首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We address a challenge in the engineering of proteins to redirect electron transfer pathways, using the bacterial photosynthetic reaction centre (RC) pigment–protein complex. Direct electron transfer is shown to occur from the QA quinone of the Rhodobacter sphaeroides RC containing a truncated H protein and bound on the quinone side to a gold electrode. In previous reports of binding to the quinone side of the RC, electron transfer has relied on the use of a soluble mediator between the RC and an electrode, in part because the probability of QB quinone reduction is much greater than that of direct electron transfer through the large cytoplasmic domain of the H subunit, presenting a?~?25 Å barrier. A series of C-terminal truncations of the H subunit were created to expose the quinone region of the RC L and M proteins, and all truncated RC H mutants assembled in vivo. The 45M mutant was designed to contain only the N-terminal 45 amino acid residues of the H subunit including the membrane-spanning α-helix; the mutant RC was stable when purified using the detergent N-dodecyl-β-d-maltoside, contained a near-native ratio of bacteriochlorophylls to bacteriopheophytins, and showed a charge-separated state of \({{\text{P}}^{\text{+}}}{{\text{Q}}_{\text{A}}^-}\). The 45M-M229 mutant RC had a Cys residue introduced in the vicinity of the QA quinone on the newly exposed protein surface for electrode attachment, decreasing the distance between the quinone and electrode to ~?12 Å. Steady-state photocurrents of up to around 200 nA/cm2 were generated in the presence of 20 mM hydroquinone as the electron donor to the RC. This novel configuration yielded photocurrents orders of magnitude greater than previous reports of electron transfer from the quinone region of RCs bound in this orientation to an electrode.  相似文献   

2.
The kinetics of light-induced electron transfer in reaction centers (RCs) from the purple photosynthetic bacterium Rhodobacter sphaeroides were studied in the presence of the detergent lauryldimethylamine-N-oxide (LDAO). After the light-induced electron transfer from the primary donor (P) to the acceptor quinone complex, the dark re-reduction of P+ reflects recombination from the reduced acceptor quinones, QA- or QB-. The secondary quinone, QB, which is loosely bound to the RC, determines the rate of this process. Electron transfer to QB slows down the return of the electron to P+, giving rise to a slow phase of the recovery kinetics with time tau P approximately 1 s, whereas charge recombination in RCs lacking QB generates a fast phase with time tau AP approximately 0.1 s. The amount of quinone bound to RC micelles can be reduced by increasing the detergent concentration. The characteristic time of the slow component of P+ dark relaxation, observed at low quinone content per RC micelle (at high detergent concentration), is about 1.2-1.5 s, in sharp contrast to expectations from previous models, according to which the time of the slow component should approach the time of the fast component (about 0.1 s) when the quinone concentration approaches zero. To account for this large discrepancy, a new quantitative approach has been developed to analyze the kinetics of electron transfer in isolated RCs with the following key features: 1) The exchange of quinone between different micelles (RC and detergent micelles) occurs more slowly than electron transfer from QB- to P+; 2) The exchange of quinone between the detergent "phase" and the QB binding site within the same RC micelle is much faster than electron transfer between QA- and P+; 3) The time of the slow component of P+ dark relaxation is determined by (n) > or = 1, the average number of quinones in RC micelles, calculated only for those RC micelles that have at least one quinone per RC (in excess of QA). An analytical function is derived that relates the time of the slow component of P+ relaxation, tau P, and the relative amplitude of the slow phase. This provides a useful means of determining the true equilibrium constant of electron transfer between QA and QB (LAB), and the association equilibrium constant of quinone binding at the QB site (KQ+). We found that LAB = 22 +/- 3 and KQ = 0.6 +/- 0.2 at pH 7.5. The analysis shows that saturation of the QB binding site in detergent-solubilized RCs is difficult to achieve with hydrophobic quinones. This has important implications for the interpretation of apparent dependencies of QB function on environmental parameters (e.g. pH) and on mutational alterations. The model accounts for the effects of detergent and quinone concentration on electron transfer in the acceptor quinone complex, and the conclusions are of general significance for the study of quinone-binding membrane proteins in detergent solutions.  相似文献   

