首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular dynamics calculations were carried out on models of two synthetic leucine-serine ion channels: a tetrameric bundle with sequence (LSLLLSL)(3)NH(2) and a hexameric bundle with sequence (LSSLLSL)(3)NH(2). Each protein bundle is inserted in a palmitoyloleoylphosphatidylcholine bilayer membrane and solvated by simple point charge water molecules inside the pore and at both mouths. Both systems appear to be stable in the absence of an electric field during the 4 ns of molecular dynamics simulation. The water motion in the narrow pore of the four-helix bundle is highly restricted and may provide suitable conditions for proton transfer via a water wire mechanism. In the wider hexameric pore, the water diffuses much more slowly than in bulk but is still mobile. This, along with the dimensions of the pore, supports the observation that this peptide is selective for monovalent cations. Reasonable agreement of predicted conductances with experimentally determined values lends support to the validity of the simulations.  相似文献   

2.
We have performed a comparative molecular dynamics simulation of the diffusion process of the heterocyclic compound pyrazine and its methylated derivatives into the model membrane phospholipid bilayer. Several structural and dynamical bilayer parameters were measured, and qualitative interrelations between parameter changes and the substituted pyrazine structure were studied. The simulation results support the hypothesis that molecular mechanisms of biological effects of substituted pyrazines involve dissolution of the effector molecule in the membrane bilayer and subsequent changes in bilayer properties. This stage can provide the means for pyrazine molecules to interact with integral membrane proteins, directly or indirectly through the changed lipid environment of the protein.  相似文献   

3.
The actinoporins are cytolytic toxins produced by sea anemones. Upon encountering a membrane, preferably containing sphingomyelin, they oligomerize and insert their N-terminal helix into the membrane, forming a pore. Whether sphingomyelin is specifically recognized by the protein or simply induces phase coexistence in the membrane has been debated. Here, we perform multi-microsecond molecular dynamics simulations of an octamer of fragaceatoxin C, a member of the actinoporin family, in lipid bilayers containing either pure 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or a 1:1 mixture of DOPC and palmitoyl sphingomyelin (PSM). The complex is highly stable in both environments, with only slight fraying of the inserted helices near their N-termini. Analyzing the structural parameters of the mixed membrane in the course of the simulation, we see signs of a phase transition for PSM in the inner leaflet of the bilayer. In both leaflets, cross-interactions between lipids of different type decrease over time. Surprisingly, the aromatic loop thought to be responsible for sphingomyelin recognition interacts more with DOPC than PSM by the end of the simulation. These results support the notion that the key membrane property that actinoporins recognize is lipid phase coexistence.  相似文献   

4.
A 52-residue membrane protein, phospholamban (PLN) is an inhibitor of an adenosine-5′-triphosphate-driven calcium pump, the Ca2+-ATPase. Although the inhibition of Ca2+-ATPase involves PLN monomers, in a lipid bilayer membrane, PLN monomers form stable pentamers of unknown biological function. The recent NMR structure of a PLN pentamer depicts cytoplasmic helices extending normal to the bilayer in what is known as the bellflower conformation. The structure shows transmembrane helices forming a hydrophobic pore 4 Å in diameter, which is reminiscent of earlier reports of possible ion conductance through PLN pentamers. However, recent FRET measurements suggested an alternative structure for the PLN pentamer, known as the pinwheel model, which features a narrower transmembrane pore and cytoplasmic helices that lie against the bilayer. Here, we report on structural dynamics and conductance properties of the PLN pentamers from all-atom (AA) and coarse-grained (CG) molecular dynamics simulations. Our AA simulations of the bellflower model demonstrate that in a lipid bilayer membrane or a detergent micelle, the cytoplasmic helices undergo large structural fluctuations, whereas the transmembrane pore shrinks and becomes asymmetric. Similar asymmetry of the transmembrane region was observed in the AA simulations of the pinwheel model; the cytoplasmic helices remained in contact with the bilayer. Using the CG approach, structural dynamics of both models were investigated on a microsecond timescale. The cytoplasmic helices of the CG bellflower model were observed to fall against the bilayer, whereas in the CG pinwheel model the conformation of the cytoplasmic helices remained stable. Using steered molecular dynamics simulations, we investigated the feasibility of ion conductance through the pore of the bellflower model. The resulting approximate potentials of mean force indicate that the PLN pentamer is unlikely to function as an ion channel.  相似文献   

