首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
微生物发酵法是目前生产L-赖氨酸最主要的方法。L-赖氨酸生物合成存在两个完全不同的途径:二氨基庚二酸途径和a-氨基己二酸途径;分别由不同的酶进行调节,控制L-赖氨酸的合成。笔者概述了L-赖氨酸生产方法、生物合成途径以及合成中关键性酶的调节作用和国内外L-赖氨酸生产菌育种方法的研究进展。  相似文献   

2.
张晓蓉 《微生物学报》2011,51(3):297-304
基于发展纳米材料"绿色合成技术"重要性,生物合成纳米材料已成为纳米合成技术研究热点。微生物具有廉价、易培养、繁殖快等优点被应用于多种纳米材料的生物合成研究,成为生物合成纳米材料的重要生物类群。本文综述了细菌、放线菌、酵母菌以及真菌等微生物应用于纳米生物合成技术的发展;着重评述了纳米材料微生物合成生物方法、纳米材料微生物合成相关机制、纳米材料形貌和尺寸微生物调控合成方法以及应用研究进展;并对纳米材料微生物合成技术未来发展趋势进行了展望。  相似文献   

3.
芳香族化合物是一类重要的天然产物,在自然界中广泛存在,应用于食品、医药、化工等多个领域,主要通过化学合成、植物提取等方式获得。近年来,随着石化资源减少、人类环保意识的加强,微生物合成芳香族化合物及其衍生物成为热点。莽草酸途径合成的芳香族化合物及其衍生物多种多样。现重点综述通过莽草酸途径合成的"达菲"药物前体莽草酸、大宗化学品己二酸前体顺,顺-粘康酸、芳香族氨基酸及其他高附加值芳香族氨基酸衍生物的微生物合成研究进展,为建立生产高附加值化合物的细胞工厂提供参考。  相似文献   

4.
香草醛是广泛使用的一种天然香料和药物原料,目前主要通过化学合成和天然提取的方法获取。市场上的香草醛主要来源于化学合成,但有毒有害试剂的使用无法满足绿色化学的要求和可持续的发展理念。代谢工程和合成生物学技术的发展在微生物宿主中实现了构建香草醛合成途径,并以可再生资源为底物合成香草醛。因此,本文全面综述了已经发现的香草醛生物合成途径以及优化与调控途径合成效率的各种工程策略,提出了微生物异源合成香草醛面临的挑战,为香草醛的高效生物合成提供参考。  相似文献   

5.
周雍进 《生物工程学报》2023,39(6):2101-2107
以酶及微生物细胞催化剂结合工程学方法将廉价、废弃原料进行高效生物转化可实现化学品的可持续生产。近年来,合成生物学、系统生物学及酶工程等技术的快速发展大大推动了化学品的可持续生物制造,既实现了多种新型化学品的生物合成,又显著提高化学品的生物合成效率。为展示化学品生物合成的最新进展并促进绿色生物制造的发展,《生物工程学报》特组织出版化学品生物合成专刊,从酶催化与生物合成机制、微生物细胞合成、一碳生物炼制以及关键核心技术等方面,介绍化学品生物合成的最新前沿、挑战以及潜在解决方案。  相似文献   

6.
基于微生物生物合成纳米颗粒机制的研究进展   总被引:1,自引:0,他引:1  
纳米粒子的合成方法多种多样,包括物理法、化学法和生物合成法,其中生物合成法是以生物为基体的绿色合成方法。由于微生物易于培养、生长快、廉价易得,已成为纳米粒子生物合成法的重要生物类群。微生物和纳米材料的多样性决定了其合成机制的多样化。本文结合国内外的科研报道,着重介绍了目前纳米粒子生物合成机制,并对纳米粒子微生物合成技术未来发展趋势进行了展望。  相似文献   

