首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amino-acid sequences of soluble, globular proteins must have hydrophobic residues to form a stable core, but excess sequence hydrophobicity can lead to loss of native state conformational specificity and aggregation. Previous studies of polar-to-hydrophobic mutations in the β-sheet of the Arc repressor dimer showed that a single substitution at position 11 (N11L) leads to population of an alternate dimeric fold in which the β-sheet is replaced by helix. Two additional hydrophobic mutations at positions 9 and 13 (Q9V and R13V) lead to population of a differently folded octamer along with both dimeric folds. Here we conduct a comprehensive study of the sequence determinants of this progressive loss of fold specificity. We find that the alternate dimer-fold specifically results from the N11L substitution and is not promoted by other hydrophobic substitutions in the β-sheet. We also find that three highly hydrophobic substitutions at positions 9, 11, and 13 are necessary and sufficient for oligomer formation, but the oligomer size depends on the identity of the hydrophobic residue in question. The hydrophobic substitutions increase thermal stability, illustrating how increased hydrophobicity can increase folding stability even as it degrades conformational specificity. The oligomeric variants are predicted to be aggregation-prone but may be hindered from doing so by proline residues that flank the β-sheet region. Loss of conformational specificity due to increased hydrophobicity can manifest itself at any level of structure, depending upon the specific mutations and the context in which they occur.  相似文献   

2.
Lassila JK  Keeffe JR  Kast P  Mayo SL 《Biochemistry》2007,46(23):6883-6891
Secondary active-site residues in enzymes, including hydrophobic amino acids, may contribute to catalysis through critical interactions that position the reacting molecule, organize hydrogen-bonding residues, and define the electrostatic environment of the active site. To ascertain the tolerance of an important model enzyme to mutation of active-site residues that do not directly hydrogen bond with the reacting molecule, all 19 possible amino acid substitutions were investigated in six positions of the engineered chorismate mutase domain of the Escherichia coli chorismate mutase-prephenate dehydratase. The six secondary active-site residues were selected to clarify results of a previous test of computational enzyme design procedures. Five of the positions encode hydrophobic side chains in the wild-type enzyme, and one forms a helix N-capping interaction as well as a salt bridge with a catalytically essential residue. Each mutant was evaluated for its ability to complement an auxotrophic chorismate mutase deletion strain. Kinetic parameters and thermal stabilities were measured for variants with in vivo activity. Altogether, we find that the enzyme tolerated 34% of the 114 possible substitutions, with a few mutations leading to increases in the catalytic efficiency of the enzyme. The results show the importance of secondary amino acid residues in determining enzymatic activity, and they point to strengths and weaknesses in current computational enzyme design procedures.  相似文献   

3.
4.
5.
A scanning mutagenesis experiment was performed on human O(6)-methylguanine methyltransferase (hMGMT), directed largely at non-conserved surface residues that have not previously been studied. Variants typically contained two or more substitutions. Two of the 16 variants characterized in detail are inactive for methyltransfer, but increase the cytotoxicity and mutagenic effects of methylating agents. This phenotype is reminiscent of a variant (C145A) that has a mutation in the methyl-accepting cysteine. C145A is inactive, but reportedly binds methylated DNA and confers sensitivity to methylating agents. The sensitization phenotype of the two new variants is more striking in strains that are wild-type for DNA repair than in strains that are deficient for repair, suggesting that these proteins inhibit functional DNA repair proteins by competitively binding to methylated DNA. Both variants have multiple substitutions in the last helix of the protein. These results suggest that the C-terminal helix is necessary for methyltransfer activity, but not for methylguanine-specific binding.  相似文献   

