首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of phosphorus deficiency on the photosynthetic characteristics were studied in rice seedlings (Oryza sativa L.) every 8 days after treatment. P deficiency caused a significant reduction in the net photosynthesis rate (P N) in rice plants. During the first 16 days of P deficiency, the maximum efficiency of PSII photochemistry (F v/F m), the effective PSII quantum yield (ϕPSII), the electron transport rate (ETR) as well as photochemical quenching (qP) in the P-limited rice plants kept close to the control, but the excitation energy capture efficiency of PSII reaction centers (Fv/Fm) was significantly declined in the P-deficient rice leaves. Meanwhile, in the stressed leaves, we also found a significant increase in nonphotochemical quenching (NPQ) as well as in the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX). It was indicated that a series of photoprotective mechanisms had been initiated in rice plants in response to short-term P deficiency. Therefore, PSII functioning was not affected significantly under such stress. As P deficiency continued, the excess excitation energy was accumulated in excess of the capacity of photoprotection systems. When the rice suffered from P deficiency more than 16 days, ϕPSII, ETR, and qP were decreased more rapidly than that in the control plants, although NPQ still kept higher in the stressed plants. These results were also consistent with the data on the distribution of excitation energy. The excess energy induced the generation of reactive oxygen species, which might lead to the further damage to PSII functioning. This text was submitted by the authors in English.  相似文献   

2.
We have investigated photosynthetic changes of fully expanded pea leaves infected systemically by pea enation mosaic virus (PEMV) that often attacks legumes particularly in northern temperate regions. A typical compatible virus–host interaction was monitored during 40 post-inoculation days (dpi). An initial PEMV-induced decrease in photosynthetic CO2 assimilation was detected at 15 dpi, when the virus appeared in the measured leaves. This decrease was not induced by stomata closure and corresponded with a decrease in the efficiency of photosystem II photochemistry (ΦPSII). Despite of a slight impairment of oxygen evolution at this stage, PSII function was not primarily responsible for the decrease in ΦPSII. Chlorophyll fluorescence imaging revealed that ΦPSII started to decrease from the leaf tip to the base. More pronounced symptoms of PEMV disease appeared at later stages, when a typical mosaic and enations appeared in the infected leaves and oxidative damage of cell membranes was detected. From 30 dpi, a degradation of photosynthetic pigments accelerated, stomata were closing and corresponding pronounced decline in CO2 assimilation was observed. A concomitant photoprotective responses, i.e. an increase in non-photochemical quenching and accumulation of de-epoxidized xanthophylls, were also detected. Interestingly, alternative electron sinks in chloroplasts were not stimulated by PEMV infection, which is in contradiction to earlier reports dealing with virus-induced plant stresses. The presented results show that the PEMV-induced alterations in mature pea leaves accelerated leaf senescence during which a decrease in ΦPSII took place in coordinated manner with an inhibition of CO2 assimilation.  相似文献   

3.
The effects of phosphate concentration on plant growth and photosyntheticprocesses in primary leaves of young sunflower (Helianthus annuusL.) plants were examined. Plants were grown for 3 weeks on half-strengthHoagland's solution containing 0, 0.1, 0.5, 1.0, and 3.0 molm–3 orthophosphate (Pi). It was shown that optimal photosynthesisand the highest light utilization capacity were achieved at0.5 mol m–3 Pi in the growth medium, which was in goodagreement with the maximum content of organic phosphorus inthe leaves. Low phosphate in the medium inhibited plant growthrate. Phosphate deficiency appreciably decreased photosyntheticoxygen evolution by leaves, the efficiency of photosystem two(PSII) photochemistry and quantum efficiency of PSII electrontransport. High oxidation state of PSII primary electron acceptorQA, at 0.1 mol m–3 Pi, however, indicates that photosyntheticelectron transport through PSII did not limit photosynthesisin Pi-deficient leaves. The results indicate that diminishedphotosynthesis under sub- and supra-optimal Pi was caused mainlyby a reduced efficiency of ribulose 1, 5-bisphosphate (RuBP)regeneration at high light intensities. These results suggestthat, under non-limiting C02 and irradiance, photosynthesisof the first pair of leaves could be diminished by both sub-and supra-optimal phosphorus nutrition of sunflower plants. Key words: Helianthus annuus L, phosphate nutrition, photosynthesis, photochemical efficiency  相似文献   

