首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Platelet-activating factor (PAF) is a major mediator in the induction of fatal hypovolemic shock in murine anaphylaxis. This PAF-mediated effect has been reported to be associated with PI3K/Akt-dependent eNOS-derived NO. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is phosphatidylinositol phosphate phosphatase, which negatively controls PI3K by dephosphorylating the signaling lipid, phosphatidylinositol 3,4,5-triphosphate. In this study, we examined the possible involvement of PTEN in PAF-mediated anaphylactic shock. Induction of anaphylaxis or PAF injection resulted in a rapid decrease in PTEN activity, followed by increases in PI3K activity and phosphorylation of Akt and eNOS. Systemic administration of adenoviruses carrying PTEN cDNA (adenoviral PTEN), but not the control AdLacZ, not only attenuated anaphylactic symptoms, but also reversed anaphylaxis- or PAF-induced changes in PTEN and PI3K activities, as well as phosphorylation of Akt and eNOS. We found that the decreased PTEN activity was associated with PTEN phosphorylation, the latter effect being prevented by the protein kinase CK2 inhibitor, DMAT. DMAT also inhibited anaphylactic symptoms as well as the anaphylaxis- or PAF-mediated PTEN/PI3K/Akt/eNOS signaling cascade. CK2 activity was increased by PAF. The present data provide, as the key mechanism underlying anaphylactic shock, PAF triggers the upstream pathway CK2/PTEN, which ultimately leads to the activation of PI3K/Akt/eNOS. Therefore, CK2/PTEN may be a potent target in the control of anaphylaxis and other many PAF-mediated pathologic conditions.  相似文献   

3.
The actin-binding protein p57/coronin-1, a member of the coronin protein family, is selectively expressed in hematopoietic cells and plays crucial roles in the immune response through reorganization of the actin cytoskeleton. We previously reported that p57/coronin-1 is phosphorylated by protein kinase C, and the phosphorylation down-regulates the association of this protein with actin. In this study we analyzed the phosphorylation sites of p57/coronin-1 derived from HL60 human leukemic cells by MALDI-TOF-MS, two-dimensional gel electrophoresis, and Phos-tag® acrylamide gel electrophoresis in combination with site-directed mutagenesis and identified Ser-2 and Thr-412 as major phosphorylation sites. A major part of p57/coronin-1 was found as an unphosphorylated form in HL60 cells, but phosphorylation at Thr-412 of p57/coronin-1 was detected after the cells were treated with calyculin A, a Ser/Thr phosphatase inhibitor, suggesting that p57/coronin-1 undergoes constitutive turnover of phosphorylation/dephosphorylation at Thr-412. A diphosphorylated form of p57/coronin-1 was detected after the cells were treated with phorbol 12-myristate 13-acetate plus calyculin A. We then assessed the effects of phosphorylation at Thr-412 on the association of p57/coronin-1 with actin. A co-immunoprecipitation experiment with anti-p57/coronin-1 antibodies and HL60 cell lysates revealed that β-actin was co-precipitated with the unphosphorylated form but not with the phosphorylated form at Thr-412 of p57/coronin-1. Furthermore, the phosphorylation mimic (T412D) of p57/coronin-1 expressed in HEK293T cells exhibited lower affinity for actin than the wild-type or the unphosphorylation mimic (T412A) did. These results indicate that the constitutive turnover of phosphorylation at Thr-412 of p57/coronin-1 regulates its interaction with actin.  相似文献   

