首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of a new biosorbent system, consisting of a fungal biomass immobilized within an orange peel cellulose absorbent matrix, for the removal of Zn(2+) heavy metal ions from an aqueous solution was tested. The amount of Zn(II) ion sorption by the beads was as follows; orange peel cellulose with Phanerochaete chrysosporium immobilized Ca-alginate beads (OPCFCA) (168.61 mg/g) > orange peel cellulose immobilized Ca-alginate beads (OPCCA) (147.06 mg/g) > P. chrysosporium (F) (125.0 mg/g) > orange peel cellulose (OPC) (108.70 mg/g) > plain Ca-alginate bead (PCA) (98.26 mg/g). The Zn(2+) concentration was 100 to 1000 mg/L. The widely used Langmuir and Freundlich isotherm models were utilized to describe the biosorption equilibrium process. The isotherm parameters were estimated using linear and non-linear regression analysis. The Box-Behnken model was found to be in close agreement with the experimental values, as indicated by the correlation coefficient value of 0.9999.  相似文献   

2.
Hydrolysate of Jerusalem artichoke was applied for the production of l-lactic acid by immobilized Lactococcus lactis cells in a fibrous bed bioreactor system. Preliminary experiments had indicated that the high quality hydrolysate, which was derived from the 40min acid treatment at 95°C and pH 1.8, was sufficient to support the cell growth and synthesis of l-lactic acid. With the addition of 5g/l yeast extract, the fermentative performance of free cell system was evidently improved. After the basal settlement of hydrolysate based fermentation, the batch mode and the fed-batch mode fermentation were carried out in the free cell system and the fibrous bed bioreactor system, respectively. In all cases the immobilized cells presented the superior ability to produce l-lactic acid. The comparison of batch mode and fed-batch mode also indicated that the growth-limiting feeding strategy could reduce the lag phase of fermentation process and enhance the production of l-lactic acid. The achieved maximum concentration of l-lactic acid was 142g/l in the fed-batch mode. Subsequent repeated-batch fermentation of the fibrous bed bioreactor system had further exhibited the persistence and stability of this system for the high production of l-lactic acid in a long term. Our work suggested the great potential of the fibrous bed bioreactor system and hydrolysate of J. artichoke in the economical production of l-lactic acid at industrial scale.  相似文献   

3.
《Process Biochemistry》2007,42(8):1244-1249
Baking using baker's yeast immobilized in a starch–gluten–milk matrix (traditional fermented cereal food trahanas), containing viable lactic acid bacteria (LAB), and kefir (natural co-culture of yeasts and LAB) immobilized on orange peel, were investigated. The use of immobilized cells increased shelf life, delayed staling, and improved overall the quality of bread, compared with the traditional baker's yeast bread. These improvements were attributed to the reduction of pH, the lower moisture loss rates, and the presence of LAB, which are known to exhibit antimould properties. Better results were obtained using the sourdough method compared to the straight dough bread-making method. Headspace SPME GC–MS analysis showed that the use of immobilized cells increased the number of bread aroma volatiles, especially esters. The best results, including shelf life and overall bread quality, were obtained in the case of baker's yeast immobilized on trahanas, although kefir immobilized on orange peel seems to be a more cost effective biocatalyst.  相似文献   

4.
The capability of two zygomycetes strains, Mucor indicus and an isolate from tempeh (Rhizopus sp.), to grow on orange peel hydrolysate and their tolerance to its antimicrobial activity, was investigated. Both fungi, in particular M. indicus, tolerated up to 2% d-limonene in semi-synthetic media during cultivation in shake flasks, under aerobic as well as anaerobic conditions. The tolerance of M. indicus was also tested in a bioreactor, giving rise to varying results in the presence of 2% limonene. Furthermore, both strains were capable of consuming galacturonic acid, the main monomer of pectin, under aerobic conditions when no other carbon source was present. The orange peel hydrolysate was based on 12% (dry w/v) orange peels, containing d-limonene at a concentration of 0.6% (v/v), which no other microorganism has been reported to be able to ferment. However, the hydrolysate was utilised by M. indicus under aerobic conditions, resulting in production of 410 and 400 mg ethanol/g hexoses and 57 and 75 mg fungal biomass/g sugars from cultivations in shake flasks and a bioreactor, respectively. Rhizopus sp., however, was slow to germinate aerobically, and neither of the zygomycetes was able to consistently germinate in orange peel hydrolysate, under anaerobic conditions. The zygomycetes strains used in the present study demonstrated a relatively high resistance to the antimicrobial compounds present in orange peel hydrolysate, and they were capable of producing ethanol and biomass in the presence of limonene, particularly when cultivated with air supply.  相似文献   