7.
作为桉叶油的主要成分,桉叶素是具有多种生物活性的单萜化合物,被广泛应用于药品、食品及化妆品等领域。桉叶油主要从桉树叶提取,该过程耗费大量人力及自然资源,且容易污染环境。近年来,随着微生物代谢工程与合成生物学的快速发展,加上越来越多萜类生物合成途径得到解析,为桉叶素的绿色生产提供了新的途径。对桉叶素的生物合成途径、桉叶素合酶的结构与功能及近年来桉叶素的微生物合成进行了综述,并对利用微生物代谢工程合成桉叶素等单萜化合物的瓶颈问题及解决方案进行了探讨和归纳,为构建高产桉叶素等单萜微生物工程菌株提供参考。  相似文献   

8.
石油基合成塑料因成本低、易便携、化学稳定性好等优点,使用量逐年增加,但其在自然条件下难以被生物降解,在环境中不断累积,造成了严重的“白色污染”问题。聚羟基脂肪酸酯(PHA)是微生物合成的可降解材料,因为其种类及性能多样,所以应用前景广阔,被视作石油基塑料的优质替代品,然而生产成本是导致其应用受限最重要的问题,特别是底物成本占主要部分。利用废弃塑料重新生物合成可降解塑料PHA,既有助于解决塑料污染,又能够降低PHA生产成本,是推动建立塑料循环经济的有效举措。本文综述了目前废弃塑料降解处理的方法以及不同微生物利用塑料降解物为碳源合成PHA的研究进展。在此基础上,针对己二酸、乙二醇、1,4-丁二醇、对苯二甲酸、苯酚、苯乙烯以及脂肪烃等主要的塑料降解产物进行中心代谢分析,并通过对转化率、吉布斯自由能变化和反应步骤等分析,了解塑料单体与PHA种类的适配性,以期为不同塑料单体用于PHA合成提供理论基础和指导。  相似文献   

9.
作为一种新型纳米材料,荧光量子点的合成方法大致可分为物理法、化学法和生物合成法。生物合成方法因其绿色、环保、产物生物相容性好而备受关注。本文通过对国内外荧光量子点生物合成方法的资料研究,以细菌、真菌、其它生物机体、生物辅助等角度对生物合成荧光量子点的方法进行归纳总结,并着重对基于微生物的合成方法进行了分类。在探讨微生物合成机理的基础上,对生物合成法的未来方向提出展望。  相似文献   

10.
非蛋白氨基酸的生物合成及其生物学作用   总被引:3,自引:0,他引:3  
解释了蛋白氨基酸和非蛋白氨基酸,并着重论述了非蛋白氨基酸的生物合成及其生物学作用。非蛋白氨基酸的生物合成主要通过基本氨基酸合成后的修饰、代谢及消旋作用产生,其生物学作用主要表现在能合成其他含氮物质、储藏氮和运输氮、储能、组成细菌细胞壁、毒性作用及药物作用等方面。  相似文献   

11.
Lignin is one largely untapped natural resource that can be exploited as a raw material for the bioproduction of value-added chemicals. Meanwhile, the current petroleum-based process for the production of adipic acid faces sustainability challenges. Here we report the successful engineering of Pseudomonas putida KT2440 strain for the direct biosynthesis of adipic acid from lignin-derived aromatics. The devised bio-adipic acid route features an artificial biosynthetic pathway that is connected to the endogenous aromatics degradation pathway of the host at the branching point, 3-ketoadipoyl-CoA, by taking advantage of the unique carbon skeleton of this key intermediate. Studies of the metabolism of 3-ketoadipoyl-CoA led to the discovery of crosstalk between two aromatics degradation pathways in KT2440. This knowledge facilitated the formulation and implementation of metabolic engineering strategies to optimize the carbon flux into the biosynthesis of adipic acid. By optimizing pathway expression and cultivation conditions, an engineered strain AA-1 produced adipic acid at 0.76 g/L and 18.4% molar yield under shake-flask conditions and 2.5 g/L and 17.4% molar yield under fermenter-controlled conditions from common aromatics that can be derived from lignin. This represents the first example of the direct adipic acid production from model compounds of lignin depolymerization.  相似文献   

