首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Numerous copies of endogenous retroviruses are present in the genome of mammals including man. Although most of them are defective, some, e.g., the human endogenous retroviruses HERV-K, were found to be expressed under certain physiological conditions. For instance, HERV-K is expressed in germ cell tumours and melanomas as well as in the placenta. Most exogenous retroviruses including the human immunodeficiency virus HIV-1 induce severe immunodeficiencies and there is increasing evidence that the transmembrane envelope (TM) proteins of these retroviruses may be involved. We show here that HERV-K particles released from a human teratocarcinoma cell line, a recombinant TM protein and a peptide corresponding to a highly conserved so-called immunosuppressive domain in the TM protein of HERV-K inhibit the proliferation of human immune cells, induce modulation of the expression of numerous cytokines, and modulate the expression of cellular genes as detected by a microarray analysis. The changes in cytokine release and gene expression induced by the TM protein of HERV-K are similar to those found previously induced by the TM protein of HIV-1. These data suggest that the mechanism of immunosuppression may be similar for different retroviruses and that the expression of the TM protein in tumours and in the placenta may suppress immune responses and thus prevent rejection of the tumour and the embryo.  相似文献   

3.
Endogenous retroviruses(ERVs) are a component of the vertebrate genome and originate from exogenous infections of retroviruses in the germline of the host. ERVs have coevolved with their hosts over millions of years. Envelope glycoproteins of endogenous retroviruses are often expressed in the mammalian placenta, and their potential function has aroused considerable research interest, including the manipulation of maternal physiology to benefit the fetus. In most mammalian species, trophoblast fusion in the placenta is an important event, involving the formation of a multinucleated syncytiotrophoblast layer to fulfill essential fetomaternal exchange functions. The key function in this process derives from the envelope genes of endogenous retroviruses, namely syncytins, which show fusogenic properties and placenta-specific expression. This review discusses the important role of the recognized endogenous retrovirus envelope glycoproteins in the mammalian placenta.  相似文献   

4.
The interleukin-6 cytokine family plays roles in a wide variety of tissues and organs, including the immune hematopoietic and nervous systems. Gp130 is a signal-transducing subunit shared by the receptors for the IL-6 family of cytokines. The binding of a ligand to its receptor induces the dimerization of gp 130, leading to the activation of JAK tyrosine kinase and tyrosine phosphorylation of gpl30. These events lead to the activation of multiple signal-transduction pathways, such as the STAT, Ras-MAPK and PI-3 kinase pathways whose activation is controlled by distinct regions of gp130. We propose a model showing that the outcome of the signal transduction depends on the balance or interplay among the contradictory signal transduction pathways that are simultaneously generated through a cytokine receptor in a given target cell.  相似文献   

5.
A variety of cytokines have been reported to be able to recognize specific carbohydrate moieties. To date, the role of carbohydrate recognition in cytokine function has been analyzed for several cytokines, including fibroblast growth factor (FGF), tumor necrosis factor (TNF)-alpha, and interleukin (IL)-2. The FGF family and their receptors have been found to recognize a heparan sulfate proteoglycan, which generates rigid complexes that induce signal transduction. We have found that IL-2 recognizes a high-mannose type glycan on the alpha subunit of the IL-2 receptor as well as a peptide portion of this subunit. Blocking this carbohydrate-IL-2 interaction diminished IL-2-induced signaling and T-cell proliferation. We have also shown that TNF-alpha recognizes the second mannose 6-phosphate diester of the glycan portion of glycosylphosphatidylinositol (GPI)-anchored glycoproteins. Blocking this GPI-anchored glycan-TNF-alpha interaction abrogates TNF-alpha-induced apoptosis. We aim to increase the number of cytokines which modulate their functions through the unique carbohydrate recognition, and open the way to systematically elucidate the biological functions of cytokine-carbohydrate interaction in immune system.  相似文献   

