首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.  相似文献   

2.
Current challenges in embryonic-stem cell (ESC) research include the inability of sustaining and culturing of undifferentiated ESCs over time. Growth-arrested feeder cells are essential to the culture and sustaining of undifferentiated ESCs, and they are currently prepared using gamma-radiation and chemical inactivation. Both techniques have severe limitations. In this study, we developed a new, simple and effective technique (pulsed electric fields, PEFs) to produce viable growth-arrested cells (RTS34st) and used them as high-quality feeder cells to culture and sustain undifferentiated zebrafish ESCs over time. The cells were exposed to 25 sequential 10-ns electric pulses (10nsEPs) of 25, 40 and 150 kV/cm with 1-s pulse interval, or 2 sequential 50-μs electric pulses (50μsEPs) of 2.83, 1.78 and 0.78 kV/cm with 5-s pulse interval, respectively. We found that the cellular effects of PEFs depended directly upon the duration, number and electric field strength of the pulses, showing the feasibility of tuning them to produce various types of growth-arrested cells for culturing undifferentiated ESCs. Both 10nsEPs of 40 kV/cm produced by a 10nsEP generator and 50μsEPs of 1.78 kV/cm provided by inexpensive and widely available conventional electroporators, generated high-quality growth-arrested feeder cells for proliferation of undifferentiated ESCs over time. PEFs can therefore be used to replace radiation and chemical inactivation methods for preparation of growth-arrested feeder cells for advancing ESC research.  相似文献   

3.
Gene electrotransfer is a promising nonviral method that enables transfer of plasmid DNA into cells with electric pulses. Although many in vitro and in vivo studies have been performed, the question of the implied gene electrotransfer mechanisms is largely open. The main obstacle toward efficient gene electrotransfer in vivo is relatively poor mobility of DNA in tissues. Since cells are mechanically coupled to their extracellular environment and act differently compared to standard in vitro conditions, we developed a three-dimensional (3-D) in vitro model of CHO cells embedded in collagen gel as an ex vivo model of tissue to study electropermeabilization and different parameters of gene electrotransfer. For this purpose, we first used propidium iodide to detect electropermeabilization of CHO cells embedded in collagen gel. Then, we analyzed the influence of different concentrations of plasmid DNA and pulse duration on gene electrotransfer efficiency. Our results revealed that even if cells in collagen gel can be efficiently electropermeabilized, gene expression is significantly lower. Gene electrotransfer efficiency in our 3-D in vitro model had similar dependence on concentration of plasmid DNA and pulse duration comparable to in vivo studies, where longer (millisecond) pulses were shown to be more optimal compared to shorter (microsecond) pulses. The presented results demonstrate that our 3-D in vitro model resembles the in vivo situation more closely than conventional 2-D cell cultures and, thus, provides an environment closer to in vivo conditions to study mechanisms of gene electrotransfer.  相似文献   

4.
We explored how the effect of plasma membrane permeabilization by nanosecond-duration electric pulses (nsEP) depends on the physical characteristics of exposure. The resting membrane resistance (R(m)) and membrane potential (MP) were measured in cultured GH3 and CHO cells by conventional whole-cell patch-clamp technique. Intact cells were exposed to a single nsEP (60 or 600 ns duration, 0-22 kV/cm), followed by patch-clamp measurements after a 2-3 min delay. Consistent with earlier findings, nsEP caused long-lasting R(m) decrease, accompanied by the loss of MP. The threshold for these effects was about 6 kV/cm for 60 ns pulses, and about 1 kV/cm for 600 ns pulses. Further analysis established that it was neither pulse duration nor the E-field amplitude per se, but the absorbed dose that determined the magnitude of the biological effect. In other words, exposure to nsEP at either pulse duration caused equal effects if the absorbed doses were equal. The threshold absorbed dose to produce plasma membrane effects in either GH3 or CHO cells at either pulse duration was found to be at or below 10 mJ/g. Despite being determined by the dose, the nsEP effect clearly is not thermal, as the maximum heating at the threshold dose is less than 0.01 degrees C. The use of the absorbed dose as a universal exposure metric may help to compare and quantify nsEP sensitivity of different cell types and of cells in different physiological conditions. The absorbed dose may also prove to be a more useful metric than the incident E-field in determining safety limits for high peak, low average power EMF emissions.  相似文献   