4.
The relationship between phosphate status and photosynthesis in leaves   总被引:19,自引:0,他引:19  
K.-J. Dietz  C. Foyer 《Planta》1986,167(3):376-381
Spinach (Spinacia oleracea L.) and barley (Hordeum vulgare L.) were grown in hydroponic culture with varying levels of orthophosphate (Pi). When leaves were fed with 20 mmol·l–1 Pi at low CO2 concentrations, a temporary increase of CO2 uptake was observed in Pi-deficient leaves but not in those from plants grown at 1 mmol·l–1 Pi. At high concentrations of CO2 (at 21% or 2% O2) the Pi-induced stimulation of CO2 uptake was pronounced in the Pi-deficient leaves. The contents of phosphorylated metabolites in the leaves decreased as a result of Pi deficiency but were restored by Pi feeding. These results demonstrate that there is an appreciable capacity for rapid Pi uptake by leaf mesophyll cells and show that the effects of long-term phosphate deficiency on photosynthesis may be reversed (at least temporarily) within minutes by feeding with Pi.Abbreviation Pi orthophosphate  相似文献   

5.
This work aimed to evaluate if gas exchange and PSII photochemical activity in maize are affected by different irradiance levels during short-term exposure to elevated CO2. For this purpose gas exchange and chlorophyll a fluorescence were measured on maize plants grown at ambient CO2 concentration (control CO2) and exposed for 4 h to short-term treatments at 800 μmol(CO2) mol−1 (high CO2) at a photosynthetic photon flux density (PPFD) of either 1,000 μmol m−2 s−1 (control light) or 1,900 μmol m−2 s−1 (high light). At control light, high-CO2 leaves showed a significant decrease of net photosynthetic rate (P N) and a rise in the ratio of intercellular to ambient CO2 concentration (C i/C a) and water-use efficiency (WUE) compared to control CO2 leaves. No difference between CO2 concentrations for PSII effective photochemistry (ΦPSII), photochemical quenching (qp) and nonphotochemical quenching (NPQ) was detected. Under high light, high-CO2 leaves did not differ in P N, C i/C a, ΦPSII and NPQ, but showed an increase of WUE. These results suggest that at control light photosynthetic apparatus is negatively affected by high CO2 concentration in terms of carbon gain by limitations in photosynthetic dark reaction rather than in photochemistry. At high light, the elevated CO2 concentration did not promote an increase of photosynthesis and photochemistry but only an improvement of water balance due to increased WUE.  相似文献   

6.
7.
The effect of four different NaCl concentrations (from 0 to 102 mM NaCl) on seedlings leaves of two corn (Zea mays L.) varieties (Aristo and Arper) was investigated through chlorophyll (Chl) a fluorescence parameters, photosynthesis, stomatal conductance, photosynthetic pigments concentration, tissue hydration and ionic accumulation. Salinity treatments showed a decrease in maximal efficiency of PSII photochemistry (Fv/Fm) in dark-adapted leaves. Moreover, the actual PSII efficiency (ϕPSII), photochemical quenching coefficient (qp), proportion of PSII centers effectively reoxidized, and the fraction of light used in PSII photochemistry (%P) were also dropped with increasing salinity in light-adapted leaves. Reductions in these parameters were greater in Aristo than in Arper. The tissue hydration decreased in salt-treated leaves as did the photosynthesis, stomatal conductance (g s) and photosynthetic pigments concentration essentially at 68 and 102 mM NaCl. In both varieties the reduction of photosynthesis was mainly due to stomatal closure and partially to PSII photoinhibition. The differences between the two varieties indicate that Aristo was more susceptible to salt-stress damage than Arper which revealed a moderate regulation of the leaf ionic accumulation.  相似文献   

