首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boolean networks and, more generally, probabilistic Boolean networks, as one class of gene regulatory networks, model biological processes with the network dynamics determined by the logic-rule regulatory functions in conjunction with probabilistic parameters involved in network transitions. While there has been significant research on applying different control policies to alter network dynamics as future gene therapeutic intervention, we have seen less work on understanding the sensitivity of network dynamics with respect to perturbations to networks, including regulatory rules and the involved parameters, which is particularly critical for the design of intervention strategies. This paper studies this less investigated issue of network sensitivity in the long run. As the underlying model of probabilistic Boolean networks is a finite Markov chain, we define the network sensitivity based on the steady-state distributions of probabilistic Boolean networks and call it long-run sensitivity. The steady-state distribution reflects the long-run behavior of the network and it can give insight into the dynamics or momentum existing in a system. The change of steady-state distribution caused by possible perturbations is the key measure for intervention. This newly defined long-run sensitivity can provide insight on both network inference and intervention. We show the results for probabilistic Boolean networks generated from random Boolean networks and the results from two real biological networks illustrate preliminary applications of sensitivity in intervention for practical problems.  相似文献   

2.

Background

Urinary Schistosomiasis infection, a common cause of morbidity especially among children in less developed countries, is measured by the number of eggs per urine. Typically a large proportion of individuals are non-egg excretors, leading to a large number of zeros. Control strategies require better understanding of its epidemiology, hence appropriate methods to model infection prevalence and intensity are crucial, particularly if such methods add value to targeted implementation of interventions.

Methods

We consider data that were collected in a cluster randomized study in 2004 in Chikhwawa district, Malawi, where eighteen (18) villages were selected and randomised to intervention and control arms. We developed a two-part model, with one part for analysis of infection prevalence and the other to model infection intensity. In both parts of the model we adjusted for age, sex, education level, treatment arm, occupation, and poly-parasitism. We also assessed for spatial correlation in the model residual using variogram analysis and mapped the spatial variation in risk. The model was fitted using maximum likelihood estimation.

Results and discussion

The study had a total of 1642 participants with mean age of 32.4 (Standard deviation: 22.8), of which 55.4 % were female. Schistosomiasis prevalence was 14.2 %, with a large proportion of individuals (85.8 %) being non-egg excretors, hence zero-inflated data. Our findings showed that S. haematobium was highly localized even after adjusting for risk factors. Prevalence of infection was low in males as compared to females across all the age ranges. S. haematobium infection increased with presence of co-infection with other parasite infection. Infection intensity was highly associated with age; with highest intensity in school-aged children (6 to 15 years). Fishing and working in gardens along the Shire River were potential risk factors for S. haematobium infection intensity. Intervention reduced both infection intensity and prevalence in the intervention arm as compared to control arm. Farmers had high infection intensity as compared to non farmers, despite the fact that being a farmer did not show any significant association with probability of infection.These results evidently indicate that infection prevalence and intensity are associated with risk factors differently, suggesting a non-singular epidemiological setting. The dominance of agricultural, socio-economic and demographic factors in determining S. haematobium infection and intensity suggest that disease transmission and control strategies should continue centring on improving socio-economic status, environmental modifications to control S. haematobium intermediate host snails and mass drug administration, which may be more promising approaches to disease control in high intensity and prevalence settings.  相似文献   

3.

Background

Schistosomiasis remains a significant health burden in many areas of the world. Morbidity control, focused on limiting infection intensity through periodic delivery of anti-schistosomal medicines, is the thrust of current World Health Organization guidelines (2006) for reduction of Schistosoma-related disease. A new appreciation of the lifetime impact of repeated Schistosoma infection has directed attention toward strategies for greater suppression of parasite infection per se, with the goal of transmission interruption. Variations in drug schedules involving increased population coverage and/or treatment frequency are now undergoing field trials. However, their relative effectiveness in long-term infection suppression is presently unknown.

