首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of 10(-5) M bromodeoxyuridine (BrdUrd) substitution in C3H 10T1/2 cells was evaluated. Cellular toxicity increased rapidly for BrdUrd exposure times that were longer than the population doubling time. Radiosensitization by BrdUrd exposure was almost complete after one cell doubling time and was characterized by a decrease in D0 and the survival curve shoulder. Exposure to BrdUrd for one cell doubling time produced only very low transformation levels, but for prolonged BrdUrd exposure times, the transformation frequency per viable cell increased significantly. BrdUrd incorporation also enhanced radiation induction of transformation above the transformation levels resulting from the independent action of X rays or BrdUrd treatment. These results show that BrdUrd is a transforming agent in C3H 10T1/2 cells and thus may be a carcinogen and that BrdUrd can enhance radiation-induced transformation.  相似文献   

2.
Ouabain-resistance mutation and cell cycle-dependent transformation were studied concurrently in the C3H/10T1/2 cell line treated with N-nitroso-2-acetylaminofluorene (N-NO-AAF) or N-nitroso-N-2-fluorenylacetamide. N-NO-AAF is a new direct-acting mutagen that exhibits a very short half-life (34 min) in complete medium independent of cell number seeded. With 0.1-0.3 mM of N-NO-AAF, cytotoxicity was noted after exposure for 2 h, but another phase of cytotoxicity was observed between 8 and 24 h. N-NO-AAF was more toxic than its parent compound 2-AAF. Moreover, maximal mutation frequency at the Na+/K(+)-ATPase gene locus (ouar mutation) was attained within 30 or 40 min of exposure, dependent on dosage of N-NO-AAF. With 2-AAF, 2-AF and 2-nitrofluorene, however, no detectable mutants were found under the same conditions. In cell cycle-dependent transformation assays, cells were synchronized by release from confluence-induced arrest of proliferation, 2 concentrations of N-NO-AAF were added for 2 h at various intervals during the cell cycle. The results clearly revealed that cells in 2 specific time intervals were susceptible to malignant transformation, i.e., at 10 and 18 h (early S phase) after release from the block.  相似文献   

3.
Dose fractionation of a direct-acting chemical carcinogen, the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), was studied for its concurrent effects on survival, DNA damage and repair, ouabain resistance (Ouar) mutations and neoplastic transformation, in the mouse embryo cell line BALB/3T3 C1A31-1-1. MNNG doses of 0.5, 1 and 2 micrograms/ml were added to the cells either as a single exposure or in two equal fractions separated by 1, 3 or 5 h intervals. No significant difference in cytotoxicity was found when single and split-dose treatments were compared. No recovery from sublethal damage was therefore found in this cell line by split-dose administration of MNNG, although such an effect was found when the same cell line was treated with single and split doses of X-rays. Repair of DNA damage as measured by alkaline elution was studied up to 24 h after a single MNNG exposure (0.5 micrograms/ml). DNA repair was rapid during the first 5 h after treatment and slow thereafter. DNA damage detected after split doses of MNNG at 1 and 5 h intervals was significantly lower than after a corresponding single dose. With both single and split doses, rejoining of single-strand breaks (ssb) was nearly complete after 24 h of repair time. Ouar mutation and neoplastic transformation frequencies were determined for single and split doses of MNNG with the second treatment being given during (1 h) or after (5 h) the period of rapid DNA repair. No significant differences in either effect were detected for dose splitting at any tested dose.  相似文献   