5.
DNA electrotransfer in vivo for gene therapy is a promising method. For further clinical developments, the efficiency of the method should be increased. It has been shown previously that high efficiency of gene electrotransfer in vivo can be achieved using high-voltage (HV) and low-voltage (LV) pulses. In this study we evaluated whether HV and LV pulses could be optimized in vitro for efficient DNA electrotransfer. Experiments were performed using Chinese hamster ovary (CHO) cells. To evaluate the efficiency of DNA electrotransfer, two different plasmids coding for GFP and luciferase were used. For DNA electrotransfer experiments 50 μl of CHO cell suspension containing 100, 10 or 1 μg/ml of the plasmid were placed between plate electrodes and subjected to various combinations of HV and LV pulses. The results showed that at 100 μg/ml plasmid concentration LV pulse delivered after HV pulse increased neither the percentage of transfected cells nor the total transfection efficiency (luciferase activity). The contribution of the LV pulse was evident only at reduced concentration (10 and 1 μg/ml) of the plasmid. In comparison to HV (1,200 V/cm, 100 μs) pulse, addition of LV (100 V/cm, 100 ms) pulse increased transfection efficiency severalfold at 10 μg/ml and fivefold at 1 μg/ml. At 10 μg/ml concentration of plasmid, application of four LV pulses after HV pulse increased transfection efficiency by almost 10-fold. Thus, these results show that contribution of electrophoretic forces to DNA electrotransfer can be investigated in vitro using HV and LV pulses.  相似文献   

6.
Nanosecond electric pulses have been shown to open nanopores in the cell plasma membrane by fluorescent imaging of calcium uptake and fluorescent dyes, including propidium (Pr) iodide and YO-PRO-1 (YP1). Recently, we demonstrated that nsEPs also induce the phosphoinositide intracellular signaling cascade by phosphatidylinositol-4,5-bisphosphate (PIP2) depletion resulting in physiological responses similar to those observed following stimulation of Gq11-coupled receptors. In this paper, we explore the role of receptor- and store-operated calcium entry (ROCE/SOCE) mechanisms in the observed response of cells to nsEP. We show that addition of the ROCE/SOCE and transient receptor potential channel (TRPC) blocker gadolinium (Gd3+, 300 μM) slows PIP2 depletion following 1 and 20 nsEP exposures. Lipid rafts, regions of the plasma membrane rich in PIP2 and TRPC, are also disrupted by nsEP exposure suggesting that ROCE/SOCE mechanisms are likely impacted. Reducing the expression of stromal interaction molecule 1 (STIM1) protein, a key protein in ROCE and SOCE, in cells exposure to nsEP resulted in a reduction in induced intracellular calcium rise. Additionally, after exposure to 1 and 20 nsEPs (16.2 kV/cm, 5 Hz), intracellular calcium rises were significantly reduced by the addition of GD3+ and SKF-96365 (1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl) propoxy] ethyl-1H-imidazole hydrochloride, 100 μM), a blocker of STIM1 interaction. However, using similar nsEP exposure parameters, SKF-96365 was less effective at reducing YP1 uptake compared to Gd3+. Thus, it is possible that SKF-96365 could block STIM1 interactions within the cell, while Gd3+ could acts on TRPC/nanopores from outside of the cell. Our results present evidence of nsEP induces ROCE and SOCE mechanisms and demonstrate that YP1 and Ca2+ cannot be used solely as markers of nsEP-induced nanoporation.  相似文献   