Methodology/Principal Findings

Our study used available field data to calibrate advanced network models of village-level Schistosoma transmission to project outcomes of six different community- or school age-based programs, as compared to the impact of current 2006 W.H.O. recommended control strategies. We then scored the number of years each of 10 typical villages would remain below 10% infection prevalence (a practicable level associated with minimal prevalence of disease). All strategies that included four annual treatments effectively reduced community prevalence to less than 10%, while programs having yearly gaps (‘holidays’) failed to reach this objective in half of the communities. Effective post-program suppression of infection prevalence persisted in half of the 10 villages for 7–10 years, whereas in five high-risk villages, program effects on prevalence lasted zero to four years only.

Conclusions/Significance

At typical levels of treatment adherence (60 to 70%), current WHO recommendations will likely not achieve effective suppression of Schistosoma prevalence unless implemented for ≥6 years. Following more aggressive 4 year annual intervention, some communities may be able to continue without further intervention for 8–10 years, while in higher-risk communities, annual treatment may prove necessary until eco-social factors fostering transmission are removed. Effective ongoing surveillance and locally targeted annual intervention must then become their mainstays of control.  相似文献   

4.
Infection elimination may be an important goal of control programs. Only in stochastic infection models can true infection elimination be observed as a fadeout. The phenomena of fadeout and variable prevalence are important in understanding the transmission dynamics of infectious diseases and these phenomena are essential to evaluate the effectiveness of control measures. To investigate the stochastic dynamics of Mycobacterium avium subsp. paratuberculosis (MAP) infection on US dairy herds with test-based culling intervention, we developed a multi-group stochastic compartmental model (a continuous time Markov chain model) with both horizontal and vertical transmission. The stochastic model predicted fadeout and within-herd prevalence to have a large variance. Although test-based culling intervention generally decreased prevalence over time, it took longer than desired by producers to eliminate the endemic MAP infection from a herd. Uncertainty analysis showed that, using annual culture test and culling of only high shedders or culling of both low and high shedders with a 12-month delay in culling of low shedders, MAP infection persisted in many herds beyond 20 years. While using semi-annual culture test and culling of low and high shedders with a 6-month delay in culling of low shedders, MAP infection in many herds would be extinct within 20 years. Sensitivity analysis of the cumulative density function of fadeout suggested that combining test-based culling intervention and reduction of transmission rates through improved management between susceptible calves and shedding animals may be more effective than either alone in eliminating endemic MAP infection. We also discussed the effects of other factors such as herd size, heifer replacement, and adult cow infection on the probability of fadeout.  相似文献   

5.
An SIS/SAS model of gonorrhea transmission in a population of highly active men-having-sex-with-men (MSM) is presented in this paper to study the impact of safe behavior on the dynamics of gonorrhea prevalence. Safe behaviors may fall into two categories—prevention and self-awareness. Prevention will be modeled via consistent condom use and self-awareness via STD testing frequency. Stability conditions for the disease free equilibrium and endemic equilibrium are determined along with a complete analysis of global dynamics. The control reproductive number is used as a means for measuring the effect of changes to model parameters on the prevalence of the disease. We also find that appropriate intervention would be in the form of a multifaceted approach at overall risk reduction rather than tackling one specific control individually.  相似文献   

6.

Background

The use of larval source management is not prioritized by contemporary malaria control programs in sub-Saharan Africa despite historical success. Larviciding, in particular, could be effective in urban areas where transmission is focal and accessibility to Anopheles breeding habitats is generally easier than in rural settings. The objective of this study is to assess the effectiveness of a community-based microbial larviciding intervention to reduce the prevalence of malaria infection in Dar es Salaam, United Republic of Tanzania.

Methods and Findings

Larviciding was implemented in 3 out of 15 targeted wards of Dar es Salaam in 2006 after two years of baseline data collection. This intervention was subsequently scaled up to 9 wards a year later, and to all 15 targeted wards in 2008. Continuous randomized cluster sampling of malaria prevalence and socio-demographic characteristics was carried out during 6 survey rounds (2004–2008), which included both cross-sectional and longitudinal data (N = 64,537). Bayesian random effects logistic regression models were used to quantify the effect of the intervention on malaria prevalence at the individual level. Effect size estimates suggest a significant protective effect of the larviciding intervention. After adjustment for confounders, the odds of individuals living in areas treated with larviciding being infected with malaria were 21% lower (Odds Ratio = 0.79; 95% Credible Intervals: 0.66–0.93) than those who lived in areas not treated. The larviciding intervention was most effective during dry seasons and had synergistic effects with other protective measures such as use of insecticide-treated bed nets and house proofing (i.e., complete ceiling or window screens).