12.
13.
14.
Muconic acid (MA), a high value-added bio-product with reactive dicarboxylic groups and conjugated double bonds, has garnered increasing interest owing to its potential applications in the manufacture of new functional resins, bio-plastics, food additives, agrochemicals, and pharmaceuticals. At the very least, MA can be used to produce commercially important bulk chemicals such as adipic acid, terephthalic acid and trimellitic acid. Recently, great progress has been made in the development of biotechnological routes for MA production. This present review provides a comprehensive and systematic overview of recent advances and challenges in biotechnological production of MA. Various biological methods are summarized and compared, and their constraints and possible solutions are also described. Finally, the future prospects are discussed with respect to the current state, challenges, and trends in this field, and the guidelines to develop high-performance microbial cell factories are also proposed for the MA production by systems metabolic engineering.  相似文献   

15.
己二酸是一种具有重要应用价值的二元羧酸,是合成尼龙-66的关键前体。目前,生物法生产己二酸存在生产周期长、生产效率低的问题。本研究选择一株野生型高产琥珀酸菌株大肠杆菌(Escherichia coli) FMME N-2为底盘细胞,首先通过引入逆己二酸降解途径的关键酶,成功构建了可合成0.34 g/L己二酸的E. coli JL00菌株;接着,对合成路径限速酶进行表达优化,使E. coli JL01菌株在摇瓶发酵条件下产量达到0.87 g/L;随后,通过敲除sucD基因、过表达acs基因和突变lpd基因的组合策略平衡己二酸合成前体的供应,优化菌株E. coli JL12己二酸产量进一步提升至1.51 g/L;最后,在5 L发酵罐上对己二酸发酵工艺进行优化。工程菌株经72 h分批补料发酵,己二酸的产量达到22.3 g/L,转化率为0.25 g/g,生产强度为0.31 g/(L·h),具备了一定的应用潜力。本研究可为包括己二酸在内的多种二元羧酸细胞工厂的构建提供理论依据和技术基础。  相似文献   

16.
Microbial production of chemicals and materials from renewable carbon sources is becoming increasingly important to help establish sustainable chemical industry. In this paper, we review current status of metabolic engineering for the bio-based production of linear and saturated dicarboxylic acids and diamines, important platform chemicals used in various industrial applications, especially as monomers for polymer synthesis. Strategies for the bio-based production of various dicarboxylic acids having different carbon numbers including malonic acid (C3), succinic acid (C4), glutaric acid (C5), adipic acid (C6), pimelic acid (C7), suberic acid (C8), azelaic acid (C9), sebacic acid (C10), undecanedioic acid (C11), dodecanedioic acid (C12), brassylic acid (C13), tetradecanedioic acid (C14), and pentadecanedioic acid (C15) are reviewed. Also, strategies for the bio-based production of diamines of different carbon numbers including 1,3-diaminopropane (C3), putrescine (1,4-diaminobutane; C4), cadaverine (1,5-diaminopentane; C5), 1,6-diaminohexane (C6), 1,8-diaminoctane (C8), 1,10-diaminodecane (C10), 1,12-diaminododecane (C12), and 1,14-diaminotetradecane (C14) are revisited. Finally, future challenges are discussed towards more efficient production and commercialization of bio-based dicarboxylic acids and diamines.  相似文献   

17.
Biopolymers can be a green alternative to fossil-based polymers and can contribute to environmental protection because they are produced using renewable raw materials. Biopolymers are composed of various small subunits (building blocks) that are the intermediates or end products of major metabolic pathways. Most building blocks are secreted directly outside of cells, making downstream processes easier and more economic. These molecules can be extracted from fermentation broth and polymerized to produce a variety of biopolymers, e.g., polybutylene terephthalate, polyethylene terephthalate, polytrimethylene terephthalate, nylon-5,4 and nylon-4,6, with applications in medicine, pharmaceuticals, and textiles. Microbes are unable to naturally produce these types of polymers; thus, the production of building blocks and their polymerization is a fascinating approach for the production of these polymers. In comparison to naturally occurring biopolymers, synthesized polymers have improved and controlled structures and higher purity. The production of monomer units provides a new direction for polymer science because new classes of polymers with unique properties that were not previously possible can be prepared. Furthermore, the engineering of microbes for building-block production is an easy process compared to engineering an entire biopolymer synthesis pathway in a single microbe. Polyesters and polyamide polymers have become an important part of human life, and their demand is increasing daily. In this review, recent approaches and technology are discussed for the production of polyester/polyamide building blocks, i.e., 2-hydroxyisobutyric acid, 3-hydroxypropionic acid, mandelic acid, itaconic acid, adipic acid, terephthalic acid, succinic acid, 1,3-propanediol, 2,3-butanediol, 1,4-butanediol, 1,3-butanediol, cadaverine, and putrescine.  相似文献   