3.
Lipoamide dehydrogenase (EC 1.6.4.3) from the ketoglutarate dehydrogenase complex of adrenals catalyzes the oxidation of NADH by lipoamide and quinone compounds according to the "ping-pong" scheme. The catalytic constants of these reactions are equal to 220 and 24 s-1, respectively (pH 7.0). The maximal quinone reductase activity is observed at pH 5.6, whereas the lipoamide reductase activity changes insignificantly at pH 7.5-5.5. The maximal dihydrolipoamide-NAD+ reductase activity is observed at pH 7.8. The oxidative constants of quinone electron acceptors vary from 6 X 10(6) to 4 X 10(2) M-1 s-1 and increase with their redox potential. The patterns of NAD+ inhibition in the quinone reductase reaction differ from that of lipoamide reductase reaction. The quinones are reduced by lipoamide dehydrogenase in the one-electron mechanism.  相似文献   

4.
The natural quinone, hydroxydietrichequinone (3-heptadec-8-enyl-2-hydroxy-5-methoxy-[1,4]benzoquinone) is a secondary metabolite of Cyperus javanicus. We found that this quinone inhibited both mitochondrial respiration and photosynthesis in their electron transportation systems. The quinone was found to have a mode of action against the ubiquinone reductase site from the results of different electron donor experiments on intact mitochondria from rat liver. The electron transport system, photosystem-II (PS-II), in chroloplast from spinach leaves was inhibited by the quinone in a similar way to that of the triazin sires herbicide, atrazin, with its mode of action against PS II. This natural quinone has a long aliphatic chain (C17) including an unsaturated bond at its midpoint. We recognized 8-9 unsaturated bonds in the aliphatic chain from an MS analysis of the methylthio-addact, and spectral data presumed a configuration of cis. form.  相似文献   

5.
zeta-Crystallin is a major protein in the lens of certain mammals. In guinea pigs it comprises 10% of the total lens protein, and it has been shown that a mutation in the zeta-crystallin gene is associated with autosomal dominant congenital cataract. As with several other lens crystallins of limited phylogenetic distribution, zeta-crystallin has been characterized as an "enzyme/crystallin" based on its ability to reduce catalytically the electron acceptor 2,6-dichlorophenolindophenol. We report here that certain naturally occurring quinones are good substrates for the enzymatic activity of zeta-crystallin. Among the various quinones tested, the orthoquinones 1,2-naphthoquinone and 9,10-phenanthrenequinone were the best substrates whereas menadione, ubiquinone, 9,10-anthraquinone, vitamins K1 and K2 were inactive as substrates. This quinone reductase activity was NADPH specific and exhibited typical Michaelis-Menten kinetics. Activity was sensitive to heat and sulfhydryl reagents but was very stable on freezing. Dicumarol (Ki = 1.3 x 10(-5) M) and nitrofurantoin (Ki = 1.4 x 10(-5) M) inhibited the activity competitively with respect to the electron acceptor, quinone. NADPH protected the enzyme against inactivation caused by heat, N-ethylmaleimide, or H2O2. Electron paramagnetic resonance spectroscopy of the reaction products showed formation of a semiquinone radical. The enzyme activity was associated with O2 consumption, generation of O2- and H2O2, and reduction of ferricytochrome c. These properties indicate that the enzyme acts through a one-electron transfer process. The substrate specificity, reaction characteristics, and physicochemical properties of zeta-crystallin demonstrate that it is an active NADPH:quinone oxidoreductase distinct from quinone reductases described previously.  相似文献   

6.
2-methyl-1,4-naphtoquinone 1 (vitamin K3, menadione) derivatives with different substituents at the 3-position were synthesized to tune their electrochemical properties. The thermodynamic midpoint potential (E1/2) of the naphthoquinone derivatives yielding a semi radical naphthoquinone anion were measured by cyclic voltammetry in the aprotic solvent dimethoxyethane (DME). Using quantum chemical methods, a clear correlation was found between the thermodynamic midpoint potentials and the calculated electron affinities (EA). Comparison of calculated and experimental values allowed delineation of additional factors such as the conformational dependence of quinone substituents and hydrogen bonding which can influence the electron affinities (EA) of the quinone. This information can be used as a model to gain insight into enzyme-cofactor interactions, particularly for enzyme quinone binding modes and the electrochemical adjustment of the quinone motif.  相似文献   

