首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Understanding the mechanical behaviour of arterial tissue is vital to the development and analysis of medical devices targeting diseased vessels. During angioplasty and stenting, stress softening and permanent deformation of the vessel wall occur during implantation of the device, however little data exists on the inelastic behaviour of cardiovascular tissue and how this varies through the arterial tree. The aim of this study was to characterise the magnitude of stress softening and inelastic deformations due to loading throughout the arterial tree and to investigate the anisotropic inelastic behaviour of the tissue. Cyclic compression tests were used to investigate the differences in inelastic behaviour for carotid, aorta, femoral and coronary arteries harvested from 3-4 month old female pigs, while the anisotropic behaviour of aortic and carotid tissue was determined using cyclic tensile tests in the longitudinal and circumferential directions. The differences in inelastic behaviour were correlated to the ratio of collagen to elastin content of the arteries. It was found that larger inelastic deformations occurred in muscular arteries (coronary), which had a higher collagen to elastin ratio than elastic arteries (aorta), where the smallest inelastic deformations were observed. Lower magnitude inelastic deformations were observed in the circumferential tensile direction than in the longitudinal tensile direction or due to radial compression. This may be as a result of non-collagenous components in the artery becoming more easily damaged than the collagen fibres during loading. Stress softening was also found to be dependent on artery type. In the future, computational models should consider such site dependant, anisotropic inelastic behaviour in order to better predict the outcomes of interventional procedures such as angioplasty and stenting.  相似文献   

4.
Heart valve and arterial tissue engineering   总被引:2,自引:0,他引:2  
Abstract.  In the industrialized world, cardiovascular disease alone is responsible for almost half of all deaths. Many of the conditions can be treated successfully with surgery, often using transplantation techniques; however, autologous vessels or human-donated organs are in short supply. Tissue engineering aims to create specific, matching grafts by growing cells on appropriate matrices, but there are many steps between the research laboratory and the operating theatre. Neo-tissues must be effective, durable, non-thrombogenic and non-immunogenic. Scaffolds should be bio-compatible, porous (to allow cell/cell communication) and amenable to surgery. In the early days of cardiovascular tissue engineering, autologous or allogenic cells were grown on inert matrices, but patency and thrombogenicity of grafts were disappointing. The current ethos is toward appropriate cell types grown in (most often) a polymeric matrix that degrades at a rate compatible with the cells' production of their own extracellular matrical proteins, thus gradually replacing the graft with a living counterpart. The geometry is crucial. Computer models have been made of valves, and these are used as three-dimensional patterns for mass-production of implant scaffolds. Vessel walls have integral connective tissue architecture, and application of physiological level mechanical forces conditions bio-engineered components to align in precise orientation. This article reviews the concepts involved and successes achieved to date.  相似文献   

5.
A simple model of, water flow through deformable porous media has been developed with emphasis on application to arterial walls. The model incorporates a strain-dependent permeability function into Darcy's Law which is coupled, to the force balance for the bulk material. A simple analytical expression relating water flux (volume flux) to pressure differential is developed which shows how strain-dependent permeability can lead to a reduction in hydraulic conductivity with increasing differential pressure as observed in experiments with arteries. The variation of permeability with position in the wall, which may influence the convective diffusion of macromolecules, is determined for both cylindrical and planar segments and a marked influence of geometry is noted.  相似文献   

6.
The major families of proteoglycans in human arterial tissue have been localized and characterized by electron microscopy. After staining with the polycationic dye cuprolinic blue in the presence of a critical electrolyte concentration, three differently sized populations of proteoglycan-cuprolinic blue precipitates are found. The precipitates are distinguished of the basis of their morphology, topographical distribution and susceptibility to specific glycosaminoglycan-degrading enzymes. Each type of proteoglycan is preferentially associated with one connective tissue component: (a) a dermatan sulfate proteoglycan interacts with collagenous fibers, (b) a heparan sulfate proteoglycan is associated with elastic fibers and with the exterior surface of the basement membrane-like layer surrounding smooth muscle cells, and (c) a chondroitin sulfate proteoglycan forms aggregates with hyaluronate in the soluble matrix. Information about the pattern of proteoglycans in normal human arterial tissue should constitute a useful basis for evaluating perturbations in proteoglycan distribution in arteriosclerotic plaques.  相似文献   

