首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frizzled proteins, the receptors for Wnt ligands have seven hydrophobic transmembrane domains, a structural feature of G protein coupled receptors. Therefore a role for G proteins in the regulation of Wnt signaling has been proposed. Here I have used Xenopus oocytes to study the role of heterotrimeric G proteins in the regulation of GSK-3β and β-Catenin, two essential components of the canonical Wnt pathway. In these cells, general activators of G proteins such as GTPγ-S and AlF4 increase β-Catenin stability and decrease GSK-3β mediated phosphorylation of the microtubule associated protein, Tau. Among several members of Gα proteins tested, expression of a constitutively active mutant of Gαq (GαqQL) led to a significant increase in accumulation of β-Catenin. The stabilization of β-Catenin mediated by Gαq was reversed by a Gαq specific inhibitor, Gp-antagonist 2A, but not by a specific blocking peptide for Gαs. Expression of GαqQL also inhibited GSK-3β-mediated tau phosphorylation in Xenopus oocytes. These results support a role for the Gq class of G proteins in the regulation of Wnt/β-Catenin signal transduction.  相似文献   

2.
Abstract : Suicide and depression are associated with an increased density of α2-adrenoceptors (radioligand receptor binding) in specific regions of the human brain. The function of these inhibitory receptors involves various regulatory proteins (Gi coupling proteins and G protein-coupled receptor kinases, GRKs), which work in concert with the receptors. In this study we quantitated in parallel the levels of immunolabeled α2A-adrenoceptors and associated regulatory proteins in brains of suicide and depressed suicide victims. Specimens of the prefrontal cortex (Brodmann area 9) were collected from 51 suicide victims and 31 control subjects. Levels of α2A-adrenoceptors, Gα1/2 proteins, and GRK 2/3 were assessed by immunoblotting techniques by using specific polyclonal antisera and the immunoreactive proteins were quantitated by densitometry. Increased levels of α2A-adrenoceptors (31-40%), Gα1/2 proteins (42-63%), and membrane-associated GRK 2/3 (24-32%) were found in the prefrontal cortex of suicide victims and antidepressantfree depressed suicide victims. There were significant correlations between the levels of GRK 2/3 (dependent variable) and those of α2A-adrenoceptors and Gα1/2 proteins (independent variables) in the same brain samples of suicide victims (r = 0.56, p = 0.008) and depressed suicide victims (r = 0.54, p = 0.041). Antemortem antidepressant treatment was associated with a significant reduction in the levels of Gα1/2 proteins (32%), but with modest decreases in the levels of α2A-adrenoceptors (6%) and GRK 2/3 (18%) in brains of depressed suicide victims. The increased levels in concert of α2A-adrenoceptors, Gα1/2 proteins, and GRK 2/3 in brains of depressed suicide victims support the existence of supersensitive α2A-adrenoceptors in subjects with major depression.  相似文献   

3.
Abstract: We have suggested recently the existence of three subtypes of B2 bradykinin receptors in tissues of guinea pigs. We have classified these B2 bradykinin receptors into B2a, B2b, and B2c subtypes depending on their affinity for various bradykinin antagonists. Because the actions of bradykinin in different cell systems appear to be both dependent on and independent of G proteins, we sought to determine whether the binding of [3H]bradykinin to the B2 subtypes is sensitive to guanine nucleotides and, therefore, possibly coupled to G proteins. In the ileum, where we have demonstrated B2a and B2b subtypes, specific [3H]bradykinin binding was reduced with GDP (100 μM) and the nonmetabolized analogue of GTP, guanyl-5′-yl-imidodiphosphate (GppNHp; 100 μM). Competition studies with bradykinin and with [Hyp3]-bradykinin, which shows approximately 20-fold greater selectivity for the B2a subtype than bradykinin, were performed in the presence or absence of GppNHp (100 μM). The competition experiments demonstrated that binding to the B2a subtype, which has higher affinity for [Hyp3]-bradykinin and bradykinin than the B2b subtype, was lost in the presence of GppNHp, whereas binding to the B2b subtype was unaffected. In contrast, GppNHp (100 μM) and GDP (100 μM) failed to alter specific [3H]bradykinin binding to B2b and B2c subtypes in lung. [3H]Bradykinin binding was unaffected by AMP, ADP, ATP, and GMP (100 μM each). Based on this evidence, we suggest that the B2a bradykinin subtype is coupled to G proteins. The B2b and B2c subtypes are either not coupled to G proteins, or may be coupled to the Go-type GTP binding proteins, which have been suggested to be less sensitive to guanine nucleotides. These data provide further evidence for three subtypes of B2-type bradykinin receptors in guinea pig.  相似文献   