8.
Arthropods and pathogens damage leaves in natural ecosystems and may reduce photosynthesis at some distance away from directly injured tissue. We quantified the indirect effects of naturally occurring biotic damage on leaf-level photosystem II operating efficiency (ΦPSII) of 11 understory hardwood tree species using chlorophyll fluorescence and thermal imaging. Maps of fluorescence parameters and leaf temperature were stacked for each leaf and analyzed using a multivariate method adapted from the field of quantitative remote sensing. Two tree species, Quercus velutina and Cercis canadensis, grew in plots exposed to ambient and elevated atmospheric CO2 and were infected with Phyllosticta fungus, providing a limited opportunity to examine the potential interaction of this element of global change and biotic damage on photosynthesis. Areas surrounding damage had depressed ΦPSII and increased down-regulation of PSII, and there was no evidence of compensation in the remaining tissue. The depression of ΦPSII caused by fungal infections and galls extended >2.5 times further from the visible damage and was ∼40% more depressed than chewing damage. Areas of depressed ΦPSII around fungal infections on oaks growing in elevated CO2 were more than 5 times larger than those grown in ambient conditions, suggesting that this element of global change may influence the indirect effects of biotic damage on photosynthesis. For a single Q. velutina sapling, the area of reduced ΦPSII was equal to the total area directly damaged by insects and fungi. Thus, estimates based only on the direct effect of biotic agents may greatly underestimate their actual impact on photosynthesis.  相似文献   

9.
10.
Benzoxazolin-2-(3H)-one (BOA) has been tested in many plants species, but not in soybean (Glycine max). Thus, a hydroponic experiment was conducted to assess the effects of BOA on soybean photosynthesis. BOA reduced net photosynthetic rate, stomatal conductance, and effective quantum yield of PSII photochemistry without affecting intercellular CO2 concentration or maximal quantum yield of PSII photochemistry. Results revealed that the reduced stomatal conductance restricted entry of CO2 into substomatal spaces, thus limiting CO2 assimilation. No change found in intercellular CO2 concentration and reduced effective quantum yield of PSII photochemistry revealed that CO2 was not efficiently consumed by the plants. Our data indicated that the effects of BOA on soybean photosynthesis occurred due to the reduced stomatal conductance and decreased efficiency of carbon assimilation. The accumulation of BOA in soybean leaves reinforced these findings.  相似文献   

11.
A strong relationship between hydraulic supply of water to leaves and maximum photosynthetic capacity was found in a group of seven conifers and 16 angiosperm species, including two vessel‐less taxa, from similar rainforest communities in New Caledonia and Tasmania (Australia). Stem hydraulic supply was expressed as the hydraulic conductivity of branches in terms of leaf area supplied (KL) and leaf photosynthetic capacity was measured as the mean quantum yield of PSII (ØPSII) in leaves exposed to full sun, as determined by chlorophyll fluorescence analysis. A single, highly significant linear regression (r2 = 0·74) described the relationship between hydraulic conductivity and quantum yield in all species. This suggests that the maximum photosynthetic rate of leaves is constrained by their vascular supply. In both rainforest locations, the KL of conifer wood overlapped broadly with that of associated vessel‐bearing and vessel‐less angiosperms indicating a degree of hydraulic convergence in these forests.  相似文献   

12.
The effects of inorganic phosphate (Pi) deficiency and ABA/ethylene status on expression of UDP-glucose pyrophosphorylase (UGPase) genes (Ugp), involved in sucrose/polysaccharide metabolism, were investigated. Both wild-type (wt), aba and abi mutants (ABA-deficient and -in-sensitive), etr, ein and eto (ethylene resistant and overproducing) grown on Pi-deficient and complete nutrient solution, as well as phol (Pi-deficient) mutants of Arabidopsis thaliana were used for experiments. Generally, Pi-deficiency conditions (including mannose feeding to decrease cytosolic Pi pool) resulted in an increase of Ugp expression in the leaves, under all experimental conditions. Mutant backgrounds reflecting differences in ABA or ethylene status/ sensitivity had no effect on the level of Ugp up-regulation by Pi-stress. Furthermore, feeding ABA to the leaves of wt and pho1 plants had no effect on Ugp expression, regardless of the sucrose status in the leaves. The data suggest that Pi deficiency leading to up-regulation of Ugp acts independently of ABA and ethylene status.  相似文献   