5.
Saccharomyces cerevisiae cells were immobilized in calcium alginate beads for use in the continuous production of ethanol. Yeasts were grown in medium supplemented with ethanol to selectively screen for a culture which showed the greatest tolerance to ethanol inhibition. Yeast beads were produced from a yeast slurry containing 1.5% alginate (w/v) which was added as drops to 0.05M CaCl2 solution. To determine their optimum fermentation parameters, ethanol production using glucose as a substrate was monitored in batch systems at varying physiological conditions (temperature, pH, ethanol concentration), cell densities, and gel concentration. The data obtained were compared to optimum free cell ethanol fermentation parameters. The immobilized yeast cells examined in a packed-bed reactor system operated under optimized parameters derived from batch-immobilized yeast cell experiments. Ethanol production rates, as well as residual sugar concentration were monitored at different feedstock flow rates.  相似文献   

6.
Cheese whey fermentation to ethanol using immobilized Kluyveromyces marxianus cells was investigated in batch and continuous operation. In batch fermentation, the yeast cells were immobilized in carboxymethyl cellulose (CMC) polymer and also synthesized graft copolymer of CMC with N-vinyl-2-pyrrolidone, denoted as CMC-g-PVP, and the efficiency of the two developed cell entrapped beads for lactose fermentation to ethanol was examined. The yeast cells immobilized in CMC-g-PVP performed slightly better than CMC with ethanol production yields of 0.52 and 0.49 g ethanol/g lactose, respectively. The effect of supplementation of cheese whey with lactose (42, 70, 100 and 150 g/l) on fermentative performance of K. marxianus immobilized in CMC beads was considered and the results were used for kinetic studies. The first order reaction model was suitable to describe the kinetics of substrate utilization and modified Gompertz model was quite successful to predict the ethanol production. For continuous ethanol fermentation, a packed-bed immobilized cell reactor (ICR) was operated at several hydraulic retention times; HRTs of 11, 15 and 30 h. At the HRT of 30 h, the ethanol production yield using CMC beads was 0.49 g/g which implies that 91.07 % of the theoretical yield was achieved.  相似文献   

7.
Summary 31P nuclear magnetic resonance has been employed to monitor noninvasively Saccharomyces cerevisiae anaerobic glucose metabolism in suspended and immobilized cells. Results show that cell entrapment in Ca-alginate beads alters cell metabolism compared to that in suspended cells. Assuming similar intracellular ionic strength, differences in intracellular phosphate chemical shift indicate that the internal pH of the immobilized cells is lower than the suspended cell internal pH. This result is consistent with higher ethanol production rates exhibited by immobilized yeast.  相似文献   

8.
Gluconobacter oxydans could be immobilized as a biocatalyst for the conversion of glycerol to dihydroxyacetone. To reduce the production cost, the cells were produced from agricultural byproducts. Corn meal hydrolysate and corn steep liquor were employed to replace of sorbitol and yeast extract as medium for G. oxydans cell production. The optimal medium contained 80 g/L reducing sugar, 25 g/L corn steep liquor, and 10 g/L glycerol. The cell mass was about 4.22 g/L and the glycerol dehydrogenase activity was about 5.23 U/mL. For comparison, the cell mass was about 4.0 g/L and the glycerol dehydrogenase activity was about 5.35 U/mL cultured in sorbitol and yeast extract medium. These studies shown the corn meal hydrolysate and corn steep liquor medium was similar in performance to a nutrient-rich medium, but the cost of production was only 15% of that cultured in sorbitol and yeast extract medium. It was an economical process for the production of G. oxydans cells as biocatalyst for the conversion of glycerol to dihydroxyacetone in industry.  相似文献   

