. The intercalation of four quaternary ammonium compounds namely benzalkonium chloride, cetylpyridinium chloride monohydrate, hexadecyltrimethylammonium bromide, tetraethylammonium chloride hydrate into montmorillonite layers was confirmed by X-ray diffraction. The antibacterial influences of the modified clay variants against important foodborne pathogens differed based on modifiers quantities, microbial cell densities, and length of contact. Elution experiments through 0.1 g of the studied montmorillonite variants indicated that Staphylococcus aureus, Pseudomonas aeroginosa, and Listeria monocytogenes were the most sensitive strains. 1 g of hexadecyltrimethylammonium bromide intercalated montmorillonites demonstrated maximum inactivation of L. monocytogenes populations, with 4.5 log c.f.u./ml units of reduction. In adsorption experiments, 0.1 g of tetraethylammonium chloride hydrate montmorillonite variants significantly reduced the growth of Escherichia coli O157:H7, L. monocytogenes, and S. aureus populations by 5.77, 6.33, and 7.38 log units respectively. Growth of wide variety of microorganisms was strongly inhibited to undetectable levels (<log 2.0 c.f.u./g) when adsorbed to 1 g of benzalkonium chloride montmorillonite variants. This investigation highlights that reduction in counts of microbial populations adsorbed to the new nanocomposites was substantially different from that in elution experiments, where interactions of nanocomposites with bacteria were specific and more complex than simple ability to inactivate. Treatment columns packed with modified variants maintained their inactivation capacity to the growth of Salmonella Tennessee and S. aureus populations after 48 h of incubation at room temperature with maximum reductions of 6.3 and 5.0 log units respectively. New nanocomposites presented in this research may have potential applications in industrial scale for the control of foodborne pathogens by their incorporation into high-performance filters in food processing plant environments where selectivity in removal and/or inactivation of species in fluid flow streams is desirable. Nevertheless, extensive in vitro and in vivo studies of these new nanocomposites is essential to outpace the understanding of their potential impacts and consequences on human health and the environment if they will make an appearance in commercialized food packaging and containment food materials in the future.  相似文献   

17.
Antimicrobial surfaces are one approach to prevent biofilms in the food industry. The aim of this study was to investigate the effect of poly((tert-butyl-amino)-methyl-styrene) (poly(TBAMS)) incorporated into linear low-density polyethylene (LLDPE) on the formation of mono- and mixed-species biofilms. The biofilm on untreated and treated LLDPE was determined after 48 and 168 h. The comparison of the results indicated that the ability of Listeria monocytogenes to form biofilms was completely suppressed by poly(TBAMS) (Δ168 h 3.2 log10 cfu cm?2) and colonization of Staphylococcus aureus and Escherichia coli was significantly delayed, but no effect on Pseudomonas fluorescens was observed. The results of dual-species biofilms showed complex interactions between the microorganisms, but comparable effects on the individual bacteria by poly(TBAMS) were identified. Antimicrobial treatment with poly(TBAMS) shows great potential to prevent biofilms on polymeric surfaces. However, a further development of the material is necessary to reduce the colonization of strong biofilm formers.  相似文献   

18.
NZ2114, a new variant of plectasin, was overexpressed in Pichia pastoris X-33 via pPICZαA for the first time. The total secreted protein of fermentation supernatant reached 2,390 mg/l (29 °C) and 2,310 mg/l (25 °C), and the recombinant NZ2114 (rNZ2114) reached 860 mg/l (29 °C) and 1,309 mg/l (25 °C) at 96 h induction in a 5-l fermentor, respectively.The rNZ2114 was purified by cation exchange chromatography, and its yield was 583 mg/l with 94.8 % purity. The minimal inhibitory concentration (MIC) of rNZ2114 to four ATCC strains of Staphyloccocus aureus was evaluated from 0.028 to 0.90 μM. Meanwhile, it showed potent activity (0.11–0.90 μM) to 20 clinical isolates of MRSA. The rNZ2114 killed over 99.9 % of tested S. aureus (ATCC 25923 and ATCC 43300) in Mueller-Hinton medium within 6 h when treated with 4?×?MIC. The postantibiotic effect of rNZ2114 to S. aureus ATCC 25923 and ATCC 43300 was 18.6–45.6 and 1.7–3.5 h under 1×, 2×, and 4× MIC, respectively. The fractional inhibitory concentration index (FICI) indicated a synergistic effect between rNZ2114 and kanamycin, streptomycin, and vancomycin against S. aureus ATCC 25923 (FICI?=?0.125), and additivity between rNZ2114 and ampicillin, spectinomycin (FICI?=?0.625), respectively. To S. aureus ATCC 43300 [methicillin-resistant S. aureus (MRSA)], rNZ2114 showed a synergistic effect (FICI?=?0.125–0.3125) with kanamycin, ampicillin, streptomycin, and vancomycin, and antagonism with spectinomycin (FICI?=?8.0625). The rNZ2114 caused only less than 0.1 % hemolytic activity in the concentration of 128 μg/ml, and showed a good thermostability from 20 to 80 °C. In addition, it exhibited the highest activity at pH 8.0. These results suggested that large-scale production of NZ2114 is feasible using the P. pastoris expression system, and it could be a new potential antimicrobial agent for the prevention and treatment of S. aureus especially for MRSA infections.  相似文献   

19.
Polystyrene surfaces were conditioned with surfactin and rhamnolipid biosurfactants and then assessed regarding the attachment of Staphylococcus aureus, Listeria monocytogenes, and Micrococcus luteus. The effect of different temperatures (35, 25, and 4°C) on the anti-adhesive activity was also studied. Microbial adhesion to solvents and contact angle measurements were performed to characterize bacteria and material surfaces. The results showed that surfactin was able to inhibit bacterial adhesion in all the conditions analyzed, giving a 63–66% adhesion reduction in the bacterial strains at 4°C. Rhamnolipid promoted a slight decrease in the attachment of S. aureus. The anti-adhesive activity of surfactin increased with the decrease in temperature, showing that this is an important parameter to be considered in surface conditioning tests. Surfactin showed good potential as an anti-adhesive compound that can be explored to protect surfaces from microbial contamination.  相似文献   

20.
Microbial accumulation in materials used in sectors such as medical, textile and food can lead to serious diseases, infections and uncontrollable problems. Many of the materials used in the above-mentioned industries have highly sensitive surfaces for microorganisms and cause colonization and biofilm formation. Colonization and biofilm formation threaten human health and they cause many diseases that result in death every year. Antimicrobial materials have an important role in combating pathogens. This article is about a new material with antibiofilm and antimicrobial properties combining polyurethane and Hypericum perforatum extract (PHPE) together. Antimicrobial effect of H. perforatum extract was determined against three clinical pathogens; C. albicans, E. coli and S. aureus. The highest antimicrobial activity of H. perforatum extract was found against S. aureus strain. Antibiofilm analysis results revealed that H. perforatum was also inhibited by the biofilm formation of S. aureus by 56.85%. The combination of polyurethane material and H. perforatum extract (PHPE) resulted in 92.85% decrease in S. aureus biofilm compared to control group. The reduction of S. aureus after H. perforatum incorporation was revealed by Scanning Electron Microscopy (SEM) study. The results show that the polyurethane material combined with H. perforatum extract inhibits the formation of S. aureus biofilm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号