6.
Hajo Haase  Lothar Rink 《Biometals》2007,20(3-4):579-585
The availability of zinc has a regulatory role in the immune system. It can have either pro- or anti-inflammatory effects, which both seem to be a consequence of a direct interaction of zinc with the cytokine secretion by monocytes. In this review, the molecular basis for this effect, the interaction of zinc with the signal transduction of monocytes, is discussed. In particular, zinc seems to activate or inhibit several signaling pathways that interact with the signal transduction of pathogen sensing receptors, the so-called Toll-like receptors (TLR), which sense pathogen-derived molecular structures and, upon activation, lead to secretion of pro-inflammatory cytokines. The interaction of zinc with protein tyrosine phosphatases and protein kinase C, and a direct modulation of lipopolysaccharide binding to its receptor (TLR-4) all result in enhanced cytokine production. On the other hand, a complex interaction between zinc, NO and cyclic nucleotide signaling, and inhibition of interleukin-1 receptor associated kinase-1, and inhibitor of kappa B kinase all counteract the production of pro-inflammatory cytokines. A role for the zinc binding protein metallothionein as a regulator for intracellular zinc signaling is discussed. By acting on all these signaling molecules, the zinc status of monocytes can have a direct effect on inflammation.  相似文献   

7.
Macrophages are activated during an inflammatory response and produce multiple inflammatory cytokines. IL-18 is one of the most important innate cytokines produced from macrophages in the early stages of the inflammatory immune response. Monocyte chemoattractant protein (MCP-1) is expressed in many inflammatory diseases such as multiple sclerosis and rheumatoid arthritis, and its expression is correlated with the severity of the disease. Both IL-18 and MCP-1 have been shown to be involved in inflammatory immune responses. However, it has been unclear whether IL-18 is involved in the induction of MCP-1. This investigation was initiated to determine whether IL-18 can induce MCP-1 production, and if so, by which signal transduction pathways. We found that IL-18 induced the production of MCP-1 in macrophages, which was IL-12-independent and was not mediated by autocrine cytokines such as IFN-gamma or TNF-alpha. We then examined signal transduction pathways involved in IL-18-induced MCP-1 production. We found that IL-18 did not activate the IkappaB kinase/NF-kappaB pathway, evidenced by no degradation of IkappaBalpha and no translocation of NF-kappaB p65 to the nucleus in IL-18-stimulated macrophages. Instead, IL-18 activated the PI3K/Akt and MEK/ERK1/2 pathways. Inhibition of either of these pathways attenuated MCP-1 production in macrophages, and inhibition of both signaling pathways resulted in the complete inhibition of MCP-1 production. On the basis of these observations, we conclude that IL-18 induces MCP-1 production through the PI3K/Akt and MEK/ERK1/2 pathways in macrophages.  相似文献   

8.
Regulation of cytokine signaling and inflammation   总被引:22,自引:0,他引:22  
  相似文献   

9.
Galectin-1 (gal-1), an endogenous lectin secreted by a variety of cell types, has pleiotropic immunomodulatory functions, including regulation of lymphocyte survival and cytokine secretion in autoimmune, transplant disease, and parasitic infection models. However, the role of gal-1 in viral infections is unknown. Nipah virus (NiV) is an emerging pathogen that causes severe, often fatal, febrile encephalitis. The primary targets of NiV are endothelial cells. NiV infection of endothelial cells results in cell-cell fusion and syncytia formation triggered by the fusion (F) and attachment (G) envelope glycoproteins of NiV that bear glycan structures recognized by gal-1. In the present study, we report that NiV envelope-mediated cell-cell fusion is blocked by gal-1. This inhibition is specific to the Paramyxoviridae family because gal-1 did not inhibit fusion triggered by envelope glycoproteins of other viruses, including two retroviruses and a pox virus, but inhibited fusion triggered by envelope glycoproteins of the related Hendra virus and another paramyxovirus. The physiologic dimeric form of gal-1 is required for fusion inhibition because a monomeric gal-1 mutant had no inhibitory effect on cell fusion. gal-1 binds to specific N-glycans on NiV glycoproteins and aberrantly oligomerizes NiV-F and NiV-G, indicating a mechanism for fusion inhibition. gal-1 also increases dendritic cell production of proinflammatory cytokines such as IL-6, known to be protective in the setting of other viral diseases such as Ebola infections. Thus, gal-1 may have direct antiviral effects and may also augment the innate immune response against this emerging pathogen.  相似文献   

10.
Interleukin-18: biological properties and clinical implications   总被引:14,自引:0,他引:14  
IL-18, originally identified as interferon-gamma inducing factor (IGIF), is related to the IL-1 family in terms of its structure, processing, receptor, signal transduction pathway and pro-inflammatory properties. IL-18 is also functionally related to IL-12, as it induces the production of Th1 cytokines and participates in cell-mediated immune cytotoxicity. This review summarizes the recent advances in the understanding of IL-18 structure, processing, receptor expression and immunoregulatory functions, and focuses on the role of IL-18 modulation in tumours, infections, and autoimmune and inflammatory diseases.  相似文献   