6.
Funahashi J  Takano K  Yamagata Y  Yutani K 《Biochemistry》2000,39(47):14448-14456
To evaluate the contribution of the amino acid residues on the surface of a protein to its stability, a series of hydrophobic mutant human lysozymes (Val to Gly, Ala, Leu, Ile, Met, and Phe) modified at three different positions on the surface, which are located in the alpha-helix (Val 110), the beta-sheet (Val 2), and the loop (Val 74), were constructed. Their thermodynamic parameters of denaturation and crystal structures were examined by calorimetry and by X-ray crystallography at 100 K, respectively. Differences in the denaturation Gibbs energy change between the wild-type and the hydrophobic mutant proteins ranged from 4.6 to -9.6 kJ/mol, 2.7 to -1.5 kJ/mol, and 3.6 to -0.2 kJ/mol at positions 2, 74, and 110, respectively. The identical substitution at different positions and different substitutions at the same position resulted in different degrees of stabilization. Changes in the stability of the mutant proteins could be evaluated by a unique equation considering the conformational changes due to the substitutions [Funahashi et al. (1999) Protein Eng. 12, 841-850]. For this calculation, secondary structural propensities were newly considered. However, some mutant proteins were not adapted to the equation. The hydration structures around the mutation sites of the exceptional mutant proteins were affected due to the substitutions. The stability changes in the exceptional mutant proteins could be explained by the formation or destruction of the hydration structures. These results suggest that the hydration structure mediated via hydrogen bonds covering the protein surface plays an important role in the conformational stability of the protein.  相似文献   

7.
Random chemical mutagenesis, in vitro, of the 5' portion of the Escherichia coli trpA gene has yielded 66 mutant alpha subunits containing single amino acid substitutions at 49 different residue sites within the first 121 residues of the protein; this portion of the alpha subunit contains four of the eight alpha helices and three of the eight beta strands in the protein. Sixty-two of the subunits were examined for their heat stabilities by sensitivity to enzymatic inactivation (52 degrees C for 20 min) in crude extracts and by differential scanning calorimetry (DSC) with 29 purified proteins. The enzymatic activities of mutant alpha subunits that contained amino acid substitutions within the alpha and beta secondary structures were more heat labile than the wild-type alpha subunit. Alterations only in three regions, at or immediately C-terminal to the first three beta strands, were stability neutral or stability enhancing with respect to enzymatic inactivation. Enzymatic thermal inactivation appears to be correlated with the relative accessibility of the substituted residues; stability-neutral mutations are found at accessible residual sites, stability-enhancing mutations at buried sites. DSC analyses showed a similar pattern of stabilization/destabilization as indicated by inactivation studies. Tm differences from the wild-type alpha subunit varied +/- 7.6 degrees C. Eighteen mutant proteins containing alterations in helical and sheet structures had Tm's significantly lower (-1.6 to -7.5 degrees C) than the wild-type Tm (59.5 degrees C). In contrast, 6 mutant alpha subunits with alterations in the regions following beta strands 1 and 3 had increased Tm's (+1.4 to +7.6 degrees C). Because of incomplete thermal reversibilities for many of the mutant alpha subunits, most likely due to identifiable aggregated forms in the unfolded state, reliable differences in thermodynamic stability parameters are not possible. The availability of this group of mutant alpha subunits which clearly contain structural alterations should prove useful in defining the roles of certain residues or sequences in the unfolding/folding pathway for this protein when examined by urea/guaninidine denaturation kinetic analysis.  相似文献   

8.
The roles of aromatic residues in determining the folding pathway of bovine pancreatic trypsin inhibitor (BPTI) were analyzed mutationally by examining the distribution of disulfide-bonded intermediates that accumulated during the refolding of protein variants in which tyrosine or phenylalanine residues were individually replaced with leucine. The eight substitutions examined all caused significant changes in the intermediate distribution. In some cases, the major effect was to decrease the accumulation of intermediates containing two of the three disulfides found in the native protein, without affecting the distribution of earlier intermediates. Other substitutions, however, led to much more random distributions of the intermediates containing only one disulfide. These results indicate that the individual residues making up the hydrophobic core of the native protein make clearly distinguishable contributions to conformation and stability early in folding: The early distribution of intermediates does not appear to be determined by a general hydrophobic collapse. The effects of the substitutions were generally consistent with the structures of the major intermediates determined by NMR studies of analogs, confirming that the distribution of disulfide-bonded species is determined by stabilizing interactions within the ordered regions of the intermediates. The plasticity of the BPTI folding pathway implied by these results can be described using conformational funnels to illustrate the degree to which conformational entropy is lost at different stages in the folding of the wild-type and mutant proteins.  相似文献   