5.
Hydrophilic pores are formed in peptide free lipid bilayers under mechanical stress. It has been proposed that the transport of ionic species across such membranes is largely determined by the existence of such meta-stable hydrophilic pores. To study the properties of these structures and understand the mechanism by which pore expansion leads to membrane rupture, a series of molecular dynamics simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer have been conducted. The system was simulated in two different states; first, as a bilayer containing a meta-stable pore and second, as an equilibrated bilayer without a pore. Surface tension in both cases was applied to study the formation and stability of hydrophilic pores inside the bilayers. It is observed that below a critical threshold tension of approximately 38 mN/m the pores are stabilized. The minimum radius at which a pore can be stabilized is 0.7 nm. Based on the critical threshold tension the line tension of the bilayer was estimated to be approximately 3 x 10(-11) N, in good agreement with experimental measurements. The flux of water molecules through these stabilized pores was analyzed, and the structure and size of the pores characterized. When the lateral pressure exceeds the threshold tension, the pores become unstable and start to expand causing the rupture of the membrane. In the simulations the mechanical threshold tension necessary to cause rupture of the membrane on a nanosecond timescale is much higher in the case of the equilibrated bilayers, as compared with membranes containing preexisting pores.  相似文献   

6.
This paper presents the application of chronopotentiometry in the study of membrane electroporation. Chronopotentiometry with a programmable current intensity was used. The experiments were performed on planar bilayer phosphatidylcholine and cholesterol membranes formed by the Mueller-Rudin method. It was demonstrated that a constant-intensity current flow through the bilayer membranes generated voltage fluctuations during electroporation. These fluctuations (following an increase and decrease in membrane conductance) were interpreted as a result of the opening and closing of pores in membrane structures. The decrease in membrane potential to zero did not cause the pore to close immediately. The pore was maintained for about 200 s. The closing of the pore and recovery of the continuous structure of the membrane proceeded not only when the membrane potential equalled zero, but also at membrane potentials up to several tens of millivolts. The fluctuations of the pore were possible at values of membrane potential in the order of at least 100 mV. The size of the pore changed slightly and it closed after some time below this potential value.  相似文献   

7.
This paper presents the application of chronopotentiometry in the study of membrane electroporation. Chronopotentiometry with a programmable current intensity was used. The experiments were performed on planar bilayer phosphatidylcholine and cholesterol membranes formed by the Mueller-Rudin method. It was demonstrated that a constant-intensity current flow through the bilayer membranes generated voltage fluctuations during electroporation. These fluctuations (following an increase and decrease in membrane conductance) were interpreted as a result of the opening and closing of pores in membrane structures. The decrease in membrane potential to zero did not cause the pore to close immediately. The pore was maintained for about 200 s. The closing of the pore and recovery of the continuous structure of the membrane proceeded not only when the membrane potential equalled zero, but also at membrane potentials up to several tens of millivolts. The fluctuations of the pore were possible at values of membrane potential in the order of at least 100 mV. The size of the pore changed slightly and it closed after some time below this potential value.  相似文献   

8.
NalP is an autotransporter secretory protein found in the outer membrane of Neisseria meningitidis. The crystal structure of the NalP translocator domain revealed a transmembrane beta-barrel containing a central alpha-helix. The role of this alpha-helix, and of the conformational dynamics of the beta-barrel pore have been studied via atomistic molecular dynamics simulations. Three simulations, each of 10 ns duration, of NalP embedded within a solvated DMPC bilayer were performed. The helix was removed from the barrel interior in one simulation. The conformational stability of the protein is similar to that of other outer membrane proteins, e.g., OmpA, in comparable simulations. The transmembrane beta-barrel is stable even in the absence of the alpha-helix. Removal of the helix results in an influx of water into the pore region, suggesting the helix acts as a 'plug'. Water molecules entering the resultant pore form hydrogen bonds with the barrel lining that compensate for the loss of helix-barrel hydrogen bonds. The dimensions of the pore fluctuate over the course of the simulation revealing it to be flexible, but only wide enough to allow transport of the passenger domain in an unfolded or extended conformation. The simulations help us to understand the role of the central helix in plugging the pore and in maintaining the width of the barrel, and show that the NalP monomer is sufficient for the transport of the passenger domain in an unfolded or extended conformation.  相似文献   