7.
Neuromodulation applications of nanosecond electric pulses (nsEP) are hindered by their low potency to elicit action potentials in neurons. Excitation by a single nsEP requires a strong electric field which injures neurons by electroporation. We bypassed the high electric field requirement by replacing single nsEP stimuli with high-frequency brief nsEP bursts. In hippocampal neurons, excitation thresholds progressively decreased at nsEP frequencies above 20–200 kHz, with up to 20–30-fold reduction at sub-MHz and MHz rates. For a fixed burst duration, thresholds were determined by the duty cycle, irrespective of the specific nsEP duration, rate, or number of pulses per burst. For 100-μs bursts of 100-, 400-, or 800-ns pulses, the threshold decreased as a power function when the duty cycle exceeded 3–5 %. nsEP bursts were compared with single “long” pulses whose duration and amplitude matched the duration and the time-average amplitude of the burst. Such pulses deliver the same electric charge as bursts, within the same time interval. High-frequency nsEP bursts excited neurons at the time-average electric field 2–3 times below the threshold for a single long pulse. For example, the excitation threshold of 139 ± 14 V/cm for a single 100-μs pulse decreased to 57 ± 8 V/cm for a 100-μs burst of 100-ns, 0.25-MHz pulses (p < 0.001). Applying nsEP in bursts reduced or prevented the loss of excitability in multiple stimulation attempts. Stimulation by high-frequency nsEP bursts is a powerful novel approach to excite neurons at paradoxically low electric charge while also avoiding the electroporative membrane damage.  相似文献   

8.
Exposure to intense, nanosecond-duration electric pulses (nsEP) opens small but long-lived pores in the plasma membrane. We quantified the cell uptake of two membrane integrity marker dyes, YO-PRO-1 (YP) and propidium (Pr) in order to test whether the pore size is affected by the number of nsEP. The fluorescence of the dyes was calibrated against their concentrations by confocal imaging of stained homogenates of the cells. The calibrations revealed a two-phase dependence of Pr emission on the concentration (with a slower rise at < 4 μM) and a linear dependence for YP. CHO cells were exposed to nsEP trains (1 to 100 pulses, 60 ns, 13.2 kV/cm, 10 Hz) with Pr and YP in the medium, and the uptake of the dyes was monitored by time-lapse imaging for 3 min. Even a single nsEP triggered a modest but detectable entry of both dyes, which increased linearly when more pulses were applied. The influx of Pr per pulse was constant and independent of the pulse number. The influx of YP per pulse was highest with 1- and 2-pulse exposures, decreasing to about twice the Pr level for trains from 5 to 100 pulses. The constant YP/Pr influx ratio for trains of 5 to 100 pulses suggests that increasing the number of pulses permeabilizes cells to a greater extent by increasing the pore number and not the pore diameter.  相似文献   

9.
Dramatic differences of cells behavior exist between cells cultured under classical 2D monolayers and 3D models, the latter being closer to in vivo responses. Thus, many 3D cell culture models have been developed. Among them, multicellular tumor spheroid appears as a nice and easy-to-handle 3D model based on cell adhesion properties. It is composed of one or several cell types and is widely used to address carcinogenesis, or drugs screening. A few and recent publications report the use of spheroids to investigate electropermeabilization process. We studied the response of spheroids to electrical field pulses (EP) in terms of their age, diameter or formation technique. We found that small human HCT-116 colorectal spheroids are more sensitive to electric field pulses than larger ones. Indeed, the growth of spheroids with a diameter of 300 μm decreased by a factor 2 over 4 days when submitted to EP (8 pulses, lasting 100 μs at a 1,300 V/cm field intensity). Under those electrical conditions, 650 μm spheroids were not affected. These data were the same whatever the formation method (i.e. hanging drop and nonadherent techniques). These observations point out the fact that characteristics of 3D cell models have to be taken into account to avoid biased conclusions of experimental data.  相似文献   

10.
Electropermeabilization is a nonviral method successfully used to transfer genes into cells in vitro as in vivo. Although it shows promise in field of gene therapy, very little is known on the basic processes supporting the DNA transfer. The aim of the present investigation is to visualize gene electrotransfer and expression both in vitro and in vivo. In vitro studies have been performed by using digitized fluorescence microscopy. Membrane permeabilization occurs at the sides of the cell membrane facing the two electrodes. A free diffusion of propidium iodide across the membrane to the cytoplasm is observed in the seconds following electric pulses. Fluorescently labeled plasmids only interact with the electropermeabilized side of the cell facing the cathode. The plasmid interaction with the electropermeabilized cell surface is stable over a few minutes. Changing the polarity and the orientation of the pulses lead to an increase in gene expression. In vivo experiments have been performed in Tibialis Cranialis mice muscle. Electric field application lead to the in vivo expression of plasmid DNA. We directly visualize gene expression of the Green Fluorescent Protein (GFP) on live animals. GFP expression is shown to be increased by applying electric field pulses with different polarities and orientations.  相似文献   