7.
The kinetic model of Ragan & Cottingham [(1985) Biochim. Biophys. Acta 811, 13-31] for electron transport through a mobile pool of quinone predicts that, under certain conditions, the normal linear dependence of electron flow on the degree of reduction (or oxidation) of the quinone should no longer be found. These conditions can be met by reconstituted NADH: cytochrome c reductase (Complex I-III from bovine heart) when electron flow is rate-limited by a low concentration of cytochrome c. We show that, in such a system, the dependence of activity (varied by inhibition with rotenone) on the steady-state level of quinone reduction is indeed non-linear and very closely accounted for by the theory.  相似文献   

8.
Cramer WA  Zhang H  Yan J  Kurisu G  Smith JL 《Biochemistry》2004,43(20):5921-5929
Structures of the cytochrome b(6)f complex obtained from the thermophilic cyanobacterium Mastigocladus laminosus and the green alga Chlamydomonas reinhardtii, whose appearance in evolution is separated by 10(9) years, are almost identical. Two monomers with a molecular weight of 110,000, containing eight subunits and seven natural prosthetic groups, are separated by a large lipid-containing "quinone exchange cavity". A unique heme, heme x, that is five-coordinated and high-spin, with no strong field ligand, occupies a position close to intramembrane heme b(n). This position is filled by the n-side bound quinone, Q(n), in the cytochrome bc(1) complex of the mitochondrial respiratory chain. The structure and position of heme x suggest that it could function in ferredoxin-dependent cyclic electron transport as well as being an intermediate in a quinone cycle mechanism for electron and proton transfer. The significant differences between the cyanobacterial and algal structures are as follows. (i) On the n-side, a plastoquinone molecule is present in the quinone exchange cavity in the cyanobacterial complex, and a sulfolipid is bound in the algal complex at a position corresponding to a synthetic DOPC lipid molecule in the cyanobacterial complex. (ii) On the p-side, in both complexes a quinone analogue inhibitor, TDS, passes through a portal that separates the large cavity from a niche containing the Fe(2)S(2) cluster. However, in the cyanobacterial complex, TDS is in an orientation that is the opposite of its position in the algal structure and bc(1) complexes, so its headgroup in the M. laminosus structure is 20 A from the Fe(2)S(2) cluster.  相似文献   

9.
The quinone composition of the transplasma membrane electron transport chain of parasitic protozoa Entamoeba histolytica was investigated. Purification of quinone from the plasma membrane of E. histolytica and its subsequent structural elucidation revealed the structure of the quinone as a methylmenaquinone-7 (thermoplasmaquinone-7), a napthoquinone. Membrane bound thermoplasmaquinone-7 can be destroyed by UV irradiation with a concomitant loss of plasma membrane electron transport activity. The abilities of different quinones to restore transplasma membrane electron transport activity in UV irradiated trophozoites were compared. The lost activity was recovered completely by the addition of thermoplasmaquinone-7, but ubiquinones are unable to restore the same. These findings clearly indicate that thermoplasmaquinone-7 acts as a lipid shuttle in the plasma membrane of the parasite to mediate electron transfer between cytosolic reductant and non permeable electron acceptors. This thermoplasmaquinone-7 differs from that of the mammalian host and can provide a novel target for future rational chemotherapeutic drug designing.  相似文献   