9.
Limited thermostability of antibiotic resistance markers has restricted genetic research in the field of extremely thermophilic Archaea and bacteria. In this study, we used directed evolution and selection in the thermophilic bacterium Thermus thermophilus HB27 to find thermostable variants of a bleomycin-binding protein from the mesophilic bacterium Streptoalloteichus hindustanus. In a single selection round, we identified eight clones bearing five types of double mutated genes that provided T. thermophilus transformants with bleomycin resistance at 77 degrees C, while the wild-type gene could only do so up to 65 degrees C. Only six different amino acid positions were altered, three of which were glycine residues. All variant proteins were produced in Escherichia coli and analyzed biochemically for thermal stability and functionality at high temperature. A synthetic mutant resistance gene with low GC content was designed that combined four substitutions. The encoded protein showed up to 17 degrees C increased thermostability and unfolded at 85 degrees C in the absence of bleomycin, whereas in its presence the protein unfolded at 100 degrees C. Despite these highly thermophilic properties, this mutant was still able to function normally at mesophilic temperatures in vivo. The mutant protein was co-crystallized with bleomycin, and the structure of the binary complex was determined to a resolution of 1.5 A. Detailed structural analysis revealed possible molecular mechanisms of thermostabilization and enhanced antibiotic binding, which included the introduction of an intersubunit hydrogen bond network, improved hydrophobic packing of surface indentations, reduction of loop flexibility, and alpha-helix stabilization. The potential applicability of the thermostable selection marker is discussed.  相似文献   

10.
We have isolated 64 different missense mutations at 36 out of 53 residue positions in the Arc repressor of bacteriophage P22. Many of the mutant proteins with substitutions in the C-terminal 40 residues of Arc have reduced intracellular levels and probably have altered structures or stabilities. Mutations in the N-terminal ten residues of Arc cause large decreases in operator DNA binding affinity without affecting the ability of Arc to fold into a stable three-dimensional structure. We argue that these N-terminal residues are important for operator recognition but that they are not part of a conventional helix-turn-helix DNA binding structure. These results suggest that Arc may use a new mechanism for sequence specific DNA binding.  相似文献   

11.
Firefly luciferase catalyses a two-step reaction, using ATP-Mg2+, firefly luciferin and molecular oxygen as substrates, leading to the efficient emission of yellow-green light. We report the identification of novel luciferase mutants which combine improved pH-tolerance and thermostability and that retain the specific activity of the wild-type enzyme. These were identified by the mutagenesis of solvent-exposed non-conserved hydrophobic amino acids to hydrophilic residues in Photinus pyralis firefly luciferase followed by in vivo activity screening. Mutants F14R, L35Q, V182K, I232K and F465R were found to be the preferred substitutions at the respective positions. The effects of these amino acid replacements are additive, since combination of the five substitutions produced an enzyme with greatly improved pH-tolerance and stability up to 45 degrees C. All mutants, including the mutant with all five substitutions, showed neither a decrease in specific activity relative to the recombinant wild-type enzyme, nor any substantial differences in kinetic constants. It is envisaged that the combined mutant will be superior to wild-type luciferase for many in vitro and in vivo applications.  相似文献   