7.
8.
We compare two constitutive models proposed to model the elastinous constituents of an artery. Holzapfel and Weizsäcker [1998. Biomechanical behavior of the arterial wall and its numerical characterization. Comput. Biol. Med. 28, 377–392] attribute a neo-Hookean response, i.e. Ψ=c(I1-3)), to the elastin whilst Zulliger et al. [2004a. A strain energy function for arteries accounting for wall composition and structure. J. Biomech. 37, 989–1000] propose Ψ=c(I1-3)3/2. We analyse these constitutive models for two specific cases: (i) uniaxial extension of an elastinous sheet; (ii) inflation of a cylindrical elastinous membrane. For case (i) we illustrate the functional relationships between: (a) the Cauchy stress (CS) and the Green–Lagrange (GL) strain; (b) the tangent modulus (gradient of the CS–GL strain curve) and linearised strain. The predicted mechanical responses are compared with recent uniaxial extension tests on elastin [Gundiah, N., Ratcliffe, M.B., Pruitt, L.A., 2007. Determination of strain energy function for arterial elastin: experiments using histology and mechanical tests. J. Biomech. 40, 586–594; Lillie, M.A., Gosline, J.M., 2007a. Limits to the durability of arterial elastic tissue. Biomaterials 28, 2021–2031; 2007b. Mechanical properties of elastin along the thoracic aorta in the pig. J. Biomech. 40, 2214–2221]. The neo-Hookean model accurately predicts the mechanical response of a single elastin fibre. However, it is unable to accurately capture the mechanical response of arterial elastin, e.g. the initial toe region of arterial elastin (if it exists) or the gradual increase in modulus of arterial elastin that occurs as it is stretched. The alternative constitutive model (n=32) yields a nonlinear mechanical response that departs from recent uniaxial test data mentioned above, for the same stretch range. For case (ii) we illustrate the pressure–circumferential stretch relationships and the gradients of the pressure–circumferential stretch curves: significant qualitative differences are observed. For the neo-Hookean model, the gradient decreases rapidly to zero, however, for n=32, the gradient decreases more gradually to a constant value. We conclude that whilst the neo-Hookean model has limitations, it appears to capture more accurately the mechanical response of elastin.  相似文献   

9.
10.
Measurements of hemodynamics and blood metabolites in rats are often made by insertion of a small polyethylene (PE-50) catheter into the aorta via the carotid artery. Although the effect of this type of procedure on animal body weight has been described, little information exists regarding the quantitative and temporal effects of this procedure on liver and skeletal muscle glycogen concentration. Relative to the control group (group C), liver glycogen concentration was reduced by 56% 24 h after catheterization (group CN). With respect to liver glycogen concentration, it was apparent that a postcatheterization recovery period of variable duration (2-8 days; group CNR) based on attainment of a normal food consumption-to-body weight ratio (FdWt/BdWt) was more effective than was a fixed 6-day recovery period (group CN6). This was probably due to the large between-animal variability in recovery times required to reach normal FdWt/BdWt values. After aortic catheterization, FdWt/BdWt was a reasonable predictor of postprocedural liver (y = 2,601x + 43.9; r = 0.72; P less than 0.01) and diaphragm muscle glycogen concentration (y = 146.3x + 14.0; r = 0.57; P less than 0.05). Aortic catheterization did not affect the glycogen concentration in the other skeletal muscles examined. Since the results of certain types of experiments can be significantly influenced by liver glycogen concentration, the use of FdWt/BdWt on 24-h food intake as a general indicator of recovery after instrumentation via aortic catheterization is proposed.  相似文献   