11.
Nanosecond Electroporation: Another Look   总被引:1,自引:0,他引:1  
As the medical field moves from treatment of diseases with drugs to treatment with genes, safe and efficient gene delivery systems are needed to make this transition. One such safe, non-viral, and efficient gene delivery system is electroporation (electrogenetherapy). Exciting discoveries using electroporation could make this technique applicable to drug and vaccine delivery in addition to gene delivery. Typically milli and microsecond pulses have been used for electroporation. Recently, the use of nanosecond electrical pulses (10-300 ns) at very high magnitudes (10-300 kV/cm) has been studied for direct DNA transfer to the nucleus in vitro. This article reviews the work done using high-intensity nanosecond pulses, termed as nanosecond electroporation (nsEP), in electroporation gene delivery systems.  相似文献   

12.
Gene electrotransfer is an established method for gene delivery which uses high-voltage pulses to increase the permeability of a cell membrane and enables transfer of genes. Poor plasmid mobility in tissues is one of the major barriers for the successful use of gene electrotransfer in gene therapy. Therefore, we analyzed the effect of electrophoresis on increasing gene electrotransfer efficiency using different combinations of high-voltage (HV) and low-voltage (LV) pulses in vitro on CHO cells. We designed a special prototype of electroporator, which enabled us to use only HV pulses or combinations of LV + HV and HV + LV pulses. We used optimal plasmid concentrations used in in vitro conditions as well as lower suboptimal concentrations in order to mimic in vivo conditions. Only for the lowest plasmid concentration did the electrophoretic force of the LV pulse added to the HV pulse increase the transfection efficiency compared to using only HV. The effect of the LV pulse was more pronounced for HV + LV, while for the reversed sequence, LV + HV, there was only a minor effect of the LV pulse. For the highest plasmid concentrations no added effect of LV pulses were observed. Our results suggest that there are different contributing effects of LV pulses: electrophoretically increased contact of DNA with the membrane and increased insertion of DNA into permeabilized cell membrane and/or translocation due to electrophoretic force, which appears to be the dominant effect.  相似文献   

13.
Knowledge of the parameters which influence the efficiency of gene electrotransfer has importance for practical implementation of electrotransfection for gene therapy as well as for better understanding of the underlying mechanism. The focus of this study was to analyze the differences in gene electrotransfer and membrane electropermeabilization between plated cells and cells in a suspension in two different cell lines (CHO and B16F1). Furthermore, we determined the viability and critical induced transmembrane voltage (ITVc) for both cell lines. In plated cells we obtained relatively little difference in electropermeabilization and gene electrotransfection between CHO and B16F1 cells. However, significant differences between the two cell lines were observed in a suspension. CHO cells exhibited a much higher gene electrotransfection rate compared to B16F1 cells, whereas B16F1 cells reached maximum electropermeabilization at lower electric fields than CHO cells. Both in a suspension and on plated cells, CHO cells had a slightly better survival rate at higher electric fields than B16F1 cells. Calculation of ITVc in a suspension showed that, for both electropermeabilization and gene electrotransfection, CHO cells have lower ITVc than B16F1 cells. In all cases, ITVc for electropermeabilization was lower than ITVc for gene electrotransfer, which is in agreement with other studies. Our results show that there is a marked difference in the efficiency of gene electrotransfer between suspended and plated cells.  相似文献   