12.
The HIV fusion inhibitor T20 has been approved to treat those living with HIV/AIDS, but treatment gives rise to resistant viruses. Using combinatorial phage‐displayed libraries, we applied a saturation scan approach to dissect the entire T20 sequence for binding to a prefusogenic five‐helix bundle (5HB) mimetic of HIV‐1 gp41. Our data set compares all possible amino acid substitutions at all positions, and affords a complete view of the complex molecular interactions governing the binding of T20 to 5HB. The scan of T20 revealed that 12 of its 36 positions were conserved for 5HB binding, which cluster into three epitopes: hydrophobic epitopes at the ends and a central dyad of hydrophilic residues. The scan also revealed that the T20 sequence was highly adaptable to mutations at most positions, demonstrating a striking structural plasticity that allows multiple amino acid substitutions at contact points to adapt to conformational changes, and also at noncontact points to fine‐tune the interface. Based on the scan result and structural knowledge of the gp41 fusion intermediate, a library was designed with tailored diversity at particular positions of T20 and was used to derive a variant (T20v1) that was found to be a highly effective inhibitor of infection by multiple HIV‐1 variants, including a common T20‐escape mutant. These findings show that the plasticity of the T20 functional sequence space can be exploited to develop variants that overcome resistance of HIV‐1 variants to T20 itself, and demonstrate the utility of saturation scanning for rapid epitope mapping and protein engineering.  相似文献   

13.
《Biophysical journal》2021,120(23):5267-5278
Despite the widely reported success of consensus design in producing highly stabilized proteins, little is known about the physical mechanisms underlying this stabilization. Here, we explore the potential sources of stabilization by performing a systematic analysis of the 29 substitutions that we previously found to collectively stabilize a consensus homeodomain compared with an extant homeodomain. By separately introducing groups of consensus substitutions that alter or preserve charge state, occur at varying degrees of residue burial, and occur at positions of varying degrees of conservation, we determine the extent to which these three features contribute to the consensus stability enhancement. Surprisingly, we find that the largest total contribution to stability comes from consensus substitutions on the protein surface and that the largest per substitution contributions come from substitutions that maintain charge state. This finding suggests that, although consensus proteins are often enriched in charged residues, consensus stabilization does not result primarily from interactions involving charged residues. Although consensus substitutions at strongly conserved positions also contribute disproportionately to stabilization, significant stabilization is also contributed from substitutions at weakly conserved positions. Furthermore, we find that identical consensus substitutions show larger stabilizing effects when introduced into the consensus background than when introduced into an extant homeodomain, indicating that synergistic, stabilizing interactions among the consensus residues contribute to consensus stability enhancement of the homeodomain. By measuring DNA binding affinity for the same set of variants, we find that, although consensus design of the homeodomain increases both affinity and folding stability, it does so using a largely nonoverlapping set of substitutions.  相似文献   

14.
It is generally assumed that in proteins hydrophobic residues are not favorable at solvent-exposed sites, and that amino acid substitutions on the surface have little effect on protein thermostability. Contrary to these assumptions, we have identified hyperthermostable variants of Bacillus licheniformis alpha-amylase (BLA) that result from the incorporation of hydrophobic residues at the surface. Under highly destabilizing conditions, a variant combining five stabilizing mutations unfolds 32 times more slowly and at a temperature 13 degrees C higher than the wild-type. Crystal structure analysis at 1.7 A resolution suggests that stabilization is achieved through (a) extension of the concept of increased hydrophobic packing, usually applied to cavities, to surface indentations, (b) introduction of favorable aromatic-aromatic interactions on the surface, (c) specific stabilization of intrinsic metal binding sites, and (d) stabilization of a beta-sheet by introducing a residue with high beta-sheet forming propensity. All mutated residues are involved in forming complex, cooperative interaction networks that extend from the interior of the protein to its surface and which may therefore constitute "weak points" where BLA unfolding is initiated. This might explain the unexpectedly large effect induced by some of the substitutions on the kinetic stability of BLA. Our study shows that substantial protein stabilization can be achieved by stabilizing surface positions that participate in underlying cooperatively formed substructures. At such positions, even the apparently thermodynamically unfavorable introduction of hydrophobic residues should be explored.  相似文献   