4.
The expression and modulation of IL-1 alpha in murine keratinocytes   总被引:6,自引:0,他引:6  
Murine and human keratinocytes produce an IL-1-like factor that appears to be similar if not identical to monocyte-derived IL-1. IL-1 may be an important mediator in cutaneous inflammatory responses, however, little is currently known concerning factors that may modulate IL-1 expression in keratinocytes. To address this issue we examined the effect of LPS, UV, and the cell differentiation state on murine keratinocyte IL-1 mRNA expression. Our results indicated that as with the murine P388D1 monocyte cell line, PAM 212 keratinocytes constitutively express abundant amounts of IL-1 alpha mRNA. On exposure to LPS (100 micrograms/ml) for 8 h there was more than 10 times the increase in PAM 212 IL-1 alpha mRNA which was accompanied by a sixfold increase in supernatant IL-1 activity. Similarly UV irradiation had a significant effect on keratinocyte IL-1 alpha expression. High dose UV (300 mJ/cm2) inhibited PAM 212 IL-1 alpha expression at 4, 8, 24, 48 h post-UV whereas a lower dose of UV (100 mJ/cm2) inhibited UV at 4 and 8 h post-UV, but induced IL-1 expression at 24 and 48 h post-UV. The expression of IL-1 alpha varied with the differentiation state of the keratinocytes. Freshly removed newborn murine keratinocytes were found to constitutively express IL-1 alpha mRNA. Keratinocytes grown in low [Ca2+] tissue culture media (0.05 mM) for 6 days, functionally and phenotypically become undifferentiated and express increased quantities of IL-1 alpha mRNA, whereas cells grown in high [Ca2+] media (1.2 mM) for 6 days become terminally differentiated and IL-1 expression ceased. Keratinocytes cultured for 3 days in low [Ca2+] conditions expressed an intermediate level of IL-1 alpha. In contrast, little or no IL-1 beta mRNA was detected in either the PAM 212 cells or newborn murine keratinocytes. Thus LPS, UV, and cell differentiation state have a significant effect on expression of IL-1 alpha in murine keratinocytes.  相似文献   

5.
Mammalian cells in culture have been shown here for the first time to be transformed by alpha irradiation. Mouse embryo (C3H 10T1/2) cells were transformed with 5.6 MeV alpha particles from a Tandem Van de Graaff machine. Malignant tumours were induced following inoculation of the transformed cells into syngeneic hosts. Unirradiated control cells failed to produce tumours. The morphology of the transformed foci was similar to that obtained by X-rays and chemicals but different from virally transformed cells. The transformation frequency increased approximately as the cube of the dose to a maximum of about 4 per cent ofthe surviving cells which occurred between 1.5 and 2.5 x 10(7) alpha particles per cm2 (205-342 rad). It appears that alpha particle irradiation may exert a direct effect on the genome of the cell to produce malignancy without any external immunological or hormonal influences.  相似文献   

6.
Oncogenic transformation of C3H 10T1/2 cells was determined after exposure to graded doses of 4.3-MeV alpha particles LET = 101 keV/microns. The source of alpha particles was 244Cm and the irradiation was done in an irradiation chamber built for the purpose. Graded doses in the range of 0.2 to 300 cGy were studied with special emphasis on the low-dose region, with as many as seven points in the interval up to 10 cGy. The dose-effect relationship was a complex function. Transformation frequency increased with dose up to 2 cGy; it seemed to flatten at doses between 2 and 20 cGy but increased again at higher doses. A total of 21 cGy was delivered in a single dose or in 3 or 10 equal fractions at an interval of 1.5 h. An inverse dose-protraction effect of 1.4 was found with both fractionation schemes. Measurements of the mitotic index of the population immediately before the various fractions revealed a strong effect on the rate of cell division even after very low doses of radiation. Mitotic yield decreased markedly with the total dose delivered, and it was as low as 50% of the control value after 4.2 cGy and 20% after 14 cGy with both fractionation schemes.  相似文献   

7.
Primary cultures of murine bone marrow macrophages (BMMs) were prepared from marrow cell suspensions. These cells expressed specific receptors that recognized the transformed conformation of human alpha 2-macroglobulin (alpha 2M) generated by reaction with CH3NH2. alpha 2M receptor expression was regulated by colony-stimulating factor-1 (CSF-1). The BMMs were deprived of CSF-1 for 6 h and then treated with different concentrations of the purified cytokine. After 18 h, binding of 125I-alpha 2M-CH3NH2 was examined at 4 degrees C. Analysis of the saturation isotherms and Scatchard transformations indicated that the KD was not affected by CSF-1 (1.9-2.4 nM), whereas the maximum specific radioligand binding capacity (Bmax) was increased from 5.6 x 10(4) receptors/cell in the absence of CSF-1 to 2.2 x 10(5) and 2.6 x 10(5) receptors/cell for BMMs treated with 1,000 and 10,000 units/ml CSF-1, respectively. The difference in total cellular protein after exposure to different levels of CSF-1 for 18 h was small (1.50-1.92 ng/cell) and not statistically significant. A 6-12-h lag phase was identified between the time of CSF-1 exposure and increased alpha 2M receptor expression. Cycloheximide completely blocked the increase in alpha 2M receptor expression when added simultaneously with the CSF-1; greater than 50% inhibition was observed when the cycloheximide was added up to 8 h later. The RNA synthesis inhibitors, actinomycin D and daunomycin, prevented increased alpha 2M receptor expression when added up to 4 h after the CSF-1, but had no effect at 8 h. At 37 degrees C, uptake and digestion of 125I-alpha 2M-CH3NH2 was increased in BMMs treated with 1,000 units/ml CSF-1 for 18 h compared with untreated cells. These studies demonstrate that CSF-1 increases the expression of alpha 2M receptors in BMMs through a pathway that requires new RNA and protein synthesis. We hypothesize that increased alpha 2M receptor expression may play an important role in cellular growth and differentiation.  相似文献   