9.
We present a simulation study where different resolutions, namely coarse-grained (CG) and all-atom (AA) molecular dynamics simulations, are used sequentially to combine the long timescale reachable by CG simulations with the high resolution of AA simulations, to describe the complete processes of peptide aggregation and pore formation by alamethicin peptides in a hydrated lipid bilayer. In the 1-μs CG simulations the peptides spontaneously aggregate in the lipid bilayer and exhibit occasional transitions between the membrane-spanning and the surface-bound configurations. One of the CG systems at t = 1 μs is reverted to an AA representation and subjected to AA simulation for 50 ns, during which water molecules penetrate the lipid bilayer through interactions with the peptide aggregates, and the membrane starts leaking water. During the AA simulation significant deviations from the α-helical structure of the peptides are observed, however, the size and arrangement of the clusters are not affected within the studied time frame. Solid-state NMR experiments designed to match closely the setup used in the molecular dynamics simulations provide strong support for our finding that alamethicin peptides adopt a diverse set of configurations in a lipid bilayer, which is in sharp contrast to the prevailing view of alamethicin oligomers formed by perfectly aligned helical alamethicin peptides in a lipid bilayer.  相似文献   

10.
As a way to quantify the diffusion process of molecular compounds through biological membranes, we investigated in this study the dynamics of DMSO through an 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC) bilayer system. To properly account for the diffusion of DMSO due to a concentration gradient, a double DPPC bilayer was setup for our simulations. In such configuration, the aqueous phases can be explicitly associated with the extra and intracellular domains of the membrane, which is seldom the case in studies of single lipid bilayer due to the periodicity imposed by the simulations. DMSO molecules were initially contained in one of the aqueous phases (extracellular region) at a concentration of 5 wt.%. Molecular dynamics simulation was performed in this system for 95 ns at 350 K and 1 bar. The simulations showed that although many DMSO molecules penetrated the lipid bilayer, only about 10% of them crossed the bilayer to reach the other aqueous phase corresponding to the intracellular region of the membrane. The simulation time considered was insufficient to reach equilibrium of the DMSO concentration between the aqueous phases. However, the simulations provided sufficient information to estimate parameters to apply Fick's Law to model the diffusion process of the system. Using this model, we predicted that for the time considered in our simulation, the concentration of DMSO in the intracellular domain should have been about half of the actual value obtained. The model also predicted that equilibrium of the DMSO concentration in the system would be reached after about 2000 ns, approximately 20 times longer than the performed simulation.  相似文献   

11.
Epicholesterol (Echol) is an epimeric form of cholesterol (Chol). A molecular dynamics simulation of the fully hydrated dimyristoylphosphatidylcholine-Echol (DMPC-Echol) bilayer membrane containing approximately 22 mol % of Echol was carried out for 5 ns. A 3-ns trajectory generated between 2 and 5 ns of molecular dynamics simulation was used for analyses to determine the effects of Echol on the membrane properties. As reference systems, pure DMPC and mixed DMPC-Chol bilayers were used. The study shows that Echol, like Chol, changes the organization of the bilayer/water interface and increases membrane order and condensation, but to a lesser degree. Effects of both sterols are based on the same atomic level mechanisms; their different strength arises from different vertical localizations of Echol and Chol hydroxyl groups in the membrane/water interface.  相似文献   

12.
The alignment of pyrene in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer was investigated using two different approaches, namely solid-state (2)H-NMR spectroscopy and molecular dynamics (MD) simulations. Quadrupolar splittings from (2)H-NMR spectra of deuterated pyrene-d(10) in an oriented lipid bilayer give information about the orientation of C-D bonds with respect to the membrane normal. From MD simulations, geometric information is accessible via trajectories. By defining molecular and bond order parameters, the data from MD trajectories and NMR spectra can be compared straightforwardly. To ensure that the results from both methods are comparable, parameters of the experimental and the simulation setup were chosen to be as similar as possible. From simulations, we saw that pyrene prefers a position inside the lipid membrane near the headgroups and has no tendency to diffuse from one monolayer of the membrane to the other. The results from simulation and NMR show that the normal of the molecular plane is aligned nearly perpendicular to the bilayer normal. The long axis of pyrene lies preferentially parallel to the bilayer normal within a range of +/-30 degrees . The results from the two different methods are remarkably consistent. The good agreement can be explained by the fact that the different kind of motions of a pyrene molecule are already averaged within a few nanoseconds, which is the timescale covered by the MD simulation.  相似文献   