15.
Adjacent N11L and L12N mutations in the antiparallel beta-ribbon of Arc repressor result in dramatic changes in local structure in which each beta-strand is replaced by a right-handed helix. The full solution structure of this "switch" Arc mutant shows that irregular 3(10) helices compose the new secondary structure. This structural metamorphosis conserves the number of main-chain and side-chain to main-chain hydrogen bonds and the number of fully buried core residues. Apart from a slight widening of the interhelical angle between alpha-helices A and B and changes in side-chain conformation of a few core residues in Arc, no large-scale structural adjustments in the remainder of the protein are necessary to accommodate the ribbon-to-helix change. Nevertheless, some changes in hydrogen-exchange rates are observed, even in regions that have very similar structures in the two proteins. The surface of switch Arc is packed poorly compared to wild-type, leading to approximately 1000A(2) of additional solvent-accessible surface area, and the N termini of the 3(10) helices make unfavorable head-to-head electrostatic interactions. These structural features account for the positive m value and salt dependence of the ribbon-to-helix transition in Arc-N11L, a variant that can adopt either the mutant or wild-type structures. The tertiary fold is capped in different ways in switch and wild-type Arc, showing how stepwise evolutionary transformations can arise through small changes in amino acid sequence.  相似文献   

16.
The alphavirus nucleocapsid core is formed through the energetic contributions of multiple noncovalent interactions mediated by the capsid protein. This protein consists of a poorly conserved N-terminal region of unknown function and a C-terminal conserved autoprotease domain with a major role in virion formation. In this study, an 18-amino-acid conserved region, predicted to fold into an alpha-helix (helix I) and embedded in a low-complexity sequence enriched with basic and Pro residues, has been identified in the N-terminal region of the alphavirus capsid proteins. In Sindbis virus, helix I spans residues 38 to 55 and contains three conserved leucine residues, L38, L45, and L52, conforming to the heptad amino acid organization evident in leucine zipper proteins. Helix I consists of an N-terminally truncated heptad and two complete heptad repeats with beta-branched residues and conserved leucine residues occupying the a and d positions of the helix, respectively. Complete or partial deletion of helix I, or single-site substitutions at the conserved leucine residues (L45 and L52), caused a significant decrease in virus replication. The mutant viruses were more sensitive to elevated temperature than wild-type virus. These mutant viruses also failed to accumulate cores in the cytoplasm of infected cells, although they did not have defects in protein translation or processing. Analysis of these mutants using an in vitro assembly system indicated that the majority were defective in core particle assembly. Furthermore, mutant proteins showed a trans-dominant negative phenotype in in vitro assembly reactions involving mutant and wild-type proteins. We propose that helix I plays a central role in the assembly of nucleocapsid cores through coiled coil interactions. These interactions may stabilize subviral intermediates formed through the interactions of the C-terminal domain of the capsid protein and the genomic RNA and contribute to the stability of the virion.  相似文献   

17.
Introduction of Pro residues into helix interiors results in protein destabilization. It is currently unclear if the converse substitution (i.e., replacement of Pro residues that naturally occur in helix interiors would be stabilizing). Maltose-binding protein is a large 370-amino acid protein that contains 21 Pro residues. Of these, three nonconserved residues (P48, P133, and P159) occur at helix interiors. Each of the residues was replaced with Ala and Ser. Stabilities were characterized by differential scanning calorimetry (DSC) as a function of pH and by isothermal urea denaturation studies as a function of temperature. The P48S and P48A mutants were found to be marginally more stable than the wild-type protein. In the pH range of 5-9, there is an average increase in T(m) values of P48A and P48S of 0.4 degrees C and 0.2 degrees C, respectively, relative to the wild-type protein. The other mutants are less stable than the wild type. Analysis of the effects of such Pro substitutions in MBP and in three other proteins studied to date suggests that substitutions are more likely to be stabilizing if the carbonyl group i-3 or i-4 to the mutation site is not hydrogen bonded in the wild-type protein.  相似文献   