11.
Intracranial aneurysms (ICA) are abnormal saccular dilations of cerebral arteries, commonly found at apices of arterial bifurcations and outer walls of curved arterial segments. Histological evidence suggests the stages in ICA development include the deformation of a segment of arterial wall into a “bleb” with no identifiable neck region followed by the development of an aneurysm with a clear neck. Afterwards, the aneurysm may undergo further enlargement, possibly with significant biological response including calcification and thrombosis. Past studies of the biomechanics of cerebral aneurysm tissue have been directed at modeling elastic deformations of pre-existing aneurysms. Taking this approach, the aneurysm wall is treated as a different entity than the arterial tissue from which it developed. In the current work, a nonlinear, inelastic, dual-mechanism constitutive equation for cerebral arterial tissue is developed. It is the first to model the recruitment of collagen fibers and degradation of the internal elastic lamina, two important characteristics of early stage aneurysm formation.  相似文献   

12.
13.
14.
15.
Heparan sulfate isolated from mammalian arterial tissue inhibits the growth of homologous arterial smooth muscle cells when added to subconfluent cell cultures at a concentration of 50 to 100 micrograms/ml culture medium. Disintegration of the heparan sulfate molecule by hydrazinolysis that deacetylates N-acetylglucosaminyl residues and by subsequent treatment with nitrous acid at pH 3.9 results in the formation of a mixture of oligosaccharides which was further resolved into sulfate-enriched oligosaccharides with antiproliferative activity in an in vitro bioassay system. A decasaccharide and dodeca/tetradecasaccharide fraction had a significantly higher antiproliferative effect on arterial smooth muscle cells than the native heparan sulfate molecule. The antiproliferative oligosaccharides have a sulfate content of 0.9 to 1.2 sulfate groups/disaccharide unit and consist of 60 to 70% monosulfated, disulfated, and trisulfated disaccharide units. Up to 32% of the sulfate groups were in 2-position of the uronic acid. In contrast, nitrous acid degradation of heparan sulfate at pH 1.5, which cleaves glycosidic linkages of N-sulfoglucosaminyl residues, results in the formation of sulfate-poor or sulfate-free oligosaccharides without antiproliferative potency. The results indicate that (a) heparan sulfate has a heterogeneous molecular organization where sulfate-rich domains are separated by sulfate-poor sequences and that (b) the antiproliferative activity of heparan sulfate resides in domains enriched with 2-O-sulfated uronic acid residues.  相似文献   

16.
Tang WL  Guo H  Yang J  Chen B  Wang X 《Cytotherapy》2011,13(4):499-502
Pulmonary arterial hypertension (PAH) is a fatal disease characterized by a progressive increase in pulmonary vascular resistance and vascular remodeling leading to right heart failure and early death. The pathology of PAH is associated with endothelium dysfunction and vascular remodeling in pulmonary arteries. In diseased pulmonary arteries, the balance between matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) is broken down. In this process, TIMP are up-regulated, which inhibits MMP, promotes extracellular matrix (ECM) deposition and finally leads to vascular remodeling. So, what would happen to PAH if the expression of TIMP was down-regulated in diseased pulmonary vessels? We hypothesize that the attenuation of TIMP at the advanced stage of PAH might reverse severe PAH, via ameliorating vascular remodeling and endothelium repair.  相似文献   