4.
The tumor suppressor protein PTEN is mutated in glioblastoma multiform brain tumors, resulting in deregulated signaling through the phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB) pathway, which is critical for maintaining proliferation and survival. We have examined the relative roles of the two major phospholipid products of PI3K activity, phosphatidylinositol 3,4-biphosphate [PtdIns(3,4)P2] and phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3], in the regulation of PKB activity in glioblastoma cells containing high levels of both of these lipids due to defective PTEN expression. Reexpression of PTEN or treatment with the PI3K inhibitor LY294002 abolished the levels of both PtdIns(3, 4)P2 and PtdIns(3,4,5)P3, reduced phosphorylation of PKB on Thr308 and Ser473, and inhibited PKB activity. Overexpression of SHIP-2 abolished the levels of PtdIns(3,4,5)P3, whereas PtdIns(3,4)P2 levels remained high. However, PKB phosphorylation and activity were reduced to the same extent as they were with PTEN expression. PTEN and SHIP-2 also significantly decreased the amount of PKB associated with cell membranes. Reduction of SHIP-2 levels using antisense oligonucleotides increased PKB activity. SHIP-2 became tyrosine phosphorylated following stimulation by growth factors, but this did not significantly alter its phosphatase activity or ability to antagonize PKB activation. Finally we found that SHIP-2, like PTEN, caused a potent cell cycle arrest in G(1) in glioblastoma cells, which is associated with an increase in the stability of expression of the cell cycle inhibitor p27(KIP1). Our results suggest that SHIP-2 plays a negative role in regulating the PI3K-PKB pathway.  相似文献   

5.
Missense PTEN mutations of the active site residues Asp-92, Cys-124 and Gly-129 contribute to Cowden syndrome. How their mutations affect phospholipid phosphatase activity and tumor suppressor function of PTEN has been defined. In this study, we investigated how their mutations affect the kinetics and catalytic mechanism of PTEN phosphoprotein phosphatase activity. Our data suggest that PTEN catalysis of phosphoprotein dephosphorylation follows a two-step mechanism with Cys-124 transiently phosphorylated to form the phosphoenzyme intermediate. In spite of this, we were unable to trap the genuine phosphoenzyme intermediate; instead, we unexpectedly discovered a novel phosphotransfer reaction in which the phosphate group is transferred from a tyrosyl phosphopeptide to PTEN to form a unique phosphorylated protein. Even though the finding is novel, the phosphotransfer reaction is likely an in vitro non-enzymatic reaction. Kinetic analysis revealed that mutation of Asp-92 has negligible impacts on phosphopeptide phosphatase activity of PTEN, suggesting that Asp-92 does not participate in the phosphopeptide dephosphorylation reaction. The results also imply that allosteric regulators facilitating the recruitment of Asp-92 to participate in catalysis will increase the activity of PTEN in dephosphorylating phosphoprotein and phosphopeptide substrates. Furthermore, kinetic analysis revealed that the G129E mutation has different effects on phospholipid and phosphoprotein phosphatase activities. Taken together, the data show that while the two phosphatase activities of PTEN follow a similar catalytic mechanism, they have notable differences in the requirements of the active site structure.  相似文献   

6.
PTEN is a tumor suppressor protein that functions, in large part, by dephosphorylating the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate and by doing so antagonizing the action of phosphoinositide 3-kinase. PTEN structural domains include an N-terminal phosphatase domain, a lipid-binding C2 domain, and a 50-amino acid C-terminal tail that contains a PDZ binding sequence. We showed previously that phosphorylation of the PTEN tail negatively regulates PTEN activity. We now show that phosphorylated PTEN exists in a monomeric "closed" conformation and has low affinity for PDZ domain-containing proteins. Conversely, when unphosphorylated, PTEN is in an "open" conformation, is recruited into a high molecular weight complex (PTEN-associated complex), and strongly interacts with PDZ-containing proteins such as MAGI-2. As a consequence, when compared with wild-type PTEN, the phosphorylation-deficient mutant form of PTEN strongly cooperates with MAGI-2 to block Akt activation. These results indicate that phosphorylation of the PTEN tail causes a conformational change that results in the masking of the PDZ binding domain. Consequently, the ability of PTEN to bind to PDZ domain-containing proteins is reduced dramatically. These data suggest that phosphorylation of the PTEN tail suppresses the activity of PTEN by controlling the recruitment of PTEN into the PTEN-associated complex.  相似文献   

7.
PTEN: life as a tumor suppressor   总被引:79,自引:0,他引:79  
PTEN, a tumor suppressor located at chromosome 10q23, is mutated in a variety of sporadic cancers and in two autosomal dominant hamartoma syndromes. PTEN is a phosphatase which dephosphorylates phosphatidylinositol (3,4,5)-triphosphate (PtdIns-3,4,5-P3), an important intracellular second messenger, lowering its level within the cell. By dephosphorylating PtdIns-3,4,5-P3, PTEN acts in opposition to phosphatidylinositol 3-kinase (PI3K), which has a pivotal role in the creation of PtdIns-3,4,5-P3. PtdIns-3,4,5-P3 is necessary for the activation of Akt, a serine/threonine kinase involved in cell growth and survival. By blocking the activation of Akt, PTEN regulates cellular processes such as cell cycling, translation, and apoptosis. In this review, we will discuss the identification of PTEN, its mutational status in cancer, its role as a regulator of PI3K, and its domain structure.  相似文献   