14.
Diverse effects of nanosecond pulsed electric fields on cells and tissues   总被引:11,自引:0,他引:11  
The application of pulsed electric fields to cells is extended to include nonthermal pulses with shorter durations (10-300 ns), higher electric fields (< or =350 kV/cm), higher power (gigawatts), and distinct effects (nsPEF) compared to classical electroporation. Here we define effects and explore potential application for nsPEF in biology and medicine. As the pulse duration is decreased below the plasma membrane charging time constant, plasma membrane effects decrease and intracellular effects predominate. NsPEFs induced apoptosis and caspase activation that was calcium-dependent (Jurkat cells) and calcium-independent (HL-60 and Jurkat cells). In mouse B10-2 fibrosarcoma tumors, nsPEFs induced caspase activation and DNA fragmentation ex vivo, and reduced tumor size in vivo. With conditions below thresholds for classical electroporation and apoptosis, nsPEF induced calcium release from intracellular stores and subsequent calcium influx through store-operated channels in the plasma membrane that mimicked purinergic receptor-mediated calcium mobilization. When nsPEF were applied after classical electroporation pulses, GFP reporter gene expression was enhanced above that observed for classical electroporation. These findings indicate that nsPEF extend classical electroporation to include events that primarily affect intracellular structures and functions. Potential applications for nsPEF include inducing apoptosis in cells and tumors, probing signal transduction mechanisms that determine cell fate, and enhancing gene expression.  相似文献   

15.
Gene delivery to skeletal muscle is a promising strategy for the treatment of muscle disorders and for the local or systemic secretion of therapeutic proteins. However, current DNA delivery technologies have to be improved. We report very efficient luciferase gene transfer into muscle fibres obtained through the delivery of squarewave electric pulses of moderate field strength (100–200 V/cm) and of long duration (20 ms) to muscle previously injected with plasmid DNA. This intramuscular ‘electrotransfer’ method increases reporter gene expression by more than 100 times. It is noteworthy that this expression remains high and stable for at least 9 months. Moreover, intramuscular electrotransfer strongly decreases the interindividual variability usually observed after plasmid DNA injection into muscle fibres. Therefore, DNA electrotransfer in muscle possesses broad potential applications in gene therapy and for physiological, pharmacological and developmental studies.  相似文献   

16.
BACKGROUND: Understanding the mechanisms underlying gene electrotransfer muscle damage can help to design more effective gene electrotransfer strategies for physiological and therapeutical applications. The present study investigates the factors involved in gene electrotransfer associated muscle damage. METHODS: Histochemical analyses were used to determine the extent of transfection efficiency and muscle damage in the Tibialis anterior muscles of Sprague-Dawley male rats after gene electrotransfer. RESULTS: Five days after gene electrotransfer, features of muscle degeneration and regeneration were consistently observed, thus limiting the extent of transfection efficiency. Signs of muscle degeneration/regeneration were no longer evident 21 days after gene electrotransfer except for the presence of central myonuclei. Neither the application of electrical pulses per se nor the extracellular presence of plasmid DNA per se contributed significantly to muscle damage (2.9 +/- 1.0 and 2.1 +/- 0.7% of the whole muscle cross-sectional area, respectively). Gene electrotransfer of a plasmid DNA, which does not support gene expression, increased significantly muscle damage (8.7 +/- 1.2%). When plasmid DNA expression was permitted (gene electrotransfer of pCMV-beta-galactosidase), muscle damage was further increased to 19.7 +/- 4.5%. Optimization of cumulated pulse duration and current intensity dramatically reduced gene electrotransfer associated muscle damage. Finally, mathematical modeling of gene electrotransfer associated muscle damage as a function of the number of electrons delivered to the tissue indicated that pulse length critically determined the extent of muscle damage. CONCLUSION: Our data suggest that neither the extracellular presence of plasmid DNA per se nor the application of electric pulses per se contributes significantly to muscle damage. Gene electrotransfer associated muscle damage mainly arises from the intracellular presence and expression of plasmid DNA.  相似文献   