8.
9.
We have examined the ability of blood-derived monocytes and macrophages isolated from a patient with alveolar rhabdomyosarcoma and hypercalcaemia, to form 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) or 1 alpha,25-dihydroxyvitamin D3 (1 alpha,25(OH)2D3) from 25-hydroxyvitamin D3 (25(OH)D3). Adherent monocyte-macrophage cells incubated with 25(OH)D3 over the initial 2 days in culture synthesized 1.9 pmol 24,25(OH)2D3/h/incubation (representing 0.63 pmol/h/10(6) cells), whereas macrophages synthesized 1.03 and 1.15 pmol 1 alpha,25(OH)2D3/h/incubation after 1 and 4 weeks in culture respectively. In a further experiment synthesis of 1 alpha,25(OH)2D3 by long-term cultured macrophages fell from 2.25 to 0.04 pmol/h/incubation following exposure to 10 nM 1 alpha,25(OH)2D3 for 7 days, whereas 24,25(OH)2D3 synthesis was induced (0.46 pmol/h/incubation). The vitamin D3 metabolites were identified by co-chromatography with authentic 24,25(OH)2D3 or 1 alpha,25(OH)2D3 in three different high-performance liquid chromatography systems. Serum 1 alpha,25(OH)2D3 in the patient was markedly suppressed at 5 pg/ml (normal 20-50 pg/ml) indicating that raised 1 alpha,25(OH)2D3 was not the cause of the hypercalcaemia, but rather, that raised calcium may have suppressed renal 1 alpha,25(OH)2D3 synthesis. Administration of APD (3-amino-1-hydroxypropylidine-1,1-bisphosphonate) corrected the hypercalcaemia in the patient suggesting that increased bone resorption was responsible for the raised calcium. The results of this study show for the first time that immature blood derived monocyte-macrophage cells can synthesize 24,25(OH)2D3 before they mature into macrophages able to synthesize 1 alpha,25(OH)2D3.  相似文献   

10.
This paper discusses two phenomena of importance at low doses that have an impact on the shape of the dose-response relationship. First, there is the bystander effect, the term used to describe the biological effects observed in cells that are not themselves traversed by a charged particle, but are neighbors of cells that are; this exaggerates the effect of small doses of radiation. Second, there is the adaptive response, whereby exposure to a low level of DNA stress renders cells resistant to a subsequent exposure; this reduces the effect of low doses of radiation. The present work was undertaken to assess the relative importance of the adaptive response and the bystander effect induced by radiation in C3H 10T(1/2) cells in culture. When the single-cell microbeam delivered from 1 to 12 alpha particles through the nuclei of 10% of C3H 10T(1/2) cells, more cells were inactivated than were actually traversed by alpha particles. The magnitude of this bystander effect increased with the number of particles per cell. An adaptive dose of 2 cGy of gamma rays, delivered 6 h beforehand, canceled out about half of the bystander effect produced by the alpha particles.  相似文献   