8.
9.
The retinoblastoma tumor suppressor Rb is regulated by reversible phosphorylation that is dependent upon cyclin-dependent kinase (CDK) and protein phosphatase type 1 (PP1) activity in replicating cells. Hyperphosphorylated Rb allows cells to proliferate, whereas the hypophosphorylated isoform of Rb inhibits proliferation. Of the many phosphorylation sites of Rb, there is functional information available for a very few. In this report, we show that threonine-821 (Thr-821) of Rb is dephosphorylated earlier than other phosphorylation sites when cells are grown under hypoxic conditions which leads to Rb activation and G(1) arrest. This finding is interesting because Thr-821 of Rb remains phosphorylated throughout the cell division cycle in replicating cells. We hypothesized that the phosphorylation state of Thr-821 of Rb may depend on cellular stress. We report in this study that, when nontransformed CV1 epithelial cells and Hs578T breast cancer cells are treated with the chemotherapeutic agent cytosine arabinoside (Ara-C), Thr-821 of Rb is rapidly dephosphorylated concomitant with dissociation of the PP1 regulatory subunit PNUTS (phosphatase nuclear targeting subunit) from PP1 enzyme. These data are consistent with the concept that differential regulation of Rb-directed phosphatase activity exists when cells are progressing through the cell cycle compared to that observed when cells are under stress.  相似文献   

10.
Recent studies indicate that deoxycytidine kinase (dCK), which activates various nucleoside analogues used in antileukemic therapy, can be regulated by post‐translational modification, most probably through reversible phosphorylation. To further unravel its regulation, dCK was overexpressed in HEK‐293 cells as a His‐tag fusion protein. Western blot analysis showed that purified overexpressed dCK appears as doublet protein bands. The slower band disappeared after treatment with protein phosphatase lambda (PP λ) in parallel with a decrease of dCK activity, providing additional arguments in favor of both phosphorylated and unphosphorylated forms of dCK.  相似文献   

11.
Regulation of cellular bioenergetics by PI3K/AKT signaling was examined in isogenic hepatocyte cell lines lacking the major inhibitor of PI3K/AKT signaling, PTEN (phosphatase and tensin homolog deleted on chromosome 10). PI3K/AKT signaling was manipulated using the activator (IGF-1) and the inhibitor (LY 294002) of the PI3K/AKT pathway. Activation of PI3K/AKT signaling resulted in an enhanced anaerobic glycolysis and mitochondrial respiration. AKT, when phosphorylated and activated, translocated to mitochondria and localized within the membrane structure of mitochondria, where it phosphorylated a number of mitochondrial-resident proteins including the subunits α and β of ATP synthase. Inhibition of GSK3β by either phosphorylation by AKT or lithium chloride resulted in activation of pyruvate dehydrogenase, i.e., a decrease in its phosphorylated form. AKT-dependent phosphorylation of ATP synthase subunits α and β resulted in an increased complex activity. AKT translocation to mitochondria was associated with an increased expression and activity of complex I. These data suggest that the mitochondrial signaling pathway AKT/GSK3β/PDH, AKT-dependent phosphorylation of ATP synthase, and upregulation of mitochondrial complex I expression and activity are involved in the control of mitochondrial bioenergetics by increasing substrate availability and regulating the mitochondrial catalytic/energy-transducing capacity.  相似文献   