Conclusion

A large-scale community-based larviciding intervention significantly reduced the prevalence of malaria infection in urban Dar es Salaam.  相似文献   

7.
Salmonella spp. in cattle contribute to bacterial foodborne disease for humans. Reduction of Salmonella prevalence in herds is important to prevent human Salmonella infections. Typical control measures are culling of infectious animals, vaccination, and improved hygiene management. Vaccines have been developed for controlling Salmonella transmission in dairy herds; however, these vaccines are imperfect and a variety of vaccine effects on susceptibility, infectiousness, Salmonella shedding level, and duration of infectious period were reported. To assess the potential impact of imperfect Salmonella vaccines on prevalence over time and the eradication criterion, we developed a deterministic compartmental model with both replacement (cohort) and lifetime (continuous) vaccination strategies, and applied it to a Salmonella Cerro infection in a dairy farm. To understand the uncertainty of prevalence and identify key model parameters, global parameter uncertainty and sensitivity analyses were performed. The results show that imperfect Salmonella vaccines reduce the prevalence of Salmonella Cerro. Among three vaccine effects that were being considered, decreasing the length of the infectious period is most effective in reducing the endemic prevalence. Analyses of contour lines of prevalence or the critical reproduction ratio illustrate that, reducing prevalence to a certain level or zero can be achieved by choosing vaccines that have either a single vaccine effect at relatively high effectiveness, or two or more vaccine effects at relatively low effectiveness. Parameter sensitivity analysis suggests that effective control measures through applying Salmonella vaccines should be adjusted at different stages of infection. In addition, lifetime (continuous) vaccination is more effective than replacement (cohort) vaccination. The potential application of the developed vaccination model to other Salmonella serotypes related to foodborne diseases was also discussed. The presented study may be used as a tool for guiding the development of Salmonella vaccines.  相似文献   

8.
We adopt a susceptible-infected-susceptible (SIS) model on a Barabási and Albert (BA) network to investigate the effects of different vaccine subsidization policies. The goal is to control the prevalence of the disease given a limited supply and voluntary uptake of vaccines. The results show a uniform subsidization policy is always harmful and increases the prevalence of the disease, because the lower degree individuals’ demand for vaccine crowds out the higher degree individuals’ demand. In the absence of an effective uniform policy, we explore a targeted subsidization policy which relies on a proxy variable instead of individuals’ connectivity. Findings show a poor proxy-based targeted program can still increase the disease prevalence and become a policy trap. The results are robust to general scale-free networks.  相似文献   

9.
We study the behavior of pathogens on host protein networks for humans and Arabidopsis - noting striking similarities. Specifically, we preform -shell decomposition analysis on these networks - which groups the proteins into various “shells” based on network structure. We observe that shells with a higher average degree are more highly targeted (with a power-law relationship) and that highly targeted nodes lie in shells closer to the inner-core of the network. Additionally, we also note that the inner core of the network is significantly under-targeted. We show that these core proteins may have a role in intra-cellular communication and hypothesize that they are less attacked to ensure survival of the host. This may explain why certain high-degree proteins are not significantly attacked.  相似文献   

10.

Background

Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system.

Results

This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab are available via http://www.ms.uky.edu/~dmu228/ControlAlg.

Conclusions

This paper presents a novel method for the identification of intervention targets in Boolean network models. The results in this paper show that the proposed methods are useful and efficient for moderately large networks.
  相似文献   

11.

Background

Implementation of control of parasitic diseases requires accurate, contemporary maps that provide intervention recommendations at policy-relevant spatial scales. To guide control of soil transmitted helminths (STHs), maps are required of the combined prevalence of infection, indicating where this prevalence exceeds an intervention threshold of 20%. Here we present a new approach for mapping the observed prevalence of STHs, using the example of Kenya in 2009.