4.
Abstract: The identities of heterotrimeric G proteins that can interact with the μ-opioid receptor were investigated by α-azidoanilido[32P]GTP labeling of α subunits in the presence of opioid agonists in Chinese hamster ovary (CHO)-MORIVA3 cells, a CHO clone that stably expressed μ-opioid receptor cDNA (MOR-1). This clone expressed 1.01 × 106μ-opioid receptors per cell and had higher binding affinity and potency to inhibit adenylyl cyclase for the μ-opioid-selective ligands [d -Ala2,N-MePhe4,Gly-ol]-enkephalin and [N-MePhe3,d -Pro4]-morphiceptin, relative to the δ-selective opioid agonist [d -Pen2,d -Pen5]-enkephalin or the κ-selective opioid agonist U-50,488H. μ-Opioid ligands induced an increase in α-azidoanilido[32P]GTP photoaffinity labeling of four Gα subunits in this clone, three of which were identified as Gi3α, Gi2α, and Go2α. The same pattern of simultaneous interaction of the μ-opioid receptor with multiple Gα subunits was also observed in two other clones, one expressing about three times more and the other 10-fold fewer receptors as those expressed in CHO-MORIVA3 cells. The opioid-induced increase of labeling of these G proteins was agonist specific, concentration dependent, and blocked by naloxone and by pretreatment of these cells with pertussis toxin. A greater agonist-induced increase of α-azidoanilido[32P]GTP incorporation into Gi2α (160–280%) and Go2α (110–220%) than for an unknown Gα (G?α) (60%) or Gi3α (40%) was produced by three different μ-opioid ligands tested. In addition, slight differences were also found between the ability of various μ-opioid agonists to produce half-maximal labeling (ED50) of any given Gα subunit, with a rank order of Gi3α > Go2α > Gi2α = G?α. In any case, these results suggest that the activated μ-opioid receptor couples to four distinct G protein α subunits simultaneously.  相似文献   

5.
Abstract: We have demonstrated previously that D1 dopamine receptors are coupled to both Gsα and Goα. We examine here the coupling between human D5 dopamine receptors and G proteins in transfected rat pituitary GH4C1 cells. Similar to D1 receptors, cholera toxin treatment of cells reduced, but did not abolish, D5 agonist high-affinity binding sites, indicating D5 receptors couple to both Gsα and cholera toxin-insensitive G proteins. The interaction between D5 receptors and Gsα was confirmed by immunoprecipitation studies and by the ability of D5 receptors to stimulate adenylyl cyclase. Unlike D1 receptors, D5 receptors did not display any pertussis toxin-sensitive G-protein coupling to Goα or Giα. D5 receptors were also not coupled to Gqα and were unable to mediate phosphatidylinositol metabolism. Instead, D5 sites appeared to be coupled to an AIF4-sensitive, N -ethylmaleimide-resistant G protein. Anti-Gzα caused immunoprecipitation of 24.2 ± 5.2% of G protein-associated D5 receptors, indicating coupling between D5 and Gzα. The coupling to Gzα was specific for D5 receptors, because similar associations were not detected between D1 receptors and Gzα.  相似文献   

6.
It is extremely difficult to detect guanine nucleotide exchange or hydrolysis stimulated by receptors which couple to G(s)alpha. Furthermore, G(s)alpha is largely resistant to the GTPase-activating properties of RGS proteins. Coexpression of the vasopressin V(2) receptor with a series of chimeric G protein alpha subunits in which the C-terminal 6-12 amino acids of G(i1)alpha were replaced with the equivalent sequence of G(s)alpha allowed robust vasopressin-stimulated [(35)S]GTPgammaS binding. Vasopressin did not stimulate the GTPase activity of fusion proteins between the V(2) receptor and either G(s)alpha or G(i1)alpha. However, it produced a concentration-dependent stimulation of V(max) for a V(2) receptor-G(i1)alpha/Gs6alpha fusion protein. This construct bound [(3)H]vasopressin with high affinity and this was competed by other ligands with rank order anticipated for the V(2) receptor. RGS1 enhanced vasopressin stimulation of V(2) receptor-G(i1)alpha/G(s)6alpha in a concentration-dependent manner. RGS-GAIP was substantially less potent. Enzyme kinetic analysis demonstrated that RGS1 increased both V(max) of the GTPase activity and the observed K(m) for GTP, consistent with RGS1 accelerating the rate of GTP hydrolysis of the chimeric G protein, whereas the agonist vasopressin accelerates guanine nucleotide exchange. This approach provides a sensitive assay for V(2) receptor agonist ligands and may be amenable to many other G(s)alpha-coupled receptors.  相似文献   