12.
When we were studying phosphorylated proteins in the rat brain after electroconvulsive shock (ECS), we observed the rapid phosphorylation of a 75-kDa protein, which cross-reacted with the anti-phospho-p70 S6 kinase antibody. The phosphorylated protein was purified and identified as moesin, a member of the ezrin/radixin/moesin (ERM) family and a general cross-linker between cortical actin filaments and plasma membranes. The purified moesin from rat brain was phosphorylated at serine and threonine residues. Moesin was rapidly phosphorylated at the threonine 558 residue after ECS in the rat hippocampus, peaked at 1 min, and returned to the basal level by 2 min after ECS. To investigate the mechanism of moesin phosphorylation in neuronal cells, we stimulated a rat hippocampal progenitor cell, H19-7/IGF-IR, with glutamate, and observed the increased phosphorylation of moesin at Thr-558. Glutamate transiently activated RhoA, and constitutively active RhoA increased the basal level phosphorylation of moesin. The inhibition of RhoA and its effector, Rho kinase, abolished increased Thr-558 phosphorylation by glutamate in H19-7/IGF-IR cells, suggesting that the phosphorylation of moesin at Thr-558 in H19-7/IGF-IR cells by glutamate is mediated by RhoA and Rho kinase activation.  相似文献   

13.
The leukemic T cell line Jurkat is deficient in protein expression of the lipid phosphatases Src homology 2 domain containing inositol polyphosphate phosphatase (SHIP) and phosphatase and tensin homolog deleted on chromosome ten (PTEN). We examined whether the lack of expression of SHIP-1 and PTEN is shared by other leukemic T cell lines and PBLs. Analysis of a range of cell lines and PBLs revealed that unlike Jurkat cells, two other well-characterized T cell lines, namely CEM and MOLT-4 cells, expressed the 5'-phosphatase SHIP at the protein level. However, the 3-phosphatase PTEN was not expressed by CEM or MOLT-4 cells or Jurkat cells. The HUT78 cell line and PBLs expressed both SHIP and PTEN. Jurkat cells exhibited high basal levels of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3); the lipid substrate for both SHIP and PTEN) as well as saturated protein kinase B (PKB) phosphorylation. Lower levels of PI(3,4,5)P(3) and higher levels of phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) as well as unsaturated constitutive phosphorylation of PKB were observed in CEM and MOLT-4 cells compared with Jurkat cells. In PBLs and HUT78 cells which express both PTEN and SHIP-1, there was no constitutive PI(3,4,5)P(3) or PKB phosphorylation, and receptor stimuli were able to elicit robust phosphorylation of PKB. Expression of a constitutively active SHIP-1 protein in Jurkat cells was sufficient to reduce both constitutive PKB membrane localization and PKB phosphorylation. Together, these data indicate important differences between T leukemic cells as well as PBLs, regarding expression of key lipid phosphatases. This study provides the first evidence that SHIP-1 can influence the constitutive levels of PI(3,4,5)P(3) and the activity of downstream phosphoinositide 3-kinase effectors in T lymphocytes.  相似文献   

14.
The phosphatase and tensin homologue (PTEN) tumor suppressor is a phosphatidylinositol D3-phosphatase that counteracts the effects of phosphatidylinositol 3-kinase and negatively regulates cell growth and survival. PTEN is itself regulated by phosphorylation on multiple serine and threonine residues in its C terminus. Previous work has implicated casein kinase 2 (CK2) as the kinase responsible for this phosphorylation. Here we showed that CK2 does not phosphorylate all sites in PTEN and that glycogen synthase kinase 3beta (GSK3beta) also participates in PTEN phosphorylation. Although CK2 mainly phosphorylated PTEN at Ser-370 and Ser-385, GSK3beta phosphorylated Ser-362 and Thr-366. More importantly, prior phosphorylation of PTEN at Ser-370 by CK2 strongly increased its phosphorylation at Thr-366 by GSK3beta, suggesting that the two may synergize. Using RNA interference, we showed that GSK3 phosphorylates PTEN in intact cells. Finally, PTEN phosphorylation was affected by insulin-like growth factor in intact cells. We concluded that multiple kinases, including CK2 and GSK3beta, participate in PTEN phosphorylation and that GSK3beta may provide feedback regulation of PTEN.  相似文献   