11.
12.
13.
Suppressors of cytokine signaling (SOCS) are encoded by immediate early genes known to inhibit cytokine responses in a classical feedback loop. SOCS gene expression has been shown to be induced by many cytokines, growth factors, and innate immune stimuli, such as LPS. In this paper, we report that the chemoattractants, IL-8 and fMLP, up-regulate SOCS1 mRNA in human myeloid cells, primary human neutrophils, PBMCs, and dendritic cells. fMLP rapidly up-regulates SOCS1, whereas the induction of SOCS1 upon IL-8 treatment is delayed. IL-8 and fMLP did not signal via Jak/STATs in primary human macrophages, thus implicating the induction of SOCS by other intracellular pathways. As chemoattractant-induced SOCS1 expression in neutrophils may play an important role in regulating the subsequent response to growth promoting cytokines like G-CSF, we investigated the effect of chemoattractant-induced SOCS1 on cytokine signal transduction. We show that pretreatment of primary human neutrophils with fMLP or IL-8 blocks G-CSF-mediated STAT3 activation. This study provides evidence for cross-talk between chemoattractant and cytokine signal transduction pathways involving SOCS proteins, suggesting that these chemotactic factors may desensitize neutrophils to G-CSF via rapid induction of SOCS1 expression.  相似文献   

14.
Rey FA 《EMBO reports》2006,7(10):1000-1005
This review analyses recent structural results that provide clues about a possible molecular mechanism for the transmission of a fusogenic signal among the envelope glycoproteins of the herpes simplex virus on receptor binding by glycoprotein gD. This signal triggers the membrane-fusion machinery of the virus--contained in glycoproteins gB, gH and gL--to induce the merging of viral and cellular membranes, and to allow virus entry into target cells. This activating process parallels that of gamma-retroviruses, in which receptor binding by the amino-terminal domain of the envelope protein activates the fusogenic potential of the virion in a similar way, despite the different organization of the envelope complexes of these two types of viruses. Therefore, the new structural results on the interaction of gD with its receptors might also provide insights into the mechanism of fusogenic signal transmission in gamma-retroviruses. Furthermore, the fusion activation parallels with retroviruses, together with the recently reported structural homology of gB with the rhabdovirus envelope glycoprotein indicate that the complex entry apparatus of herpesviruses appears to be functionally related to that of simpler enveloped viruses.  相似文献   

15.
We have previously reported a set of Moloney murine leukemia virus derived envelopes retargeted to the Pit-2 phosphate transporter molecule, by insertion of the Pit-2 binding domain (BD) at the N terminus of the ecotropic retroviral envelope glycoproteins (S. Valsesia-Wittmann et al., J. Virol. 70:2059-2064, 1996). The resulting chimeric envelopes share two BDs: an additional N-terminal BD (Pit-2 BD) and the BD of the ecotropic envelope (mCAT-1 BD). By inserting a variety of different amino acid spacers between the two binding domains, we showed that retroviruses can potentially use the targeted cell surface receptor Pit-2, the ecotropic retroviral receptor mCAT-1, or both receptors cooperatively for entry into target cell (S. Valsesia-Wittmann et al., EMBO J 6:1214-1223, 1997). An extreme example of receptor cooperativity was encountered when envelopes with specific proline-rich interdomain spacers (PRO spacers) were tested: both receptors had to be coexpressed at the surface of the targeted cells to cooperatively allow infection. Here, we characterized the role of PRO spacer in the cooperation of receptors. We have shown that the particular organization of the PRO spacer-a beta-turn polyproline-was responsible for the cooperative effect. In the native configuration of the viruses, the structure masked the regions located downstream of the PRO spacer, thus the mCAT-1 BD. After interaction with the targeted Pit-2 receptor, the BD of the backbone envelope became accessible, and we demonstrated that interaction between the mCAT-1 BD and the mCAT-1 receptor is absolutely necessary. This interaction leads to natural fusion triggering and entry of viruses into targeted cells.  相似文献   