7.
ABSTRACT

Different assay technologies are available that allow ligand occupancy of G protein coupled receptors to be converted into robust functional assay signals. Of particular interest are universal screening systems such that activation of any GPCR can be detected with a common assay end point. The promiscuous G protein Gα16 and chimeric G proteins are broadly used tools for setting up almost universal assay systems. Many efforts focused on making G proteins more promiscuous, however no attempts have been made to make promiscuos G proteins more sensitive by interfering with their cellular protein distribution. As a model system, we used a promiscuous G protein αq subunit, that lacks the highly conserved six amino acid N-terminal extension and bears four residues of αi sequence at its C-terminus replacing the corresponding αq sequence (referred to as Δ6qi4). When expressed in COS7 cells, Δ6qi4 undergoes palmitoylation at its N-terminus. Cell fractionation and immunoblotting analysis indicated localization in the particulate and cytosolic fraction. Interestingly, introduction of a consensus site for N-terminal myristoylation (the resulting mutant referred to as Δ6qi4myr) created a protein that was dually acylated and exclusively located in the particulate fraction. As a measure of G protein activation Δ6qi4 and Δ6qi4myr were coexpressed (in CHO cells) with a series of different Gi/o coupled receptors and ligand induced increases in intracellular Ca2+ release were determined with the FLIPR? technology (Fluorescence plate imaging reader from Molecular Devices Corp.). All of the receptors interacted more efficiently with Δ6qi4myr as compared with Δ6qi4. It could be shown that increased functional responses of agonist activated GPCRs are due to the higher content of Δ6qi4myr in the plasma membrane. Our results indicate that manipulation of subcellular localization of G protein α subunits—moving them from the cytosol to the plasma membrane-potentiates signaling of agonist activated GPCRs. It is concluded that addition of myristoylation sites into otherwise exclusively palmitoylated G proteins is a new and sensitive approach and may be applicable when functional assays are expected to yield weak signals as is the case when screening extracts of tissues for biologically active GPCR ligands.  相似文献   

8.
Although the subtypes of serotonin 5-HT1 receptors have distinct structure and pharmacology, it has not been clear if they also exhibit differences in coupling to cellular signals. We have sought to compare directly the coupling of 5-HT1A and 5-HT1B receptors to adenylyl cyclase and to the mitogen-activated protein kinase ERK2 (extracellular signal-regulated kinase-2). We found that 5-HT1B receptors couple better to activation of ERK2 and inhibition of adenylyl cyclase than do 5-HT1A receptors. 5-HT stimulated a maximal fourfold increase in ERK2 activity in nontransfected cells that express endogenous 5-HT1B receptors at a very low density and a maximal 13-fold increase in transfected cells expressing 230 fmol of 5-HT1B receptor/mg of membrane protein. In contrast, activation of 5-HT1A receptors stimulated only a 2.8-fold maximal activation of ERK2 in transfected cells expressing receptors at 300 fmol/mg of membrane protein but did stimulate a 12-fold increase in activity in cells expressing receptors at 3,000 fmol/mg of membrane protein. Similarly, 5-HT1A, but not 5-HT1B, receptors were found to cause significant inhibition of forskolin-stimulated cyclic AMP accumulation only when expressed at high densities. These findings demonstrate that although both 5-HT1A and 5-HT1B receptors have been shown to couple to G proteins of the Gi class, they exhibit differences in coupling to ERK2 and adenylyl cyclase.  相似文献   