15.
The tumor suppressor phosphatase PTEN regulates cell migration, growth, and survival by dephosphorylating phosphatidylinositol second messengers and signaling phosphoproteins. PTEN possesses a C-terminal noncatalytic regulatory domain that contains multiple putative phosphorylation sites, which could play an important role in the control of its biological activity. The protein kinase CK2 phosphorylated, in a constitutive manner, a cluster of Ser/Thr residues located at the PTEN C terminus. PTEN-phosphorylated defective mutants showed decreased stability in comparison with wild type PTEN and were more rapidly degraded by the proteasome. Inhibition of PTEN phosphorylation by the CK2 inhibitor 5,6-dichloro-1-beta-d-ribofuranosyl-benzimidazole also diminished the PTEN protein content. Our results support the notion that proper phosphorylation of PTEN by CK2 is important for PTEN protein stability to proteasome-mediated degradation.  相似文献   

16.
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor that is lost in many human tumors and encodes a phosphatidylinositol phosphate phosphatase specific for the 3-position of the inositol ring. Here we report a novel mechanism of PTEN regulation. Binding of di-C8-phosphatidylinositol 4,5-P2 (PI(4,5)P2) to PTEN enhances phosphatase activity for monodispersed substrates, PI(3,4,5)P3 and PI(3,4)P2. PI(5)P also is an activator, but PI(4)P, PI(3,4)P2, and PI(3,5)P2 do not activate PTEN. Activation by exogenous PI(4,5)P2 is more apparent with PI(3,4)P2 as a substrate than with PI(3,4,5)P3, probably because hydrolysis of PI(3,4)P2 yields PI(4)P, which is not an activator. In contrast, hydrolysis of PI(3,4,5)P3 yields a potent activator, PI(4,5)P2, creating a positive feedback loop. In addition, neither di-C4-PI(4,5)P2 nor inositol trisphosphate-activated PTEN. Hence, the interaction between PI(4,5)P2 and PTEN requires specific, ionic interactions with the phosphate groups on the inositol ring as well as hydrophobic interactions with the fatty acid chains, likely mimicking the physiological interactions that PTEN has with the polar surface head groups and the hydrophobic core of phospholipid membranes. Mutations of the apparent PI(4,5)P2-binding motif in the PTEN N terminus severely reduced PTEN activity. In contrast, mutation of the C2 phospholipid-binding domain had little effect on PTEN activation. These results suggest a model in which a PI(4,5)P2 monomer binds to PTEN, initiates an allosteric conformational change and, thereby, activates PTEN independent of membrane binding.  相似文献   

17.
Fully grown Xenopus oocyte is arrested at prophase I of meiosis. Re-entry into meiosis depends on the activation of MPF (M-phase promoting factor or cyclin B.Cdc2 complex), triggered by progesterone. The prophase-arrested oocyte contains a store of Cdc2. Most of the protein is present as a monomer whereas a minor fraction, called pre-MPF, is found to be associated with cyclin B. Activation of Cdc2 depends on two key events: cyclin binding and an activating phosphorylation on Thr-161 residue located in the T-loop. To get new insights into the regulation of Thr-161 phosphorylation of Cdc2, monomeric Cdc2 was isolated from prophase oocytes. Based on its activation upon cyclin addition and detection by an antibody directed specifically against Cdc2 phosphorylated on Thr-161, we show for the first time that the prophase oocyte contains a significant amount of monomeric Cdc2 phosphorylated on Thr-161. PP2C, a Mg2+-dependent phosphatase, negatively controls Thr-161 phosphorylation of Cdc2. The unexpected presence of a population of free Cdc2 already phosphorylated on Thr-161 could contribute to the generation of the Cdc2 kinase activity threshold required to initiate MPF amplification.  相似文献   

18.
The mammalian tumor suppressor, phosphatase and tensin homologue deleted on chromosome 10 (PTEN), inhibits cell growth and survival by dephosphorylating phosphatidylinositol-(3,4,5)-trisphosphate (PI[3,4,5]P3). We have found a homologue of PTEN in the fission yeast, Schizosaccharomyces pombe (ptn1). This was an unexpected finding because yeast (S. pombe and Saccharomyces cerevisiae) lack the class I phosphoinositide 3-kinases that generate PI(3,4,5)P3 in higher eukaryotes. Indeed, PI(3,4,5)P3 has not been detected in yeast. Surprisingly, upon deletion of ptn1 in S. pombe, PI(3,4,5)P3 became detectable at levels comparable to those in mammalian cells, indicating that a pathway exists for synthesis of this lipid and that the S. pombe ptn1, like mammalian PTEN, suppresses PI(3,4,5)P3 levels. By examining various mutants, we show that synthesis of PI(3,4,5)P3 in S. pombe requires the class III phosphoinositide 3-kinase, vps34p, and the phosphatidylinositol-4-phosphate 5-kinase, its3p, but does not require the phosphatidylinositol-3-phosphate 5-kinase, fab1p. These studies suggest that a pathway for PI(3,4,5)P3 synthesis downstream of a class III phosphoinositide 3-kinase evolved before the appearance of class I phosphoinositide 3-kinases.  相似文献   