18.
A limited life cycle assessment (LCA) was performed on a combined biological and chemical process for the production of adipic acid, which was compared to the traditional petrochemical process. The LCA comprises the biological conversion of the aromatic feedstocks benzoic acid, impure aromatics, toluene, or phenol from lignin to cis, cis-muconic acid, which is subsequently converted to adipic acid through hydrogenation. Apart from the impact of usage of petrochemical and biomass-based feedstocks, the environmental impact of the final concentration of cis, cis-muconic acid in the fermentation broth was studied using 1.85% and 4.26% cis, cis-muconic acid. The LCA focused on the cumulative energy demand (CED), cumulative exergy demand (CExD), and the CO(2) equivalent (CO(2) eq) emission, with CO(2) and N(2) O measured separately. The highest calculated reduction potential of CED and CExD were achieved using phenol, which reduced the CED by 29% and 57% with 1.85% and 4.26% cis, cis-muconic acid, respectively. A decrease in the CO(2) eq emission was especially achieved when the N(2) O emission in the combined biological and chemical process was restricted. At 4.26% cis, cis-muconic acid, the different carbon backbone feedstocks contributed to an optimized reduction of CO(2) eq emissions ranging from 14.0 to 17.4 ton CO(2) eq/ton adipic acid. The bulk of the bioprocessing energy intensity is attributed to the hydrogenation reactor, which has a high environmental impact and a direct relationship with the product concentration in the broth.  相似文献   

19.
L-bifunctional enzyme (Ehhadh) is part of the classical peroxisomal fatty acid β-oxidation pathway. This pathway is highly inducible via peroxisome proliferator-activated receptor α (PPARα) activation. However, no specific substrates or functions for Ehhadh are known, and Ehhadh knockout (KO) mice display no appreciable changes in lipid metabolism. To investigate Ehhadh functions, we used a bioinformatics approach and found that Ehhadh expression covaries with genes involved in the tricarboxylic acid cycle and in mitochondrial and peroxisomal fatty acid oxidation. Based on these findings and the regulation of Ehhadh's expression by PPARα, we hypothesized that the phenotype of Ehhadh KO mice would become apparent after fasting. Ehhadh mice tolerated fasting well but displayed a marked deficiency in the fasting-induced production of the medium-chain dicarboxylic acids adipic and suberic acid and of the carnitine esters thereof. The decreased levels of adipic and suberic acid were not due to a deficient induction of ω-oxidation upon fasting, as Cyp4a10 protein levels increased in wild-type and Ehhadh KO mice.We conclude that Ehhadh is indispensable for the production of medium-chain dicarboxylic acids, providing an explanation for the coordinated induction of mitochondrial and peroxisomal oxidative pathways during fasting.  相似文献   

20.
生物合成琥珀酸摆脱了对不可再生战略资源石油的依赖,以其社会、经济和环境效益展现出良好的发展前景。野生型大肠杆菌的琥珀酸生产强度难以满足生物合成琥珀酸工业化的要求,但遗传背景清楚,容易改造。近年来,人们深入研究了大肠杆菌的琥珀酸代谢途径,通过强化大肠杆菌琥珀酸合成途径、抑制琥珀酸旁路代谢途径、构建产琥珀酸乙醛酸循环和有氧生产体系等多种基因工程策略,对大肠杆菌进行菌株改造和代谢进化筛选,提高了琥珀酸产量。综述了大肠杆菌产琥珀酸的基因工程研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号