11.
C Demarcq  G Bastian  Y Remvikos 《Cytometry》1992,13(4):416-422
The treatment of cultured human cells by cis-diamminedichloroplatinum (II) (cis-DDP) has been shown to induce complex modifications in the cell cycle. Using dual parameter DNA/BrdUrd flow cytometric analysis, we were able to monitor the cell cycle traverse of a pulse-labeled cohort of cells in an asynchronous culture of the A549 cell line (human lung adenocarcinoma). Two major modifications of the cell cycle following cis-DDP treatment were observed: 1) after 24 h of treatment, the labeling index was significantly increased and was linked with a prolonged S-phase; the S-phase delay occurred rapidly after cis-DDP and was dose dependent but not exposure time dependent; 2) an accumulation of cells at the S/G2 transition with an onset approximately 12 h after cis-DDP contact, which was found to be dependent on both dose and duration of exposure. The cytokinetic results also predict maximal sensitivity to cis-DDP for G1 cells and minimal for G2 cells. In our model the late S/G2 accumulation was always preceded by a slowing down of the S-phase. However, only the former should be the correct indicator of cytotoxicity since it was correlated with cell survival as evidenced by a colony formation assay, under all treatment conditions.  相似文献   

12.
13.
Measurements of renal damage in the mouse were made to determine if there was an equal effect per fraction during a course of repeated 240-kVp X-ray doses. An X-ray dose of 2 Gy was given 2, 8, 14, or 20 times with interfraction intervals of 12 h. Some animals were also irradiated with twenty 2-Gy doses using a 5-h interfraction interval. The underlying effect per fraction (-logeSF of the notional target cell population) was determined from the additional top-up dose of d(4)-Be neutrons needed to produce measurable renal impairment assessed by decreased clearance from the plasma of [51Cr]EDTA and by a reduction in the hematocrit at 25, 29, 33, and 39 weeks after treatment. There was no significant influence of the time of assay on the values of underlying effect measured. A mean value of underlying effect was therefore calculated for the two different assays of each mouse, from the measurements at the four times. This gave approximately 40 estimates (one for each animal assessed) with each assay of the effectiveness of 2-Gy fractions in each of the four fractionation schedules, a total of 321 determinations in the study with 12-h intervals. Regression analysis showed that there was no significant trend in underlying effect per fraction with number of fractions, i.e., the damage per fraction was constant regardless of the number of fractions used. With underlying effect normalized to 1 unit of damage for a single 2-Gy dose, the slope of this plot was -0.0013 per fraction2 +/- 0.0097 (95% CL). The assumption of equal effect per fraction was therefore not invalidated in the kidney of the mouse. With a 5- instead of a 12-h interfraction interval, the 20-fraction schedule was 7% more effective as measured by the two assays analyzed together; this was significant at P = 0.0001. This shows that 5 h is not sufficient time between fractions for full repair to occur in the kidney, and underlines the need for intervals of at least 6 h between the doses in clinical radiotherapy using more than one fraction per day. The data are consistent with an alpha/beta ratio approximately 1.6 Gy, with a repair half-time approximately 1.3 h. However, these experiments were not designed to determine these parameters and their values should be regarded only as rough estimates.  相似文献   

14.
The observed effects after ozone exposure strongly depend on ozone concentration and exposure time. We hypothesized that depending on the O3 exposure protocol, mainly either an oxidant damage or an inflammation will determine the O3 toxicity. We compared two different ozone exposure protocols: an acute exposure (3 ppm 2 h) for studying the oxidant damage and an exposure (1 ppm 12 h) where an inflammatory component is also probably involved. We measured LDH activity and protein and albumin exudation as markers for cellular damage. After the acute exposure an increase in LDH activity was measured and after exposure to 1 ppm ozone for 12 h the exudation of protein and albumin was also enhanced. The histological examinations showed a neutrophilic inflammatory response only after exposure to 1 ppm ozone for 12 h. The acute exposure protocol resulted in an increased release of PGE2, PGD2, PGF2alpha and 6-ketoPGF1alpha whereas exposure to 1 ppm ozone for 12 h led to an additional release of LTB4. No effects were measured on the release of TxB2 and LTC4/D4/E4. These changed amounts of eicosanoids will probably contribute to the ozone-induced lung function changes.  相似文献   