10.
Matsson M  Tolstoy D  Aasa R  Hederstedt L 《Biochemistry》2000,39(29):8617-8624
Succinate:quinone reductases are membrane-bound enzymes that catalyze electron transfer from succinate to quinone. Some enzymes in vivo reduce ubiquinone (exergonic reaction) whereas others reduce menaquinone (endergonic reaction). The succinate:menaquinone reductases all contain two heme groups in the membrane anchor of the enzyme: a proximal heme (heme b(P)) located close to the negative side of the membrane and a distal heme (heme b(D)) located close to the positive side of the membrane. Heme b(D) is a distinctive feature of the succinate:menaquinone reductases, but the role of this heme in electron transfer to quinone has not previously been analyzed. His28 and His113 are the axial ligands to heme b(D) in Bacillus subtilis succinate:menaquinone reductase. We have individually replaced these His residues with Leu and Met, respectively, resulting in assembled membrane-bound enzymes. The H28L mutant enzyme lacks succinate:quinone reductase activity probably due to a defective quinone binding site. The H113M mutant enzyme contains heme b(D) with raised midpoint potential and is impaired in electron transfer to menaquinone. Our combined experimental data show that the heme b(D) center, into which we include a quinone binding site, is crucial for succinate:menaquinone reductase activity. The results support a model in which menaquinone is reduced on the positive side of the membrane and the transmembrane electrochemical potential provides driving force for electron transfer from succinate via heme b(P) and heme b(D) to menaquinone.  相似文献   

11.
Higher plants, algae, and cyanobacteria are known to require bicarbonate ions for electron flow from the first stable electron acceptor quinone QA to the second electron acceptor quinone QB, and to the intersystem quinone pool. It has been suggested that in Photosystem II of oxygenic photosynthesis, bicarbonate ion functions to maintain the reaction center in a proper conformation and, perhaps, to provide the protons needed to stabilize the semiquinone (QB-). In this paper, we show that bicarbonate ions do not influence the electron flow, from the quinone QA to QB and beyond, in the photosynthetic bacterium Rhodobacter sphaeroides. No measurable effect of bicarbonate depletion, obtained by competition with formate, was observed on cytochrome b-561 reduction in chromatophores; on the flash-dependent oscillation of semiquinone formation in reaction centers; on electron transfer from QA- to QB; or on either the fast or slow recovery of the oxidized primary donor (P+) which reflects the P+QA- ----PQA or the P+QB- ----PQB reaction. The lack of an observed effect in Rhodobacter sphaeroides in contrast to the effect seen in Photosystem II is suggested to be due to the amino-acid sequence differences between the reaction centers of the two systems.  相似文献   

12.
Site-specific mutations in the quinone binding sites of the photosynthetic reaction center (RC) protein complexes of Rhodobacter (R.) capsulatus caused pronounced effects on sequential electron transfer. Conserved residues that break the twofold symmetry in this region of the RC – M246Ala and M247Ala in the QA binding pocket, and L212Glu and L213Asp in the QB binding pocket – were targeted. We constructed a QB-site mutant, L212Glu-L213Asp Ala-Ala, and a QA-site mutant, M246Ala–M247Ala Glu-Asp, to partially balance the differences in charge distribution normally found between the two quinone binding sites. In addition, two photocompetent revertants were isolated from the photosynthetically-incompetent M246Glu-M247Asp mutant: M246Ala–M247Asp and M246Gly–M247Asp. Sequential electron transfer was investigated by continuous light excitation and time-resolved electron paramagnetic resonance (EPR), and time-resolved optical techniques. Several lines of EPR evidence suggested that the forward electron transfer rate to QA, kQ, was slowed in those strains containing altered QA sites. The slower rates of secondary electron transfer were confirmed by time-resolved optical results with the M246Glu-M247Asp mutations in the QA site resulting in a dramatically lowered secondary electron transfer efficiency [kQ < (2 ns)-1] in comparison with either the native R. capsulatus RC or the QB site mutant [kQ (200 ps)-1]. Secondary electron transfer in the two revertants was intermediate between that of the native RC and the QA mutant. The P+ QA- PQA charge recombination rates were also changed in the strains that carried altered QA sites. We show that local mutations in the QA site, presumably through local electrostatic changes, significantly alter binding and electron transfer properties of QA.  相似文献   