9.
In cardiac myocytes, growth responses depend on activation of G protein-coupled receptors interacting with Gq/11 protein subfamily members. Endothelin receptors of the ETA subtype belong to this receptor group inducing hypertrophic responses. To understand the role of ETA receptors and signal transduction proteins in modulating cell growth, we analyzed the pharmacological profile of this receptor, its level of expression together with those of Gα subunits and the RGS2 protein in cardiomyoblasts differentiating into the cardiac phenotype. H9c2 rat cardiomyoblasts were grown in the presence of 10% fetal bovine serum (FBS) or 1% FBS plus all-trans-retinoic acid to induce the cardiac phenotype. The pharmacological properties of ETA receptors were investigated by competition-binding experiments, whereas the protein expression profile was analyzed by immunoblot and immunocytochemistry. The pharmacological profile of ETA receptors changed during differentiation of cardiomyoblasts into cardiomyocytes, and the amount of expressed receptor appeared to increase. Immunocytochemistry also showed a marked increase of receptor expression on cell membranes of differentiated cardiomyocytes. Among the other signaling proteins examined, both Gαq/11 and RGS2 expression decreased in cells with the cardiac phenotype. Our results demonstrate that the expression of key proteins (ETA receptor, Gαq/11, and RGS2) involved in signal transduction of hypertrophic stimuli is modulated during cell differentiation and correlates with the cardiac phenotype.  相似文献   

10.
Abstract: The identity and role of G proteins in coupling adenosine receptors to effectors have been studied to a limited degree. We have identified the G proteins whose GTPase activity is stimulated by adenosine receptor agonists in neuronal membranes. (R)-Phenylisopropyladenosine, 2-chloroadenosine, and N-ethylcarboxamideadenosine produced a concentration-dependent stimulation of GTPase. At 10?5M, the increase above basal GTPase in frontal cortex was 25 ± 4, 20 ± 3, and 8 ± 1%, respectively, and in the cerebellum 55 ± 2, 41 ± 4, and 22 ± 2%, respectively. The effects of (R)-phenylisopropyladenosine and 2-chloroadenosine were inhibited by (1) A1 antagonists (76–96% reduction), (2) pretreatment with pertussis toxin (90–100% reduction), and (3) antibodies raised against the α-subunit of Gi and Go (55–57% reduction by each), suggesting that A1 receptors interact equally with Gi and Go. (R)-Phenylisopropyladenosine increased the binding of a nonhydrolyzable analogue of GTP to membranes in a pertussis toxin-sensitive manner, indicative of activation of Gi or Go. Previously, (±)-Bay K 8644 enhanced GTP hydrolysis by Go but not Gi. Now we report a profound synergistic stimulation of GTPase in the presence of (R)-phenylisopropyladenosine and (±)-Bay K 8644 (10?7 to 10?5M). (±)-Bay K 8644 had no effect on nucleotide exchange and, thus, cannot activate Go. It appears that a positive cooperative stimulation of Go occurs when it is first activated by A1 receptors and subsequently interacts with the L-type Ca2+ channel.  相似文献   

11.
Proton-sensing G-protein-coupled receptors (GPCRs; OGR1, GPR4, G2A, TDAG8), with full activation at pH 6.4 ~ 6.8, are important to pH homeostasis, immune responses and acid-induced pain. Although G2A mediates the G13-Rho pathway in response to acid, whether G2A activates Gs, Gi or Gq proteins remains debated. In this study, we examined the response of this fluorescence protein-tagged OGR1 family to acid stimulation in HEK293T cells. G2A did not generate detectable intracellular calcium or cAMP signals or show apparent receptor redistribution with moderate acid (pH?≥?6.0) stimulation but reduced cAMP accumulation under strong acid stimulation (pH?≤?5.5). Surprisingly, coexpression of OGR1- and G2A-enhanced proton sensitivity and proton-induced calcium signals. This alteration is attributed to oligomerization of OGR1 and G2A. The oligomeric potential locates receptors at a specific site, which leads to enhanced proton-induced calcium signals through channels.  相似文献   