9.
In this study we used the yeast Candida guilliermondii FTI 20037 immobilized by entrapment in Ca-alginate beads (2.5-3 mm diameter) for xylitol production from concentrated sugarcane bagasse hemicellulosic hydrolysate in a repeated batch system. The fermentation runs were carried out in 125- and 250-ml Erlenmeyer flasks placed in an orbital shaker at 30 degrees C and 200 rpm during 72 h, keeping constant the proportion between work volume and flask total volume. According to the results, cell viability was substantially high (98%) in all fermentative cycles. The values of parameters xylitol yield and volumetric productivity increased significantly with the reutilization of the immobilized biocatalysts. The highest values of xylitol final concentration (11.05 g/l), yield factor (0.47 g/g) and volumetric productivity (0.22 g/lh) were obtained in 250-ml Erlenmeyer flasks containing 80 ml of medium plus 20 ml of immobilized biocatalysts. The support used in this study (Ca-alginate) presented stability in the experimental conditions used. The results show that the use of immobilized cells is a promising approach for increasing the xylitol production rates.  相似文献   

10.
Among three esters of p-hydroxybenzoate, n-butyl p-hydroxybenzoate was selected as the best antimicrobial substance. Molasses medium sterilized by this ester was used as a substrate for ethanol production. n-Butyl p-hydroxybenzoate (0.15% w/v) completely inhibited the growth of free yeast cell inoculum, Ca-alginate immobilized yeast inoculum and bacterial contaminants. Immobilization of the yeast cell inoculum in Ca-alginate with castor oil (6% v/v) offered a yeast cell protection against the inhibitory effect of n-butyl p-hydroxybenzoate. The presence of castor oil in this immobilization system did not affect the metabolic activity of the yeast in beads compared to the cells immobilized without castor oil. The yeast cell beads in this system completely utilized up to 25% molasses sugar with an ethanol yield of 10.58%, equal to 83% of its theoretical value. The beads were stable and could be used successfully for seven cycles of batch fermentation. The optimum fermentation temperature using this system was 35°C. Received 21 January 1997/ Accepted in revised form 05 May 1997  相似文献   

11.
Aromatic compounds are abundant in aqueous environments due to natural resources or different manufacturer’s wastewaters. In this study, phenol degradation by the yeast, Trichosporon cutaneum ADH8 was compared in three forms namely: free cells, nonmagnetic immobilized cells (non-MICs), and magnetically immobilized cells (MICs). In addition, three different common immobilization supports (alginate, agar, and polyurethane foams) were used for cell stabilization in both non-MICs and MICs and the efficiency of phenol degradation using free yeast cells, non-MICs, and MICs for ten consecutive cycles were studied. In this study, MICs on alginate beads by 12 g/l Fe2O3 magnetic nanoparticles had the best efficiency in phenol degradation (82.49%) and this amount in the seventh cycle of degradation increased to 95.65% which was the highest degradation level. Then, the effect of magnetic and nonmagnetic immobilization on increasing the stability of the cells to alkaline, acidic, and saline conditions was investigated. Based on the results, MICs and non-MICs retained their capability of phenol degradation in high salinity (15 g/l) and acidity (pH 5) conditions which indicating the high stability of immobilized cells to those conditions. These results support the effectiveness of magnetic immobilized biocatalysts and propose a promising method for improving the performance of biocatalysts and its reuse ability in the degradation of phenol and other toxic compounds. Moreover, increasing the resistance of biocatalysts to extreme conditions significantly reduces costs of the bioremediation process.  相似文献   

12.
The kinetic properties of Saccharomyces cerevisiae immobilized on crosslinked gelatin were found to be substantially different from those of the suspended yeast. Batch fermentation experiments conducted in a gradientless reaction system allowed comparison of immobilized cell and suspended cell performance. The specific rate of ethanol production by the immobilized cell was 40-50% greater than for the suspended yeast. The immobilized cells consumed glucose twice as fast as the suspended cells, but their specific growth rate was reduced by 45%. Yields of biomass from the immobilized cell population were lower at one-third the value for the suspended cells. Cellular composition was also affected by immobilization. Measurements of intracellular polysaccharide levels showed that the immobilized yeast stored larger quantities of reserve carbohydrates and contained more structural polysaccharide than did suspended cells. Flow cytometry was used to obtain. DNA, RNA, and protein frequency functions for immobilized and suspended cell populations. These data showed that the immobilized cells have higher ploidy than cells in suspension. The observed changes in immobilized cell metabolism and composition may have arisen from disturbance to the yeast cell cycle by the cell attachment, causing alterations in the normal pattern of yeast bud development, DNA replication, and synthesis of cell wall components.  相似文献   