13.
Wim F.J. Vermaas  Charles J. Arntzen   《BBA》1983,725(3):483-491
We have analyzed the binding of synthetic quinones and herbicides which inhibit electron transport at the acceptor side of Photosystem II (PS II) of the photosynthetic electron-transport chain in thylakoid membranes. These data show that quinones and PS II-directed herbicides compete for binding to a common binding environment within a PS II region which functions as the Q / PQ oxidoreductase. We observed that (1) synthetic quinones cause a parallel inhibition of electron transport and [14C]herbicide displacement, and (2) herbicide binding is affected both by the fully oxidized and fully reduced form of a quinone. Quinone function and inhibitor binding were also investigated in thylakoids isolated from triazine-resistant weed biotypes. We conclude the following. (1) The affinity of the secondary accepting quinone, B, is decreased in resistant thylakoids. (2) The observation that the equilibrium concentration of reduced Q after transferring one electron to the acceptor side of PS II is increased in resistant as compared to susceptible chloroplasts may be explained both by a decrease in the affinity of PQ for the herbicide / quinone binding environment, and by a decrease of the midpont redox potential of the B / B couple. (3) The binding environment regulating quinone and herbicide affinity may be divided roughly into two domains; we suggest that the domain regulating quinone head-group binding is little changed in resistant membranes, whereas the domain-regulating quinone side-group binding (and atrazine) is altered. This results in increased inhibitory activity of tetrachloro-p-benzoquinone and phenolic herbicides, which are hypothesized to utilize the quinone head-group domain. The two domains appear to be spatially overlapping because efficient atrazine displacement by tetrachloro-p-benzoquinone is observed.  相似文献   

14.
15.
1Cellobiose dehydrogenase is a hemoflavoenzyme that catalyzes the sequential electron-transfer from an electron-donating substrate (e.g. cellobiose) to a flavin center, then to an electron-accepting substrate (e.g. quinone) either directly or via a heme center after an internal electron-transfer from the flavin to heme. We cloned the dehydrogenase from Humicola insolens, which encodes a protein of 761 amino acid residues containing an N-terminal heme domain and a C-terminal flavin domain, and studied how the catalyzed electron transfers are regulated. Based on the correlation between the rate and redox potential, we demonstrated that with a reduced flavin center, the enzyme, as a reductase, could export electron from its heme center by a "outer-sphere" mechanism. With the "resting" flavin center, however, the enzyme could have a peroxidase-like function and import electron to its heme center after a peroxidative activation. The dual functionality of its heme center makes the enzyme a molecular "logic gate", in which the electron flow through the heme center can be switched in direction by the redox state of the coupled flavin center.  相似文献   

16.
Oxidation-reduction thermodynamic equilibria involving the quinone-acceptor complex have been examined in whole-membrane fragments from Chloroflexus aurantiacus. The primary quinone acceptor was titrated by monitoring the amount of cytochrome c554 photooxidized by a flash of light as a function of the redox potential. In contrast to previous data obtained in purified plasma membranes, in which the primary quinone acceptor exhibited a midpoint potential equal to -50 mV at pH 8.2, in whole-membrane fragments it titrated at -210 mV (pH 8.0), with a pH dependence of -60 mV/pH up to a pK value of 9.3. o-Phenanthroline, an inhibitor of electron transfer from the primary to the secondary quinone acceptor, shifted the Em/pH curve of the primary acceptor to higher redox potentials. The midpoint potential of the secondary quinone acceptor and its dependence on pH has been determined by comparing the kinetics of the charge recombination processes within the reaction center complex in the presence and in the absence of o-phenanthroline. It is concluded that both the primary and the secondary quinone acceptors interact with a proton, with pK values of 9.3 and of approximately 10.2 respectively. At physiological pH the electron appears to be stabilized on the secondary with respect to the primary quinone acceptor by approximately 60 meV.  相似文献   