13.
Photosynthesis, photosystem II (PSII) photochemistry, photoinhibition and the xanthophyll cycle in the senescent flag leaves of wheat (Triticum aestivum L.) plants grown in the field were investigated. Compared to the non-senescent leaves, photosynthetic capacity was significantly reduced in senescent flag leaves. The light intensity at which photosynthesis was saturated also declined significantly. The light response curves of PSII photochemistry indicate that a down-regulation of PSII photochemistry occurred in senescent leaves in particular at high light. The maximal efficiency of PSII photochemistry in senescent flag leaves decreased slightly when measured at predawn but substantially at midday, suggesting that PSII function was largely maintained and photoinhibition occurred in senescent leaves when exposed to high light. At midday, PSII efficiency, photochemical quenching and the efficiency of excitation capture by open PSII centers decreased considerably, while non-photochemical quenching increased significantly. Moreover, compared with the values at early morning, a greater decrease in CO2 assimilation rate was observed at midday in senescent leaves than in control leaves. The levels of antheraxanthin and zeaxanthin via the de-epoxidation of violaxanthin increased in senescent flag leaves from predawn to midday. An increase in the xanthophyll cycle pigments relative to chlorophyll was observed in senescent flag leaves. The results suggest that the xanthophyll cycle was activated in senescent leaves due to the decrease in CO2 assimilation capacity and the light intensity for saturation of photosynthesis and that the enhanced formation of antheraxanthin and zeaxanthin at high light may play an important role in the dissipation of excess light energy and help to protect photosynthetic apparatus from photodamage. Our results suggest that the well-known function of the xanthophyll cycle to safely dissipate excess excitation energy is also important for maintaining photosynthetic function during leaf senescence.  相似文献   

14.
Kalanchoë daigremontiana, a CAM plant grown in a greenhouse, was subjected to severe water stress. The changes in photosystem II (PSII) photochemistry were investigated in water‐stressed leaves. To separate water stress effects from photoinhibition, water stress was imposed at low irradiance (daily peak PFD 150 μmol m?2 s?1). There were no significant changes in the maximal efficiency of PSII photochemistry (Fv/Fm), the traditional fluorescence induction kinetics (OIP) and the polyphasic fluorescence induction kinetics (OJIP), suggesting that water stress had no direct effects on the primary PSII photochemistry in dark‐adapted leaves. However, PSII photochemistry in light‐adapted leaves was modified in water‐stressed plants. This was shown by the decrease in the actual PSII efficiency (ΦPSII), the efficiency of excitation energy capture by open PSII centres (Fv′/Fm′), and photochemical quenching (qP), as well as a significant increase in non‐photochemical quenching (NPQ) in particular at high PFDs. In addition, photoinhibition and the xanthophyll cycle were investigated in water‐stressed leaves when exposed to 50% full sunlight and full sunlight. At midday, water stress induced a substantial decrease in Fv/Fm which was reversible. Such a decrease was greater at higher irradiance. Similar results were observed in ΦPSII, qP, and Fv′/Fm′. On the other hand, water stress induced a significant increase in NPQ and the level of zeaxanthin via the de‐epoxidation of violaxanthin and their increases were greater at higher irradiance. The results suggest that water stress led to increased susceptibility to photoinhibition which was attributed to a photoprotective process but not to a photodamage process. Such a photoprotection was associated with the enhanced formation of zeaxanthin via de‐epoxidation of violaxanthin. The results also suggest that thermal dissipation of excess energy associated with the xanthophyll cycle may be an important adaptive mechanism to help protect the photosynthetic apparatus from photoinhibitory damage for CAM plants normally growing in arid and semi‐arid areas where they are subjected to a combination of water stress and high light.  相似文献   

15.
Sunflowers were treated with mixing proportions of NaCl, Na2SO4, NaHCO3, and Na2CO3. Effects of salt and saltalkaline mixed stress on growth, photosynthesis, chlorophyll fluorescence, and contents of inorganic ions and organic acids of sunflower were compared. The growth of sunflower decreased with increasing salinity. The contents of photosynthetic pigments did not decrease under salt stress, but their contents decreased sharply under salt-alkaline mixed stress. Net photosynthetic rates, stomatal conductance and intercellular CO2 concentration decreased obviously, with greater reductions under salt-alkaline mixed stress than under salt one. Fluorescence parameters showed no significant differences under salt stress. However, maximal efficiency of PSII photochemistry, photochemical quenching coefficient, electron transport rate, and actual PSII efficiency significantly decreased but non-photochemical quenching increased substantially under salt-alkaline mixed stress. Under salt-alkaline mixed stress, sunflower leaves maintained a low Na+- and high K+ status; this may be an important feature of sunflower tolerance to salinity. Analysis of the mechanism of ion balance showed that K+ but not Na+ was the main inorganic cation in sunflower leaves. Our results indicated that the change in organic acid content was opposite to the change of Cl, and the contribution of organic acid to total charge in sunflower leaves under both stresses decreased with increasing salinity. This may be a special adaptive response to stresses for sunflower. Sunflower under stress conditions mainly accumulated inorganic ions instead of synthesizing organic compounds to decrease cell water potential in order to save energy consumption.  相似文献   