18.
Serine endoproteases such as trypsins and subtilisins are known to have an extended substrate binding region that interacts with residues P6 to P3' of a substrate. In order to investigate the structural and functional effects of replacing residues at the S4 substrate binding pocket, the serine protease from the alkalophilic Bacillus strain PB92, which shows homology with the subtilisins, was mutated at positions 102 and 126-128. Substitution of Val102 by Trp results in a 12-fold increase in activity towards succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (sAAPFpNA). An X-ray structure analysis of the V102W mutant shows that the Trp side chain occupies a hydrophobic pocket at the surface of the molecule leaving a narrow crevice for the P4 residue of a substrate. Better binding of sAAPFpNA by the mutant compared with the wild type protein as indicated by the kinetic data might be due to the hydrophobic interaction of Ala P4 of the substrate with the introduced Trp102 side chain. The observed difference in binding of sAAPFpNA by protease PB92 and thermitase, both of which possess a Trp at position 102, is probably related to the amino acid substitutions at positions 105 and 126 (in the protease PB92 numbering). Kinetic data for the variants obtained by random mutation of residues Ser126, Pro127 and Ser128 reveal that the activity towards sAAPFpNA increases when a hydrophobic residue is introduced at position 126.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The thermostability of maltogenic amylase from Thermus sp. strain IM6501 (ThMA) was improved greatly by random mutagenesis using DNA shuffling. Four rounds of DNA shuffling and subsequent recombination of the mutations produced the highly thermostable mutant enzyme ThMA-DM, which had a total of seven individual mutations. The seven amino acid substitutions in ThMA-DM were identified as R26Q, S169N, I333V, M375T, A398V, Q411L, and P453L. The optimal reaction temperature of the recombinant enzyme was 75 degrees C, which was 15 degrees C higher than that of wild-type ThMA, and the melting temperature, as determined by differential scanning calorimetry, was increased by 10.9 degrees C. The half-life of ThMA-DM was 172 min at 80 degrees C, a temperature at which wild-type ThMA was completely inactivated in less than 1 min. Six mutations that were generated during the evolutionary process did not significantly affect the specific activity of the enzyme, while the M375T mutation decreased activity to 23% of the wild-type level. The molecular interactions of the seven mutant residues that contributed to the increased thermostability of the mutant enzyme with other adjacent residues were examined by comparing the modeled tertiary structure of ThMA-DM with those of wild-type ThMA and related enzymes. The A398V and Q411L substitutions appeared to stabilize the enzyme by enhancing the interdomain hydrophobic interactions. The R26Q and P453L substitutions led potentially to the formation of genuine hydrogen bonds. M375T, which was located near the active site of ThMA, probably caused a conformational or dynamic change that enhanced thermostability but reduced the specific activity of the enzyme.  相似文献   

20.
In a systematic attempt to identify residues important in the folding and stability of T4 lysozyme, five amino acids within alpha-helix 126-134 were substituted by alanine, either singly or in selected combinations. Together with three alanines already present in the wild-type structure this provided a set of mutant proteins with up to eight alanines in sequence. All the variants behaved normally, suggesting that the majority of residues in the alpha-helix are nonessential for the folding of T4 lysozyme. Of the five individual alanine substitutions it is inferred that four result in slightly increased protein stability and one, the replacement of a buried leucine with alanine, substantially decreased stability. The results support the idea that alanine is a residue of high helix propensity. The change in protein stability observed for each of the multiple mutants is approximately equal to the sum of the energies associated with each of the constituent substitutions. All of the variants could be crystallized isomorphously with wild-type lysozyme, and, with one trivial exception, their structures were determined at high resolution. Substitution of the largely solvent-exposed residues Asp 127, Glu 128, and Val 131 with alanine caused essentially no change in structure except at the immediate site of replacement. Substitutions of the partially buried Asn 132 and the buried Leu 133 with alanine were associated with modest (< or = 0.4 A) structural adjustments. The structural changes seen in the multiple mutants were essentially a combination of those seen in the constituent single replacements. The different replacements therefore act essentially independently not only so far as changes in energy are concerned but also in their effect on structure. The destabilizing replacement Leu 133-->Ala made alpha-helix 126-134 somewhat less regular. Incorporation of additional alanine replacements tended to make the helix more uniform. For the penta-alanine variant a distinct change occurred in a crystal-packing contact, and the "hinge-bending angle" between the amino- and carboxy-terminal domains changed by 3.6 degrees. This tends to confirm that such hinge-bending in T4 lysozyme is a low-energy conformational change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号