17.
Absorbance changes of ferredoxin measured at 463 nm in isolated thylakoids were shown to arise from the activity of the enzyme ferredoxin-plastoquinone reductase (FQR) in cyclic electron transport. Under anaerobic conditions in the presence of DCMU and an appropriate concentration of reduced ferredoxin, a light-induced absorbance decrease due to further reduction of Fd was assigned to the oxidation of the other components in the cyclic pathway, primarily plastoquinone. When the light was turned off, Fd was reoxidised and this gave a direct quantitative measurement of the rate of cyclic electron transport due to the activity of FQR. This activity was sensitive to the classical inhibitor of cyclic electron transport, antimycin, and also to J820 and DBMIB. Antimycin had no effect on Fd reduction although this was inhibited by stigmatellin. This provides further evidence that there is a quinone reduction site outside the cytochrome bf complex. The effect of inhibitors of ferredoxin-NADP+ reductase and experiments involving the modification of ferredoxin suggest that there may be some role for the reductase as a component of FQR. Contrary to expectations, NADPH2 inhibited FQR activity; ATP and ADP had no effect.Abbreviations AQS 9,10-anthraquinone-2-sulphonate - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - dimaleimide N,N-p-phenylenedimaleimide - EDC N-(dimethylaminopropyl)-N-ethylcarbodiimide - Fd ferredoxin - FNR Fd-NADP+ oxidoreductase - FQR Fd-PQ reductase - GME glycine methyl ester - J820 tetrabromo-4-hydroxypyridine - PC plastocyanin - PMS N-methylphenazinium methyl sulphate - PS Photosystems I and II - PQ plastoquinone - Q quinone - Qr and Qo sites of quinone reduction and oxidation, respectively - sulpho-DSPD disulphodisalicylidenepropane-1,2-diamine  相似文献   

18.
Wolinella succinogenes can grow at the expense of sulphur reduction by formate. The enzymes involved in the catalysis of this catabolic reaction have been investigated. From the results the following conclusions are drawn: 1. The enzyme isolated as a sulphide dehydrogenase from the cytoplasmic membrane of W. succinogenes is the functional sulphur reductase that operates in the electron transport from formate to sulphur. 2. The enzyme (Mr 200,000) consists essentially of one type of subunit with the Mr 85,000 and contains equal amounts of free iron and sulphide (120 mol/g protein), but no heme. It represents the first functional sulphur reductase ever isolated. 3. The electron transport chain catalyzing sulphur reduction by formate consists merely of formate dehydrogenase and sulphur reductase. A lipophilic quinone which mediates the transfer of electrons between enzymes in other chains, is apparently not involved. This is the first known example of a phosphorylative electron transport chain that operates without a quinone. 4. The same formate dehydrogenase appears to operate in the electron transport both with sulphur and with fumarate as the terminal electron acceptor in W. succinogenes.Abbreviations DMN 2,3-Dimethyl-1,4-naphthoquinone - DTT dithiothreitol - MK menaquinone (vitamin K2) - PMSF phenylmethane sulfonylfluoride - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-glycine - Tea triethanolamine - Hepes 4-(2-hydroxyethyl)-1-piperazineethane sulfonate Dedicated to Professor F. Schneider (Philipps-Universität Marburg) on the occasion of his 60th birthday  相似文献   

19.
Alhagi sparsifolia Shap. is exposed to a high-irradiance environment as the main vegetation found in the forelands of the Taklamakan Desert. We investigated chlorophyll a fluorescence emission of A. sparsifolia seedlings grown under ambient (HL) and shade (LL) conditions. Our results indicated that the fluorescence intensity in the leaves was significantly higher for LL-grown plants than that under HL. High values of the maximum quantum yield of PSII for primary photochemistry (φPo) and the quantum yield that an electron moves further than QA - (φEo) in the plants under LL conditions suggested that the electron flow from QA - (primary quinone electron acceptors of PSII) to QB (secondary quinone acceptor of PSII) or QB - was enhanced at LL compared to natural HL conditions. The efficiency/probability with which an electron from the intersystem electron carriers was transferred to reduce end electron acceptors at the PSI acceptor side and the quantum yield for the reduction of end electron acceptors at the PSI acceptor side were opposite to φPo, and φEo. Thus, we concluded that the electron transport on the donor side of PSII was blocked under LL conditions, while acceptor side was inhibited at the HL conditions. The PSII activity of electron transport in the plants grown in shade was enhanced, while the energy transport from PSII to PSI was blocked compared to the plants grown at HL conditions. Furthermore, PSII activity under HL was seriously affected in midday, while the plants grown in shade enhanced their energy transport.  相似文献   

20.
The coupling of electron and proton transport in the vicinity of the secondary quinone QB in the reaction center of bacteria and photosystem II of higher plants was investigated. The energy levels and wave functions of the proton in the system QB--histidine L 190 were calculated. It was shown that the proton of histidine forms a hydrogen bond with the doubly reduced quinone QB2-. A new scheme of proton transport through histidine L 190 and its coupling with electron transport was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号