15.
Exposure of arsenite can induce hyperproliferation of skin cells, which is believed to play important roles in arsenite-induced carcinogenesis by affecting both promotion and progression stages. However, the signal pathways and target genes activated by arsenite exposure responsible for the proliferation remain to be defined. In the present study, we found that: (1) exposure of human keratinocytic HaCat cells to arsenite caused an increase in cell proliferation, which was significantly inhibited by pretreatment of wortmannin, a specific chemical inhibitor of PI-3K/Akt signal pathway; (2) arsenite exposure was also able to activate PI-3K/Akt signal pathway, which thereby induced the elevation of cyclin D1 expression level in both HaCat cells and human primary keratinocytes based on that inhibition of PI-3K/Akt pathway by either pretreatment of wortmannin or the transfection of their dominant mutants, significantly inhibited cyclin D1 expression upon arsenite exposure; (3) PI-3K/Akt pathway is implicated in arsenite-induced proliferation of HaCat cells through the induction of cyclin D1 because either knockdown of cyclin D1 by its siRNA or inhibition of PI-3K/Akt signal pathway by their dominant mutants markedly impaired the proliferation of HaCat cells induced by arsenite exposure. Taken together, we provide the direct evidence that PI-3K/Akt pathway plays a role in the regulation of cell proliferation through the induction of cyclin D1 in human keratinocytes upon arsenite treatment. Given the importance of aberrant cell proliferation in cell transformation, we propose that the activation of PI-3K/Akt pathway and cyclin D1 induction may be the important mediators of human skin carcinogenic effect of arsenite.  相似文献   

16.
In an attempt to study the influence of vitamin D metabolites on PTH secretion, serum calcium and urinary excretion of cAMP were sequentially measured in conscious perfused rats, and the effects of a single iv injection of the metabolites on these parameters were examined. Four hours after the administration of 0.25 microgram/kg (0.6 nmol/kg, probably a physiological dose) of 1 alpha, 25-dihydroxycholecalciferol [1 alpha, 25 (OH)2D3], the urinary excretion of cAMP decreased to a level compatible with that of parathyroidectomized rats (approximately 60% of the initial value; P less than 0.05) and this level was sustained for nearly 24 h. Serum concentrations of calcium (total and ionized) did not change. In parathyroidectomized rats which were continuously infused with bovine PTH (1 U/h), the vitamin D metabolite had no significant effect on the urinary excretion of cAMP. 24 R, 25-dihydroxcholecalciferol (12.5 microgram/kg) had no significant effect either on the urinary excretion of cAMP or on serum calcium. These results suggest that in rats, a physiological dose of 1 alpha, 25(OH)2D3 inhibits PTH secretion without causing a significant rise iu serum calcium, reflecting a feed-back mechanism between active vitamin D metabolite, 1 alpha, 25(OH)2D3 and the parathyroid glands.  相似文献   

17.
Cell adhesion and migration on fibronectin (FN) extracellular matrix are mediated by integrin receptors. Integrins alpha5beta1 and alphavbeta3 require the RGD cell-binding sequence in FN, but alpha5beta1 also requires the nearby synergy site for maximal binding. In this study, we investigated how differences in the numbers of RGD or synergy sites within a three-dimensional (3D) FN-rich matrix influence cell adhesion and migration. CHO cell adhesion, spreading, and migration were reduced on 3D chimeric matrix containing FN lacking RGD (FN(RGD-)). Incorporation of FN with mutation of the synergy site (FN(syn-)), however, resulted in selective usage of integrins. CHO cells expressing alpha5beta1 showed decreased interactions with FN(syn-) chimeric matrix. In contrast, the presence of FN(syn-) had no effect on CHOalphavbeta3 cell migration. Interestingly, CHOalpha5/alphavbeta3 cells expressing both integrins selectively used alpha5beta1 for migration on wild type FN matrix but preferred alphavbeta3 for migration on FN(syn-) chimeric matrix. Thus sequestration or exposure of the FN synergy site within a 3D matrix may represent a novel mechanism for regulating cell functions through differential usage of integrin receptors. [Supplementary materials are available for this article. Go to the publisher's online edition of Cell Communication and Adhesion for the following free supplemental resource: a video recording shows migration of HT1080 cells on 3D matrix. HT1080 cells were allowed to attach to the matrix in serum-free DMEM for 2 h. FBS was then added to the medium to a final concentration of 10% and video recording was started. Images were taken every 5 min for 2 h. The video plays at 6 frames/s.].  相似文献   