13.
Rupture of a phospholipid bilayer under mechanical stresses is triggered by pore formation in an intact bilayer. To understand the molecular details of the dynamics of pore formation we perform molecular dynamics simulations of a phospholipid bilayer under two different equibiaxial stretching conditions: first, unsteady stretching with various stretching speeds in the range of 0.1-1.0m/s, and second, quasistatic stretching. We analyze (i) patterns of pore formation, (ii) the critical area where a pore forms, (iii) the deformation of the bilayer, and (iv) the apparent breaking force. With stretching, the bilayer deforms anisotropically due to lipid chain packing and water penetrating into the hydrophilic region of the bilayer, and when the area exceeds a critical value, water filled pore structure penetrating the bilayer forms and develops into a large pore, resulting in rupture. For a high stretching speed, small pores (multipore) can temporarily form in a small area. It has been statistically determined that the probability of the multipore formation, the critical areal strain, and the apparent breaking force increase with the stretching speed in the range of 0-50%, 0.8-2.0, and 250-400 pN, respectively. The results qualitatively agree with the experimental and other simulation results, and rationalize the leakage of hemoglobin from erythrocytes in shock wave experiments.  相似文献   

14.
In order to investigate structural and dynamical properties of local anesthetic articaine in a model lipid bilayer, a series of molecular dynamics simulations have been performed. Simulations were carried out for neutral and charged (protonated) forms of articaine inserted in fully hydrated dimyristoylphosphatidylcholine (DMPC) lipid bilayer. For comparison purpose, a fully hydrated DMPC bilayer without articaine was also simulated. The length of each simulation was 200 ns. Various properties of the lipid bilayer systems in the presence of both charged and uncharged forms of articaine taken at two different concentrations have been examined: membrane area per lipid, mass density distributions, order parameters, radial distribution functions, head group tilt, diffusion coefficients, electrostatic potential, etc, and compared with results of previous simulations of DMPC bilayer in the presence of lidocaine. It was shown that addition of both charged and neutral forms of articaine causes increase of the dipole electrostatic potential in the membrane interior.  相似文献   

15.
It has been revealed recently that the subterahertz/terahertz vibrational motions in enzymes and DNA immersed in aqueous solutions can be underdamped. Importantly, these motions are associated with coherent delocalized modes that control functional processes. Analogous propagating phonon-like modes have been found in free hydrated lipid bilayers. In the present work, subterahertz (frequencies of the order of tens and hundreds of gigahertz) longitudinal acoustic oscillations in a bilayer lipid membrane immersed in aqueous medium are investigated theoretically. We consider driven oscillations excited by tangential mechanical tensions at the bilayer surfaces and thermally induced phonon modes. The analysis is based on: (i) a generalized hydrodynamic model of two-dimensional lipid bilayer in aqueous medium; (ii) known estimates of frequencies and lifetimes of longitudinal acoustic phonons in free hydrated lipid bilayer and in water, which were obtained in the experiments on non-elastic X-ray scattering and the molecular dynamics simulations. We show that the membrane phonon-like excitations are underdamped for the typical values of the system parameters, and the contribution of aqueous medium to the membrane mode damping is small compared to the contribution of the lipid bilayer. The obtained results suggest the possibility of realization of thermally induced longitudinal membrane phonons in physiological conditions, as well as the possibility of resonance amplification of the impact of subnanosecond electric impulses and impulses of subterahertz electromagnetic radiation on membrane dynamics.  相似文献   

16.
Experimental evidence indicates that, under some circumstances, "surrogate" molecules may play the same role as cholesterol in ordering membrane lipids. The simplest molecule in this class is Ceramide. In this article, we describe atomic-level molecular dynamics simulations designed to shed light on this phenomenon. We run simulations of hydrated phosphoryl-oleoyl phosphatidylcholine (POPC) bilayers containing cholesterol, and containing ceramide, in concentrations ranging from 5% to 33%. We also perform a simulation of a pure POPC bilayer to verify the simulation force fields against experimental structural data for POPC. Our simulation data are in good agreement with experimental data for the partial molecular volumes, areas, form factors, and order parameters. These simulations suggest that ceramide and cholesterol have a very similar effect on the POPC bilayer, although ceramide is less effective in inducing order in the bilayer compared with cholesterol at the same concentrations.  相似文献   

17.
NalP is an autotransporter secretory protein found in the outer membrane of Neisseria meningitidis. The crystal structure of the NalP translocator domain revealed a transmembrane β-barrel containing a central α-helix. The role of this α-helix, and of the conformational dynamics of the β-barrel pore have been studied via atomistic molecular dynamics simulations. Three simulations, each of 10 ns duration, of NalP embedded within a solvated DMPC bilayer were performed. The helix was removed from the barrel interior in one simulation. The conformational stability of the protein is similar to that of other outer membrane proteins, e.g., OmpA, in comparable simulations. The transmembrane β-barrel is stable even in the absence of the α-helix. Removal of the helix results in an influx of water into the pore region, suggesting the helix acts as a ‘plug’. Water molecules entering the resultant pore form hydrogen bonds with the barrel lining that compensate for the loss of helix-barrel hydrogen bonds. The dimensions of the pore fluctuate over the course of the simulation revealing it to be flexible, but only wide enough to allow transport of the passenger domain in an unfolded or extended conformation. The simulations help us to understand the role of the central helix in plugging the pore and in maintaining the width of the barrel, and show that the NalP monomer is sufficient for the transport of the passenger domain in an unfolded or extended conformation.  相似文献   