17.
BackgroundExposure of cells to very short (<1 µs) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulses (nsEP) can cause disruption of the plasma membrane, cellular swelling, shrinking and blebbing. Molecularly, nsEP have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. We hypothesize that studying the genetic response of primary human dermal fibroblasts exposed to nsEP, will gain insight into the molecular mechanism(s) either activated directly by nsEP, or indirectly through electrophysiology interactions.MethodsMicroarray analysis in conjunction with quantitative real time polymerase chain reaction (qRT-PCR) was used to screen and validate genes selectively upregulated in response to nsEP exposure.ResultsExpression profiles of 486 genes were found to be significantly changed by nsEP exposure. 50% of the top 20 responding genes coded for proteins located in two distinct cellular locations, the plasma membrane and the nucleus. Further analysis of five of the top 20 upregulated genes indicated that the HDFa cells’ response to nsEP exposure included many elements of a mechanical stress response.ConclusionsWe found that several genes, some of which are mechanosensitive, were selectively upregulated due to nsEP exposure. This genetic response appears to be a primary response to the stimuli and not a secondary response to cellular swelling.General significanceThis work provides strong evidence that cells exposed to nsEP interpret the insult as a mechanical stress.  相似文献   

18.
About 25 years after the publication of the first report on gene transfer in vitro in cultured cells by the means of electric pulses delivery, reversible cell electroporation for gene transfer and gene therapy (DNA electrotransfer) is at a cross in its development. Present knowledge on the effects of cell exposure to appropriate electric field pulses, particularly at the level of the cell membrane, is reported here. The importance of the models of electric field distribution in tissues and of the correct choice of electrodes and applied voltages is highlighted. The mechanisms involved in DNA electrotransfer, which include cell electropermeabilization and DNA electrophoresis, are also surveyed. This knowledge has allowed developing new nucleic acids electrotransfer conditions using combinations of permeabilizing pulses of high voltage and short duration, and of electrophoretic pulses of low voltage and long duration, which are very efficient and safer. Feasibility of electric pulses delivery for gene transfer in humans is discussed taking into account that electric pulses delivery is already regularly used for localized drug delivery in the treatment of cutaneous and subcutaneous solid tumors by electrochemotherapy. Because recent technological developments made DNA electrotransfer more and more efficient and safer, this non-viral gene therapy approach is now ready to reach the clinical stage. A good understanding of DNA electrotransfer principles and the respect of safe procedures will be key elements for a successful future transfer DNA electrotransfer into the clinics.  相似文献   

19.
Intense nanosecond-duration electric pulses (nsEP) open stable nanopores in the cell membrane, followed by cell volume changes due to water uptake or expulsion, as regulated by the osmolality balance of pore-impermeable solutes inside and outside the cell. The size of pores opened by either fifty 60-ns EP (~13 kV/cm) or five, 600-ns EP (~6 kV/cm) in GH3 cells was estimated by isoosmotic replacement of bath NaCl with polyethylene glycols and sugars. Such replacement reduced cell swelling or resulted in transient or sustained cell shrinking in response to EP. depending on the availability of pores permeable to the test solute. Unexpectedly, solute substitutions showed that for the same integral area of pores opened by 60- and 600-ns treatments (as estimated by cell volume changes), the pore sizes were similar. However, the 600-ns exposure triggered significantly higher cell uptake of propidium. We concluded that 600-ns EP opened a greater number of larger (propidium-permeable pores), but the fraction of the larger pores in the entire pore population was insufficient to contribute to cell volume changes. For both the 60- and 600-ns exposures, cell volume changes were determined by pores smaller than 0.9 nm in diameter; however, the diameter increased with increasing the nsEP intensity.  相似文献   

20.
Nanosecond, high‐voltage electric pulses (nsEP) induce permeabilization of the plasma membrane and the membranes of cell organelles, leading to various responses in cells including cytochrome c release from mitochondria and caspase activation associated with apoptosis. We report here evidence for nsEP‐induced permeabilization of mitochondrial membranes in living cells. Using three different methods with fluorescence indicators—rhodamine 123 (R123), tetramethyl rhodamine ethyl ester (TMRE), and cobalt‐quenched calcein—we have shown that multiple nsEP (five pulses or more, 4 ns duration, 10 MV/m, 1 kHz repetition rate) cause an increase of the inner mitochondrial membrane permeability and an associated loss of mitochondrial membrane potential. These effects could be a consequence of nsEP permeabilization of the inner mitochondrial membrane or the activation of mitochondrial membrane permeability transition pores. Plasma membrane permeabilization (YO‐PRO‐1 influx) was detected in addition to mitochondrial membrane permeabilization. Bioelectromagnetics 33:257–264, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号