16.
Sunflower plants were grown under controlled environmental conditionswith either 0 or 10 mol m–3 phosphate (Pi). From steady-statemeasurements of gas exchange and chlorophyll fluorescence madeon intact leaves, the in vivo CO2/O2 specificity factor (invivo Ksp) of ribulose 1,5-Aisphosphate carboxylase-oxygenase(Rubisco) was determined following two methods based on modelsof C3 photosynthesis by Brooks and Farquhar (1985) and Peterson(1989). The two methods gave in vivo Ksp values for controlsunflower leaves which were similar to published values forhigher plants. Extreme Pi deficiency decreased in vivo Ksp,in sunflower leaves compared to adequate Pi. This suggests thatPi deficiency affected photorespiration less than photosynthesis.The decrease in in vivo Ksp may be due to a real change in theenzyme kinetics favouring oxygenation more than carboxylationor due to an increase in the number of CO2 molecules releasedper oxygenation; in which case the observed decrease in thein vivo Ksp determined on intact leaves will not agree numericallywith the true Ksp of Rubisco determined in vitro using purifiedenzyme from the same leaf. We discuss the implications of therelatively large photorespiration in Pi-deficient sunflowerleaves with respect to the increased dissipation of photosyntheticelectrons and photorespiratory recycling of Pi in thechloroplaststroma. Although our results on in vivo Ksp suggested a relativelylarger photorespiratory potential in Pi-deficient than controlsunflower leaves, photosynthesis was insensitive to O2 in Pi-deficientleaves; the possible reasons for this phenomenon are discussed.Under extreme Pi deficiency, O2 sensitivity of photosynthesisis not a reflection of the in vivo photorespiratory rates. Determinationof in vivo Ksp of Rubisco is a useful approach to study thephotorespiratory potential of intact leaves. Key words: Chlorophyll fluorescence, phosphate deficiency, photorespiration, photosynthesis, PSII quantum yield, Rubisco specificity factor  相似文献   

17.
Shoots of two species of moss, Plagiomnium undulatum (Hedw.) Kop. and Plagiomnium affine (Funck) Kop., were subjected to freezing at various temperatures. After thawing, the activities of different photosynthetic reactions were determined in relation to the ages of the leaves. Analysis of the fast kinetics of chlorophyll-a fluorescence of individual leaves showed that young and old tissues were considerably less frost tolerant than mature ones. In principle, the pattern of freeze inactivation of photosynthetic reactions resembles that observed in higher plants. The decreases in the amplitude of Fv (variable fluorescence) and the ratio of Fv to Fm (maximum fluorescence) with increasing freezing stress reflect a progressive inactivation of photosystem II (PSII)-mediated electron transport, i.e. inhibition of photoreaction to photochemistry and-or electron donation to the photochemical reaction, and thus a decline in the potential photochemical efficiency of PSII. The insignificant change in the F0 (constant fluorescence) level during progressive decline of Fv indicates that the excitation-energy transfer between antenna pigments and from those to reaction centres of PSII was little impaired by lethal freezing stress. Sugar analyses of various stem sections showed that ontogenetic variation in the frost tolerance of leaves cannot be attributed to differences in the cellular levels of sucrose, glucose and fructose.Abbreviations and Symbols DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Fm maximum fluorescence - F0 constant (initial) fluorescence - Fv variable fluorescence  相似文献   

18.
Seven plant species were exposed in open-top chambers to four levels of ozone (O3) during two growing seasons and screened for treatment effects on the fast chlorophylla(Chl) fluorescence transient kinetics of dark-adapted leaves, and on the fluorescence signals obtained from the same leaves in illuminated steady-state. The aim was to identify the nature of O3 effects on PSII, and to determine inter-specific differences. In dark-adapted leaves, O3 caused a reduction in variable fluorescence (FV : F0), indicating an overall reduction in the efficiency of primary photochemistry. A large increase in excitation energy dissipation per active reaction centre (DI0/RC) and a smaller increase in the trapping rate of excitons (TR0/RC), showed that a fraction of the reaction centres was inactivated while the rest sustained full functionality. The magnitude of the effect increased in the order ofBromus erectusCentaurea jacea Trisetum flavescens Rumex obtusifolius Plantago lanceolataTrifolium pratense Knautia arvensis. The inter-specific variability in PSII responses could not be explained solely by specific differences in modelled O3 uptake by the leaves. Visible leaf injury was not related to changes in fluorescence emission. In illuminated steady-state, O3 sensitivity was most expressed in the change in quantum yield of photosynthetic electron transport (ΦPSII). The ranking of species differed from the ranking obtained in dark-adapted leaves. These results suggest that the mechanistic basis for O3 effects on PSII is similar in all species, but that inter-specific differences exist in the magnitude of change which cannot be explained solely by different O3 uptake rates. The observed changes in fluorescence signals are not O3-specific.  相似文献   