Methods and Findings

Observed prevalence data for hookworm, Ascaris lumbricoides and Trichuris trichiura were assembled for 106,370 individuals from 945 cross-sectional surveys undertaken between 1974 and 2009. Ecological and climatic covariates were extracted from high-resolution satellite data and matched to survey locations. Bayesian space-time geostatistical models were developed for each species, and were used to interpolate the probability that infection prevalence exceeded the 20% threshold across the country for both 1989 and 2009. Maps for each species were integrated to estimate combined STH prevalence using the law of total probability and incorporating a correction factor to adjust for associations between species. Population census data were combined with risk models and projected to estimate the population at risk and requiring treatment in 2009. In most areas for 2009, there was high certainty that endemicity was below the 20% threshold, with areas of endemicity ≥20% located around the shores of Lake Victoria and on the coast. Comparison of the predicted distributions for 1989 and 2009 show how observed STH prevalence has gradually decreased over time. The model estimated that a total of 2.8 million school-age children live in districts which warrant mass treatment.

Conclusions

Bayesian space-time geostatistical models can be used to reliably estimate the combined observed prevalence of STH and suggest that a quarter of Kenya''s school-aged children live in areas of high prevalence and warrant mass treatment. As control is successful in reducing infection levels, updated models can be used to refine decision making in helminth control.  相似文献   

12.
BackgroundThe pork tapeworm (Taenia solium) is a parasitic helminth that imposes a major health and economic burden on poor rural populations around the world. As recognized by the World Health Organization, a key barrier for achieving control of T. solium is the lack of an accurate and validated simulation model with which to study transmission and evaluate available control and elimination strategies. CystiAgent is a spatially-explicit agent based model for T. solium that is unique among T. solium models in its ability to represent key spatial and environmental features of transmission and simulate spatially targeted interventions, such as ring strategy.Methods/Principal findingsWe validated CystiAgent against results from the Ring Strategy Trial (RST)–a large cluster-randomized trial conducted in northern Peru that evaluated six unique interventions for T. solium control in 23 villages. For the validation, each intervention strategy was replicated in CystiAgent, and the simulated prevalences of human taeniasis, porcine cysticercosis, and porcine seroincidence were compared against prevalence estimates from the trial. Results showed that CystiAgent produced declines in transmission in response to each of the six intervention strategies, but overestimated the effect of interventions in the majority of villages; simulated prevalences for human taenasis and porcine cysticercosis at the end of the trial were a median of 0.53 and 5.0 percentages points less than prevalence observed at the end of the trial, respectively.Conclusions/SignificanceThe validation of CystiAgent represented an important step towards developing an accurate and reliable T. solium transmission model that can be deployed to fill critical gaps in our understanding of T. solium transmission and control. To improve model accuracy, future versions would benefit from improved data on pig immunity and resistance, field effectiveness of anti-helminthic treatment, and factors driving spatial clustering of T. solium infections including dispersion and contact with T. solium eggs in the environment.  相似文献   

13.
The interventions and outcomes in the ongoing COVID-19 pandemic are highly varied. The disease and the interventions both impose costs and harm on society. Some interventions with particularly high costs may only be implemented briefly. The design of optimal policy requires consideration of many intervention scenarios. In this paper we investigate the optimal timing of interventions that are not sustainable for a long period. Specifically, we look at at the impact of a single short-term non-repeated intervention (a “one-shot intervention”) on an epidemic and consider the impact of the intervention’s timing. To minimize the total number infected, the intervention should start close to the peak so that there is minimal rebound once the intervention is stopped. To minimise the peak prevalence, it should start earlier, leading to initial reduction and then having a rebound to the same prevalence as the pre-intervention peak rather than one very large peak. To delay infections as much as possible (as might be appropriate if we expect improved interventions or treatments to be developed), earlier interventions have clear benefit. In populations with distinct subgroups, synchronized interventions are less effective than targeting the interventions in each subcommunity separately.  相似文献   