18.
Electroporation is a cell-level phenomenon caused by an ionic imbalance in the membrane, being of great relevance in various fields of knowledge. A dependence of the pore formation kinetics on the environmental conditions (temperature and pressure) of the cell membrane has already been reported, but further clarification regarding how these variables affect the pore formation/resealing dynamics and the transport of molecules through the membrane is still lacking. The objective of the present study was to investigate the temperature (288–348 K) and pressure (1–5000 atm) effects on the electroporation kinetics using coarse-grained molecular dynamics simulations. Results shown that the time for pore formation and resealing increased with pressure and decreased with temperature, whereas the maximum pore radius increased with temperature and decreased with pressure. This behavior influenced the ion migration through the bilayer, and the higher ionic mobility was obtained in the 288 K/1000 atm simulations, i.e., a combination of low temperature and (not excessively) high pressure. These results were used to discuss some experimental observations regarding the extraction of intracellular compounds applying this technique. This study contributes to a better understanding of electroporation under different thermodynamic conditions and to an optimal selection of processing parameters in practical applications which exploit this phenomenon.  相似文献   

19.
A method for simulating a two-component lipid bilayer membrane in the mesoscopic regime is presented. The membrane is modeled as an elastic network of bonded points; the spring constants of these bonds are parameterized by the microscopic bulk modulus estimated from earlier atomistic nonequilibrium molecular dynamics simulations for several bilayer mixtures of DMPC and cholesterol. The modulus depends on the composition of a point in the elastic membrane model. The dynamics of the composition field is governed by the Cahn-Hilliard equation where a free energy functional models the coupling between the composition and curvature fields. The strength of the bonds in the elastic network are then modulated noting local changes in the composition and using a fit to the nonequilibrium molecular dynamics simulation data. Estimates for the magnitude and sign of the coupling parameter in the free energy model are made treating the bending modulus as a function of composition. A procedure for assigning the remaining parameters in the free energy model is also outlined. It is found that the square of the mean curvature averaged over the entire simulation box is enhanced if the strength of the bonds in the elastic network are modulated in response to local changes in the composition field. We suggest that this simulation method could also be used to determine if phase coexistence affects the stress response of the membrane to uniform dilations in area. This response, measured in the mesoscopic regime, is already known to be conditioned or renormalized by thermal undulations.  相似文献   

20.
Energetics of pore formation induced by membrane active peptides   总被引:8,自引:0,他引:8  
Lee MT  Chen FY  Huang HW 《Biochemistry》2004,43(12):3590-3599
Antimicrobial peptides are known to form pores in cell membranes. We study this process in model bilayers of various lipid compositions. We use two of the best-studied peptides, alamethicin and melittin, to represent peptides making two types of pores, that is, barrel-stave pores and toroidal pores. In both cases, the key control variable is the concentration of the bound peptides in the lipid bilayers (expressed in the peptide-lipid molar ratio, P/L). The method of oriented circular dichroism (OCD) was used to monitor the peptide orientation in bilayers as a function of P/L. The same samples were scanned by X-ray diffraction to measure the bilayer thickness. In all cases, the bilayer thickness decreases linearly with P/L and then levels off after P/L exceeds a lipid-dependent critical value, (P/L)*. OCD spectra showed that the helical peptides are oriented parallel to the bilayers as long as P/L < (P/L)*, but as P/L increases over (P/L)*, an increasing fraction of peptides changed orientation to become perpendicular to the bilayer. We analyzed the data by assuming an internal membrane tension associated with the membrane thinning. The free energy containing this tension term leads to a relation explaining the P/L-dependence observed in the OCD and X-ray diffraction measurements. We extracted the experimental parameters from this thermodynamic relation. We believe that they are the quantities that characterize the peptide-lipid interactions related to the mechanism of pore formation. We discuss the meaning of these parameters and compare their values for different lipids and for the two different types of pores. These experimental parameters are useful for further molecular analysis and are excellent targets for molecular dynamic simulation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号