19.
弱光胁迫影响夏玉米光合效率的生理机制初探   总被引:7,自引:0,他引:7       下载免费PDF全文
大田条件下, 以普通夏玉米(Zea mays) ‘泰玉2号’为材料, 于授粉后1-20天遮光55% (+S), 以大田自然光照条件下生长的玉米作为对照(-S), 研究了遮光及恢复过程中玉米植株的光合性能、叶绿体荧光参数、叶黄素循环以及光能分配的变化, 初步揭示夏玉米开花后弱光条件下光适应的生理机制, 为玉米高产稳产提供理论依据。结果表明, 遮光后玉米穗位叶叶绿素含量及可溶性蛋白含量均减少, RuBP羧化酶和PEP羧化酶活性显著降低, 导致穗位叶净光合速率(Pn)迅速下降, 光饱和点也明显降低; 恢复初期Pn迅速升高, 光合关键酶活性有所增强。遮光后植株的最大光化学效率(Fv/Fm)、实际光化学效率(ФPSII)显著降低, 非光化学淬灭(NPQ)则显著升高, 而恢复初期植株穗位叶ФPSII有所升高, 表明突然暴露在自然光下的光合电子传递速率明显加快, 这与其光合速率及光合酶活性的趋势保持一致; 遮光处理对穗位叶叶黄素循环库的大小(紫黄质+花药黄质+玉米黄质(V + A + Z))影响不显著, 但使叶黄素循环的脱环氧化状态(A + Z)/(V + A + Z)增加; 遮光后植株分配于光化学反应的光能明显减少, 天线耗散光能比率显著增加, 恢复过程中植株主要以过剩非光化学反应的形式耗散过剩的光能。遮光后及恢复初期, 玉米植株的PSII原初光化学活性明显下降, 限制了光合碳代谢的电子供应从而抑制了光合作用, 主要依赖叶黄素循环途径进行能量耗散, 而在光照转换后遮光的玉米叶片在适应自然光过程中的光保护机制不断完善, 光合能力逐渐得到 恢复。  相似文献   

20.
Brassinosteroids (BRs), an important class of plant steroidal hormones, play a significant role in the amelioration of various biotic and abiotic stresses. 24-epibrassinolide (EBR), an active brassinosteroid, was applied exogenously in different concentrations to characterize a role of BRs in tolerance of melon (Cucumis melo L.) to high temperature (HT) stress and to investigate photosynthetic performance of HT-stressed, Honglvzaocui (HT-tolerant) and Baiyuxiang (HTsensitive), melon variety. Under HT, Honglvzaocui showed higher biomass accumulation and a lower index of heat injury compared with the Baiyuxiang. The exogenous application of 1.0 mg L?1 EBR, the most effective concentration, alleviated dramatically the growth suppression caused by HT in both ecotypes. Similarly, EBR pretreatment of HTstressed plants attenuated the decrease in relative chlorophyll content, net photosynthetic rate, stomatal conductance, stomatal limitation, and water-use efficiency (WUE), as well as the maximal quantum yield of PSII photochemistry (Fv/Fm), the efficiency of excitation capture of open PSII center, the effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching coefficient, and the photon activity distribution coefficients of PSI (α). EBR pretreatment further inhibited the increase in intracellular CO2 concentration, leaf transpiration rate, minimal fluorescence of dark-adapted state, nonphotochemical quenching, thermal dissipation, and photon activity distribution coefficients of PSII. Results obtained here demonstrated that EBR could alleviate the detrimental effects of HT on the plant growth by improving photosynthesis in leaves, mainly reflected as up-regulation of photosynthetic pigment contents and photochemical activity associated with PSI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号