14.
Research evidence indicates that obesity has spread through social networks, but lever points for interventions based on overlapping networks are not well studied. The objective of our research was to construct and parameterize a system dynamics model of the social transmission of behaviors through adult and youth influence in order to explore hypotheses and identify plausible lever points for future childhood obesity intervention research. Our objectives were: (1) to assess the sensitivity of childhood overweight and obesity prevalence to peer and adult social transmission rates, and (2) to test the effect of combinations of prevention and treatment interventions on the prevalence of childhood overweight and obesity. To address the first objective, we conducted two-way sensitivity analyses of adult-to-child and child-to-child social transmission in relation to childhood overweight and obesity prevalence. For the second objective, alternative combinations of prevention and treatment interventions were tested by varying model parameters of social transmission and weight loss behavior rates. Our results indicated child overweight and obesity prevalence might be slightly more sensitive to the same relative change in the adult-to-child compared to the child-to-child social transmission rate. In our simulations, alternatives with treatment alone, compared to prevention alone, reduced the prevalence of childhood overweight and obesity more after 10 years (1.2–1.8% and 0.2–1.0% greater reduction when targeted at children and adults respectively). Also, as the impact of adult interventions on children was increased, the rank of six alternatives that included adults became better (i.e., resulting in lower 10 year childhood overweight and obesity prevalence) than alternatives that only involved children. The findings imply that social transmission dynamics should be considered when designing both prevention and treatment intervention approaches. Finally, targeting adults may be more efficient, and research should strengthen and expand adult-focused interventions that have a high residual impact on children.  相似文献   

15.
Occupancy surveys should be designed to minimise false absences. This is commonly achieved by increasing replication or increasing the efficiency of surveys. In the case of destructive sampling designs, in which searches of individual microhabitats represent the repeat surveys, minimising false absences leads to an inherent trade-off. Surveyors can sample more low quality microhabitats, bearing the resultant financial costs and producing wider-spread impacts, or they can target high quality microhabitats were the focal species is more likely to be found and risk more severe impacts on local habitat quality. We show how this trade-off can be solved with a decision-theoretic approach, using the Millewa Skink Hemiergis millewae from southern Australia as a case study. Hemiergis millewae is an endangered reptile that is best detected using destructive sampling of grass hummocks. Within sites that were known to be occupied by H. millewae, logistic regression modelling revealed that lizards were more frequently detected in large hummocks. If this model is an accurate representation of the detection process, searching large hummocks is more efficient and requires less replication, but this strategy also entails destruction of the best microhabitats for the species. We developed an optimisation tool to calculate the minimum combination of the number and size of hummocks to search to achieve a given cumulative probability of detecting the species at a site, incorporating weights to reflect the sensitivity of the results to a surveyor’s priorities. The optimisation showed that placing high weight on minimising volume necessitates impractical replication, whereas placing high weight on minimising replication requires searching very large hummocks which are less common and may be vital for H. millewae. While destructive sampling methods are sometimes necessary, surveyors must be conscious of the ecological impacts of these methods. This study provides a simple tool for identifying sampling strategies that minimise those impacts.  相似文献   

16.

Background

Parkinson's disease (PD) is a neurodegenerative disorder. The diagnosis of Parkinsonism is challenging because currently none of the clinical tests have been proven to help in diagnosis. PD may produce characteristic perturbations in the metabolome and such variations can be used as the marker for detection of disease. To test this hypothesis, we used proton NMR and multivariate analysis followed by neural network pattern detection.

Methods &; Results

1H nuclear magnetic resonance spectroscopy analysis was carried out on plasma samples of 37 healthy controls and 43 drug-naive patients with PD. Focus on 22 targeted metabolites, 17 were decreased and 5 were elevated in PD patients (p < 0.05). Partial least squares discriminant analysis (PLS-DA) showed that pyruvate is the key metabolite, which contributes to the separation of PD from control samples. Furthermore, gene expression analysis shows significant (p < 0.05) change in expression of PDHB and NPFF genes leading to increased pyruvate concentration in blood plasma. Moreover, the implementation of 1H- NMR spectral pattern in neural network algorithm shows 97.14% accuracy in the detection of disease progression.