16.
The majority of retroviral envelope glycoproteins characterized to date are typical of type I viral fusion proteins, having a receptor binding subunit associated with a fusion subunit. The fusion subunits of lentiviruses and alpha-, beta-, delta- and gammaretroviruses have a very conserved domain organization and conserved features of secondary structure, making them suitable for phylogenetic analyses. Such analyses, along with sequence comparisons, reveal evidence of numerous recombination events in which retroviruses have acquired envelope glycoproteins from heterologous sequences. Thus, the envelope gene (env) can have a history separate from that of the polymerase gene (pol), which is the most commonly used gene in phylogenetic analyses of retroviruses. Focusing on the fusion subunits of the genera listed above, we describe three distinct types of retroviral envelope glycoproteins, which we refer to as gamma-type, avian gamma-type and beta-type. By tracing these types within the ‘fossil record’ provided by endogenous retroviruses, we show that they have surprisingly distinct evolutionary histories and dynamics, with important implications for cross-species transmissions and the generation of novel lineages. These findings validate the utility of env sequences in contributing phylogenetic signal that enlarges our understanding of retrovirus evolution.  相似文献   

17.
The cytoplasmic domains of the transmembrane (TM) envelope proteins (TM-CDs) of most retroviruses have a Tyr-based motif, YXXØ, in their membrane-proximal regions. This signal is involved in the trafficking and endocytosis of membrane receptors via clathrin-associated AP-1 and AP-2 adaptor complexes. We have used CD8-TM-CD chimeras to investigate the role of the Tyr-based motif of human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and human T-leukemia virus type 1 (HTLV-1) TM-CDs in the cell surface expression of the envelope glycoprotein. Flow cytometry and confocal microscopy studies showed that this motif is a major determinant of the cell surface expression of the CD8-HTLV chimera. The YXXØ motif also plays a key role in subcellular distribution of the envelope of lentiviruses HIV-1 and SIV. However, these viruses, which encode TM proteins with a long cytoplasmic domain, have additional determinants distal to the YXXØ motif that participate in regulating cell surface expression. We have also used the yeast two-hybrid system and in vitro binding assays to demonstrate that all three retroviral YXXØ motifs interact with the μ1 and μ2 subunits of AP complexes and that the C-terminal regions of HIV-1 and SIV TM proteins interact with the β2 adaptin subunit. The TM-CDs of HTLV-1, HIV-1, and SIV also interact with the whole AP complexes. These results clearly demonstrate that the cell surface expression of retroviral envelope glycoproteins is governed by interactions with adaptor complexes. The YXXØ-based signal is the major determinant of this interaction for the HTLV-1 TM, which contains a short cytoplasmic domain, whereas the lentiviruses HIV-1 and SIV have additional determinants distal to this signal that are also involved.  相似文献   

18.
Eukaryotic cells respond to extracellular stimuli, such as viruses, by recruiting signal transduction pathways, many of which are mediated through activation of distinct mitogen-activated protein kinase (MAPK) cascades and activation of transductional regulation factors. The best characterized of this pathway are the extracellular signal regulated kinase (ERK), the c-Jun N-terminal kinase/stress activated protein kinase (JNK/SAPK), and the p38 MAPK cascade. Herpes simplex virus type 1 (HSV-1) encodes at least 11 envelope glycoproteins, which alone or in concert play different roles in viral adsorption, entry, cell-to-cell spread, and immune evasion. Of these proteins, three are designated glycoprotein B (gB), glycoprotein D (gD), and the gH/gL heterodimer, are clearly involved in attachment and entry, and therefore possible candidates in inducing early cellular activation.Nevertheless, the precise role of each glycoprotein and the cellular factor involved remain elusive. The signal transduction pathways involved, and the outcome of cellular activation on viral entry or postentry events, are still to be elucidated. To better understand the role of signal transduction pathways and phosphorylation events in HSV-1 entry, synthetic peptides modeled on HSV-1 gH were synthesized and tested for MEK1-MEK2/MAPK cascade activation. Our results show a major involvement of the JNK pathway in the intracellular signal transmission after stimulation with gH HSV-1 peptides.  相似文献   

19.
20.
The maturation state of dendritic cells (DC) is regulated by a variety of factors. These include ligands expressed by T cells, such as members of the TNF superfamily. Recent studies have highlighted the role of one such molecule, LIGHT, as a positive regulator of DC biology, promoting the maturation of these cells through the activation of NF-kappaB pathways. In addition, HSV-1 envelope glycoproteins can also bind the LIGHT receptor, herpes virus entry mediator (HVEM), and activate similar downstream signalling pathways in DC. The consequence of this host-viral interaction may be a novel pathway of viral immune evasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号