18.
Data that demonstrate how the biology of spermatogenesis plays an important role in determining the yield of genetic damage from ionizing radiation are briefly reviewed. It is suggested that for valid extrapolations of data from mouse mutation experiments to man detailed knowledge of the spermatogonial stem cell systems in the two species is required. Two new sets of mouse specific mutation data are presented. (1) When a 2 mg/kg dose of triethylenemelamine (TEM) was used as a conditioning dose and followed 24 h later by 6 Gy X-rays, the mutation yield from spermatogonial stem cells was over twice as high (30.20 X 10(-5)/locus/gamete) as that when the X-ray dose was given alone (13.75 X 10(-5)/locus/gamete). No such effect was found when the TEM was given only 3 h prior to the X-irradiation. Since TEM at the dose used is inefficient at inducing specific-locus mutations, an augmentation of the X-ray response is indicated. It has therefore been concluded that the augmented mutation responses obtained with equal 24 h X-ray fractionations at high doses are attributable to mutation induction by the second dose. The responsive cells would be the formerly resistant component of the stem cell population that had survived the TEM treatment and that had been 'triggered' into a radiosensitive phase by the population depletion. (2) When 2 doses of 500 mg/kg hydroxyurea (HU) were given 3 h apart 3 h prior to 6 Gy X-rays to reduce the numbers of stem cells in the S and G2 phases of the cell cycle exposed to the radiation, the mutation responses was greatly enhanced to a level that is the highest yet recorded per unit X-ray dose (7.10 X 10(-5)/locus/gamete/Gy). No such effect was obtained when the intervals between the HU and X-ray treatments were either shorter (less than 0.5 h) or longer (24 h). It was concluded that X-ray-induced specific-locus mutations derive principally from stem cells in the G1 phase of the cell cycle. The reasons why the X-ray-induced mutation-yields from repopulating stem cells (with a short cell cycle and, hence, short G1 phase) are similar to those from undamaged stem cell populations, in contrast to translocation yields, therefore remains unresolved.  相似文献   

19.
Helicobacter pylori vacuolating cytotoxin A (VacA) has been considered as an apoptosis-inducing factor. Here, we investigated the mechanism of VacA-induced apoptosis in relation to the defense mechanism and MAP kinases pathway in gastric epithelial cells. AGS cells exposed to enriched VacA extracts affected the level of SOD-1 and villin. We further investigated the role of VacA in those inductions using a functional recombinant VacA (rVacA). Activation of p38 MAPK and Bax dimerization by rVacA were increased in a dose-dependent manner. rVacA-induced ERK1/2 MAPK activation was maximal at 30 min and 4 h and 1-4 microg/ml of rVacA. rVacA-induced SOD-1 expression was considerably diminished by inhibiting ERK1/2 MAPK and it was slightly increased by inhibiting p38 MAPK. rVacA increased or decreased villin expression depending on dose and exposure time and its expression was mainly appeared in the contractile actin ring of the dividing cells. Despite its cytoprotective effect, SB-203580, a p38 inhibitor, was unlikely to reduce VacA-induced Bax dimerization and rather inhibited villin and Bcl2 expression, indicating that p38 may also play a role in cell proliferation or differentiation for survival after VacA intoxication. Furthermore, p38 inhibitor accelerated rVacA-induced cell death after exposure of AGS cells to H(2)O(2) but ERK1/2 inhibitor protected cells from H(2)O(2) insult. These results suggest that SOD-1 and villin are expressed differentially upon VacA insult depending on dose and exposure time via ERK and p38 MAP kinases; decrease in SOD-1 and villin expression coupled with Bax dimerization leads to apoptosis of gastric epithelial cells.  相似文献   

20.
Survival and oncogenic transformation were studied in C3H10T1/2 cells exposed to 31 MeV protons. Total doses of 0.5, 1 and 7 Gy were delivered as single and two equal fractions with various time intervals up to 10 h between doses. With split doses as compared with single doses to a total dose of 7 Gy, survival increased by a factor of 2.5 +/- 0.2, whereas the frequency of transformation per surviving cell declined by a factor of 3.1 +/- 0.5. Maximal split-dose recovery occurred within the first 5 h for both endpoints. Further, the transformation frequency decreased by factors of 3.1 +/- 0.6 and 1.5 +/- 0.3 respectively for total doses of 0.5 and 1.0 Gy split into two equal fractions. The data for 1 and 7 Gy are compatible with data in the literature for other low LET radiations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号