13.
The productivity of immobilized yeast cell reactors varies with a number of parameters, including flow, amount and growth rate of yeast, bead size and type of medium. Variation of these parameters has a pronounced effect on reaction rate. This paper presents typical ranges for these productivities and demonstrates the patterns of changes that take place when bead size, flow and reaction medium are varied. Saccharomyces cerevisiae cells were immobilized in calcium alginate beads for the production of ethanol. The productivity of immobilized yeast in a batch reactor (0.2 g ethanol/g yeast · h) was only two-thirds that of free cells suspended at an equivalent cell density (0.3 g ethanol/g yeast · h). Different flow rates and bead sizes were used to ‘optimize’ the productivity. The productivity of 3.34 mm beads at a flow rate of 8.8 litre h?1(superficial velocity: 0.12 cm s?1) was 95% higher than that at 1.0 l h?1. Maximum productivities of 0.34, 0.27, 0.22 g/g yeast· h were obtained (at a flow rate of 8.8 l h?1) for 9.2% yeast-immobilized beads of 3.34, 4.45 and 5.65 mm in diameter, respectively.  相似文献   

14.
Hydroxyurea, an inhibitor of DNA synthesis in Saccharomyces cerevisiae, has been applied in order to restrict growth of immobilized cells. For comparison, the influence of hydroxyurea on suspended S. cerevisiae has also been investigated. Recovery from DNA synthesis inhibition, indicated by measurements of cell growth rate, DNA content, and light scatter properties, occurred faster in immobilized cells than in the suspended yeast. Morphogenesis in both populations was arrested by hydroxyurea, and there was an accumulation of single immobilized and suspended cells with large buds. Synthesis of protein and RNA was not adversely affected in either cell type. The specific rate of ethanol production by immobilized cells increased by an average of 24%, while, for the suspended cells, specific ethanol productivity was up to three times higher. Glucose consumption rates for both cell types also increased under the influence of hydroxyurea. Immobilized cell ethanol yields were reduced by ca. 16% in the presence of hydroxyurea; suspended cell yields were lower by an average of 50%. Total polysaccharide content was reduced by 65% for suspended cells and increased 30% for immobilized cells after hydroxyurea treatment. The data evidence disturbance of the yeast cell cycle due to immobilization.  相似文献   

15.
A new immobilized cell system providing protection against toxic solvents was investigated so that normal fermentations could be carried out in a medium containing toxic solvents. The system consists of immobilized growing cells in Ca-alginate gel beads to which vegetable oils, which are inexpensive absorbents of solvents, had been added. The ethanol fermentation of Saccharomyces cerevisiae ATCC 26603 was used as a model fermentation to study the protection afforded by the system against solvent toxicities. The fermentation was inhibited by solvents such as 2-octanol, benzene, toluene, and phenol. Ethanol production of one batch was not finished even after 35 h using immobilized growing yeast cells in conventional Ca-alginate gel beads in an ethanol production medium (5% glucose) containing 0.1% 2-octanol, which is used as a solvent for liquid-liquid extraction and is one of the most toxic solvents in our experiments. With the new immobilized growing cell system using vegetable oils, however, four repeated batch fermentations were completed in 35 h. Castor oil provided even more protection than soy bean, olive, and tung oils, and it was possible to complete six repeated batches in 35 h. The immobilized cell system with vegetable oils also provided protection against other toxic solvents such as benzene and toluene. A possible mechanism for the protective function of the new immobilized cell system is discussed.  相似文献   

16.
发酵产丁二酸过程中废弃细胞的循环利用   总被引:1,自引:0,他引:1  
对厌氧发酵产丁二酸后的废弃细胞进行破壁处理,考察了以细胞水解液作为有机氮源重新用于丁二酸发酵的可行性。比较了超声破碎、盐溶、酶解3种方法破碎细胞获得的水解液作为氮源发酵产丁二酸的效果,结果表明酶解制得的细胞水解液效果最佳。以总氮含量为1.11g/L的酶解液(相当于10g/L酵母膏)作为氮源发酵,丁二酸产量可达42.0g/L,继续增大酶解液用量对耗糖、产酸能力没有显著提高。将细胞酶解液与5g/L酵母膏联用发酵36h后,丁二酸产量达75.5g/L,且丁二酸生产强度为2.10g/(L·h),比使用10g/L酵母膏时提高了66.7%。因此,厌氧发酵产丁二酸结束后的废弃细胞酶解液可以替代原培养基中50%的酵母膏用于发酵。  相似文献   