Conclusion

The results increase the prospect of a robust molecular definition in detection of PD through the early symptomatic phase of the disease. This is an ultimate opening for therapeutic intervention. If validated in a genuinely prospective fashion in larger samples, the biomarker trajectories described here will go a long way to facilitate the development of useful therapies. Moreover, implementation of neural network will be a breakthrough in clinical screening and rapid detection of PD.  相似文献   

17.
This paper describes a variational free-energy formulation of (partially observable) Markov decision problems in decision making under uncertainty. We show that optimal control can be cast as active inference. In active inference, both action and posterior beliefs about hidden states minimise a free energy bound on the negative log-likelihood of observed states, under a generative model. In this setting, reward or cost functions are absorbed into prior beliefs about state transitions and terminal states. Effectively, this converts optimal control into a pure inference problem, enabling the application of standard Bayesian filtering techniques. We then consider optimal trajectories that rest on posterior beliefs about hidden states in the future. Crucially, this entails modelling control as a hidden state that endows the generative model with a representation of agency. This leads to a distinction between models with and without inference on hidden control states; namely, agency-free and agency-based models, respectively.  相似文献   

18.
BackgroundPoyang Lake, the largest fresh water lake in China, is the major transmission site of Schistosoma japonicum in China. Epidemics of schistosomiasis japonica have threatened the health of residents and stunted social–economic development there.ObjectiveThis article aims at evaluating the effect of various control measures against schistosomiasis: selective mass treatment (ST), targeted mass treatment (TT), mass treatment for animal reservoirs (MT), and health education (HE), on reduction of the prevalence through simulations based on a mathematical model.MethodsWe proposed a mathematical model, which is a system of ordinary differential equations for the transmission of S. japonicum among humans, bovines, and snails. The model takes into account the seasonal variation of the water level of Poyang Lake that is caused by the backflow of the Yangtze River and inflow from five small rivers, which influences the transmission of S. japonicum. For the purpose of dealing with the age-specific prevalence and intensity of infection, the human population was classified into four age categories in the model. We carried out several simulations resulting from the execution of ST and TT for elementary school children (E Sch), and combinations of ST, MT, and HE.ResultsThe simulations indicated that all of the control measures only for humans had a trend of revival after interruption, and a combination of ST and MT has a significant effect on reducing human infection. Although TT and HE had a significant effect on the prevalence in the E Sch group, it had little effect on the overall human population.ConclusionThe simulations indicate that measures targeted to bovines such as chemotherapy besides humans will be vital to eliminate the transmission of S. japonicum in the Poyang Lake region. Moreover, it is desirable to improve health education for fishermen and herdsmen.  相似文献   

19.
BackgroundIn order to increase the efficient allocation of soil-transmitted helminth (STH) disease control resources in the Philippines, we aimed to describe for the first time the spatial variation in the prevalence of A. lumbricoides, T. trichiura and hookworm across the country, quantify the association between the physical environment and spatial variation of STH infection and develop predictive risk maps for each infection.Conclusions/SignificanceThis analysis revealed significant spatial variation in STH infection prevalence within provinces of the Philippines. This suggests that a spatially targeted approach to STH interventions, including mass drug administration, is warranted. When financially possible, additional STH surveys should be prioritized to high-risk areas identified by our study in Luzon.  相似文献   

20.
Schistosoma japonicum infection is believed to be endemic in 28 of the 80 provinces of The Philippines and the most recent data on schistosomiasis prevalence have shown considerable variability between provinces. In order to increase the efficient allocation of parasitic disease control resources in the country, we aimed to describe the small-scale spatial variation in S. japonicum prevalence across The Philippines, quantify the role of the physical environment in driving the spatial variation of S. japonicum, and develop a predictive risk map of S. japonicum infection. Data on S. japonicum infection from 35,754 individuals across the country were geo-located at the barangay level and included in the analysis. The analysis was then stratified geographically for the regions of Luzon, the Visayas and Mindanao. Zero-inflated binomial Bayesian geostatistical models of S. japonicum prevalence were developed and diagnostic uncertainty was incorporated. Results of the analysis show that in the three regions, males and individuals aged ?20 years had significantly higher prevalence of S. japonicum compared with females and children <5 years. The role of the environmental variables differed between regions of The Philippines. Schistosoma japonicum infection was widespread in the Visayas whereas it was much more focal in Luzon and Mindanao. This analysis revealed significant spatial variation in the prevalence of S. japonicum infection in The Philippines. This suggests that a spatially targeted approach to schistosomiasis interventions, including mass drug administration, is warranted. When financially possible, additional schistosomiasis surveys should be prioritised for areas identified to be at high risk but which were under-represented in our dataset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号