17.
When calf aortic tissue, preincubated under organ culture conditions in the presence of [35S]sulfate, was submitted to a sequential collagenase and elastase digestion and guanidinium chloride extraction, the bulk of proteoheparan sulfate was obtained in the elastase fraction. Ion-exchange chromatography on DEAE-cellulose of the elastase digest under dissociative conditions yielded a proteoglycan fraction that contained heparan sulfate as the sole glycosaminoglycan. The proteoheparan sulfate fraction was resolved into a high-molecular-mass (P-HS 1) and a low-molecular-mass (P-HS 2) fraction by gel filtration on Sephacryl S-400. P-HS 1 has a Mr of 175,000 and possesses four heparan sulfate side-chains (Mr 32,000) covalently bound to the protein core via a galactose- and xylose-containing polysaccharide-protein binding region. The protein core (Mr 38,000), which was obtained after deglycosylation of PG-HS 1 with trifluormethane sulfonic acid, contained in addition a few N-glycosidically linked oligosaccharide units representing a complex type with terminal neuraminic acid residues. P-HS 2 is a single-chain peptidoheparan sulfate of Mr of 38,000 containing one heparan sulfate chain (Mr 32,000) linked to a polypeptide (Mr 6000). The ratio of specific radioactivities of P-HS 1 and P-HS 2 was 1:0.66.  相似文献   

18.
The vascular wall exhibits nonlinear anisotropic mechanical properties. The identification of a strain energy function (SEF) is the preferred method to describe its complex nonlinear elastic properties. Earlier constituent-based SEF models, where elastin is modeled as an isotropic material, failed in describing accurately the tissue response to inflation–extension loading. We hypothesized that these shortcomings are partly due to unaccounted anisotropic properties of elastin. We performed inflation–extension tests on common carotid of rabbits before and after enzymatic degradation of elastin and applied constituent-based SEFs, with both an isotropic and an anisotropic elastin part, on the experimental data. We used transmission electron microscopy (TEM) and serial block-face scanning electron microscopy (SBFSEM) to provide direct structural evidence of the assumed anisotropy. In intact arteries, the SEF including anisotropic elastin with one family of fibers in the circumferential direction fitted better the inflation–extension data than the isotropic SEF. This was supported by TEM and SBFSEM imaging, which showed interlamellar elastin fibers in the circumferential direction. In elastin-degraded arteries, both SEFs succeeded equally well in predicting anisotropic wall behavior. In elastase-treated arteries fitted with the anisotropic SEF for elastin, collagen engaged later than in intact arteries. We conclude that constituent-based models with an anisotropic elastin part characterize more accurately the mechanical properties of the arterial wall when compared to models with simply an isotropic elastin. Microstructural imaging based on electron microscopy techniques provided evidence for elastin anisotropy. Finally, the model suggests a later and less abrupt collagen engagement after elastase treatment.  相似文献   

19.
20.

Introduction

The objective of this prospective study was to assess short- and long-term efficacy of exercise training (ET) as add-on to medical therapy in patients with connective tissue disease-associated pulmonary arterial hypertension (CTD-APAH).

Methods

Patients with invasively confirmed CTD-APAH received ET in-hospital for 3 weeks and continued at home for 12 weeks. Efficacy parameters have been evaluated at baseline and after 15 weeks by blinded-observers. Survival rate has been evaluated in a follow-up period of 2.9 ± 1.9 years.

Results

Twenty-one consecutive patients were included and assessed at baseline, and after 3 weeks, 14 after 15 weeks. Patients significantly improved the mean distance walked in 6 minutes compared to baseline by 67 ± 52 meters after 3 weeks (p < 0.001) and by 71 ± 35 meters after 15 weeks (p = 0.003), scores of quality of life (p < 0.05), heart rate at rest, peak oxygen consumption, oxygen saturation and maximal workload. Systolic pulmonary artery pressure and diastolic systemic blood pressure improved significantly after 3 weeks of ET. The 1- and 2-year overall-survival rates were 100%, the 3-year survival 73%. In one patient lung transplantation was performed 6 months after ET.

Conclusion

ET as add-on to medical therapy is highly effective in patients with CTD-APAH to improve work capacity, quality of life and further prognostic relevant parameters and possibly improves the 1-, 2- and 3-year survival rate. Further randomized controlled studies are needed to confirm these results.

Trial registration

ClinicalTrials.gov: NCT00491309.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号