17.
Fungal cells of Aureobasidium pullulans ATCC 201253 were immobilized by entrapment in chitosan beads, and the immobilized cells were investigated for their ability to produce the polysaccharide pullulan using batch fermentation. The 1% chitosan-entrapped fungal cells were capable of producing pullulan for two cycles of 168 h using corn syrup as a carbon source. Pullulan production by the immobilized cells increased by 1.6-fold during the second production cycle (5.0 g/l) relative to the first production cycle (3.1 g/l) with the difference in production being statistically significant after 168 h. The productivity of the immobilized cells increased during the second production cycle while its pullulan content decreased. The level of cell leakage from the support remained unchanged for both production cycles.  相似文献   

18.
Summary Conidia of Penicillium urticae were immobilized in Kappa-Carrageenan beads (2–3 mm) by a previously described procedure to yield an in situ grown immobilized cell population which could be induced to produce the antibiotic and mycotoxin, patulin. When repeatedly transferred into a nitrogen-free production medium every 2 days, the patulin productivity of these cells gradually decreased to 50% within 14 days while the total cell protein remained constant. This decline was due to the gradual loss of the cells' catalytic capacity for converting glucose to 6-methylsalicylic acid (6-MSA), the first metabolite of the patulin pathway, as well as for converting 6-MSA to patulin. When these 14 day-old cells were incubated in a nutrient rich growth medium for 2 days their patulin producing activity increased from 50% to 130%. On the other hand the addition of a protein synthesis inhibitor, cycloheximide, to the N-free production medium drastically reduced the patulin producing activity of the immobilized cells; in particular, their capacity for converting 6-MSA to patulin. The cells' patulin producing activity was maintained at >100% for longer than 15 days when the cells were repeatedly transferred into a yeast extract supplemented production medium or when they were occasionally transferred into 10 or 20% strength growth medium. Repeated transfers to a 10% strength growth medium appeared to stabilize the cells' capacity for converting 6-MSA to patulin.  相似文献   

19.
The ability to control charge heterogeneity in monoclonal antibodies is important to demonstrate product quality comparability and consistency. This article addresses the control of C‐terminal lysine processing through copper supplementation to yeast hydrolysate powder, a raw material used in the cell culture process. Large‐scale production of a murine cell line exhibited variation in the C‐terminal lysine levels of the monoclonal antibody. Analysis of process data showed that this variation correlated well with shifts in cell lactate metabolism and pH levels of the production culture. Small‐scale studies demonstrated sensitivity of the cells to copper, where a single low dose of copper to the culture impacted cell lactate metabolism and C‐terminal lysine processing. Subsequent analytical tests indicated that the yeast hydrolysate powder, added to the basal media and nutrient feed in the process, contained varying levels of trace copper across lots. The measured copper concentrations in yeast hydrolysate lots correlated well with the variation in lactate and pH trends and C‐terminal lysine levels of the batches in manufacturing. Small‐scale studies further demonstrated that copper supplementation to yeast hydrolysate lots with low concentrations of copper can shift the metabolic performance and C‐terminal lysine levels of these cultures to match the control, high copper cultures. Hence, a strategy of monitoring, and if necessary supplementing, copper in yeast‐hydrolysate powders resulted in the ability to control and ensure product quality consistency. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:463–468, 2017  相似文献   

20.
The present study verified an applicable technology of xylitol bioconversion as part of the integration of co-product generation within second-generation bioethanol processes. A newly isolated yeast strain, Candida tropicalis JH030, was shown to have a capacity for xylitol production from hemicellulosic hydrolysate without detoxification. The yeast gives a promising xylitol yield of 0.71 g(p) g(s)(-1) from non-detoxified rice straw hydrolysate that had been prepared by the dilute acid pretreatment under severe conditions. The yeast's capacity was also found to be practicable with various other raw materials, such as sugarcane bagasse, silvergrass, napiergrass and pineapple peel. The lack of a need to hydrolysate detoxification enhances the potential of this newly isolated yeast for xylitol production and this, in turn, has the capacity to improve economics of lignocellulosic ethanol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号