19.
The mitotic kinase Aurora A (AurA) is regulated by a complex network of factors that includes co-activator binding, autophosphorylation, and dephosphorylation. Dephosphorylation of AurA by PP2A (human, Ser-51; Xenopus, Ser-53) destabilizes the protein, whereas mitotic dephosphorylation of its T-loop (human, Thr-288; Xenopus, Thr-295) by PP6 represses AurA activity. However, AurA(Thr-295) phosphorylation is restricted throughout the early embryonic cell cycle, not just during M-phase, and how Thr-295 is kept dephosphorylated during interphase and whether or not this mechanism impacts the cell cycle oscillator were unknown. Titration of okadaic acid (OA) or fostriecin into Xenopus early embryonic extract revealed that phosphatase activity other than PP1 continuously suppresses AurA(Thr-295) phosphorylation during the early embryonic cell cycle. Unexpectedly, we observed that inhibiting a phosphatase activity highly sensitive to OA caused an abnormal increase in AurA(Thr-295) phosphorylation late during interphase that corresponded with delayed cyclin-dependent kinase 1 (CDK1) activation. AurA(Thr-295) phosphorylation indeed influenced this timing, because AurA isoforms retaining an intact Thr-295 residue further delayed M-phase entry. Using mathematical modeling, we determined that one phosphatase would be insufficient to restrict AurA phosphorylation and regulate CDK1 activation, whereas a dual phosphatase topology best recapitulated our experimental observations. We propose that two phosphatases target Thr-295 of AurA to prevent premature AurA activation during interphase and that phosphorylated AurA(Thr-295) acts as a competitor substrate with a CDK1-activating phosphatase in late interphase. These results suggest a novel relationship between AurA and protein phosphatases during progression throughout the early embryonic cell cycle and shed new light on potential defects caused by AurA overexpression.  相似文献   

20.
AMP-activated protein kinase (AMPK) is a heterotrimeric protein kinase that is crucial for cellular energy homeostasis of eukaryotic cells and organisms. Here we report on the activation of AMPK alpha1beta1gamma1 and alpha2beta2gamma1 by their upstream kinases (Ca(2+)/calmodulin-dependent protein kinase kinase-beta and LKB1-MO25alpha-STRADalpha), the deactivation by protein phosphatase 2Calpha, and on the extent of stimulation of AMPK by its allosteric activator AMP, using purified recombinant enzyme preparations. An accurate high pressure liquid chromatography-based method for AMPK activity measurements was established, which allowed for direct quantitation of the unphosphorylated and phosphorylated artificial peptide substrate, as well as the adenine nucleotides. Our results show a 1000-fold activation of AMPK by the combined effects of upstream kinase and saturating concentrations of AMP. The two AMPK isoforms exhibit similar specific activities (6 mumol/min/mg) and do not differ significantly by their responsiveness to AMP. Due to the inherent instability of ATP and ADP, it proved impossible to assay AMPK activity in the absolute absence of AMP. However, the half-maximal stimulatory effect of AMP is reached below 2 microm. AMP does not appear to augment phosphorylation by upstream kinases in the purified in vitro system, but deactivation by dephosphorylation of AMPK alpha-subunits at Thr-172 by protein phosphatase 2Calpha is attenuated by AMP. Furthermore, it is shown that neither purified NAD(+) nor NADH alters the activity of AMPK in a concentration range of 0-300 microm, respectively. Finally, evidence is provided that ZMP, a compound formed in 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside-treated cells to activate AMPK in vivo, allosterically activates purified AMPK in vitro, but compared with AMP, maximal activity is not reached. These data shed new light on physiologically important aspects of AMPK regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号