12.
Abstract: D1 and D5 dopamine receptor genes, stably expressed in GH4C1 rat somatomammotrophic cells, display identical binding values and stimulate adenylate cyclase. Approximately 60% of D1 receptors were in the agonist high-affinity state and were converted to the low-affinity state by 100 µ M guanyl-5'-ylimidodiphosphate [Gpp(NH)p]. Of the 48% of D5 receptors in the high-affinity state, only half were modulated by 100 µ M Gpp(NH)p; in the presence of the G protein activator, AlF4, the high-affinity sites of D5 receptors were abolished by Gpp(NH)p, suggesting tight coupling between D5 receptors and G proteins. The high-affinity sites of D1, but not D5, receptors were reduced after pertussis toxin treatment of cells. Thus, whereas D1 receptors in GH4C1 cells couple to both Gs, the G stimulatory protein, and a pertussis toxin-sensitive G protein, D5 receptors couple to Gs and a pertussis toxin-insensitive G protein. Neither D1 nor D5 receptors were able to stimulate phosphoinositide metabolism in these cells. The ability of D5, but not D1, receptors to couple to novel G proteins may be significant in assigning a functional role for these receptors.  相似文献   

13.
Abstract: Nociceptin/OFQ is the endogenous ligand for the G protein-coupled opioid receptor-like (ORL1) receptor. To elucidate the cellular functions of the ORL1 receptor, we examined its ability to interact with Gz and G16, two pertussis toxin (PTX)-insensitive G proteins that are known molecular partners for the opioid receptors. In HEK 293 cells transiently expressing the ORL1 and dopamine D1 receptors, nociceptin/OFQ dose-dependently inhibited dopamine-stimulated cyclic AMP (cAMP) accumulation in a PTX-sensitive manner. However, PTX failed to block the nociceptin/OFQ-induced inhibition of dopamine-stimulated cAMP accumulation in HEK 293 cells co-expressing the α-subunit of Gz. This result indicates functional interaction between the ORL1 receptor and Gz. A similar result was obtained with retinoic acid-differentiated SH-SY5Y cells, which endogenously express both the ORL1 receptor and Gz. When the ORL1 receptor was transiently co-expressed in COS-7 cells with the α-subunit of G16, nociceptin/OFQ dose-dependently stimulated the formation of inositol phosphates. Nociceptin-induced stimulation of phospholipase C was absolutely dependent on the co-expression of α16 and exhibited the appropriate ligand selectivity. In terms of its ability to interact with PTX-insensitive G proteins, the ORL1 receptor behaves very much like the opioid receptors.  相似文献   

14.
A cDNA encoding a protein with 70% amino acid identity to the previously characterized gamma-aminobutyric acidA (GABAA) receptor alpha-subunits was isolated from a rat brain cDNA library by homology screening. As observed for alpha 1-, alpha 2-, and alpha 3-subunits, coexpression of this new alpha-subunit (alpha 5) with a beta- and gamma 2-subunit in cultured cells produces receptors displaying high-affinity binding sites for both muscimol, a GABA agonist, and benzodiazepines. Characteristic of GABAA/benzodiazepine type II sites, receptors containing alpha 2-, alpha 3- or alpha 5-subunits have low affinities for several type I-selective compounds. However, alpha 5-subunit-containing receptors have lower affinities for zolpidem (30-fold) and Cl 218 872 (three-fold) than measured previously using recombinantly expressed type II receptors containing either alpha 2- or alpha 3-subunits. Based on these findings, a reclassification of the GABAA/benzodiazepine receptors is warranted.  相似文献   

15.
16.
Ultraviolet (UV) radiation induces cyclooxygenase-2 expression to produce cellular responses including aging and carcinogenesis in skin. We hypothesised that heterotrimeric G proteins mediate UV-induced COX-2 expression by stimulating secretion of soluble HB-EGF (sHB-EGF). In this study, we aimed to elucidate the role and underlying mechanism of the α subunit of Gq protein (Gαq) in UVB-induced HB-EGF secretion and COX-2 induction. We found that expression of constitutively active Gαq (GαqQL) augmented UVB-induced HB-EGF secretion, which was abolished by knockdown of Gαq with shRNA in HaCaT human keratinocytes. Gαq was found to mediate the UVB-induced HB-EGF secretion by sequential activation of phospholipase C (PLC), protein kinase Cδ (PKCδ), and matrix metaloprotease-2 (MMP-2). Moreover, GαqQL mediated UVB-induced COX-2 expression in an HB-EGF-, EGFR-, and p38-dependent manner. From these results, we concluded that Gαq mediates UV-induced COX-2 expression through activation of EGFR by HB-EGF, of which ectodomain shedding was stimulated through sequential activation of PLC, PKCδ and MMP-2 in HaCaT cells.  相似文献   

17.
Abstract: Cations of various size and charge were used as atomic scale probes of D1 and D2 dopamine receptors. Those cations that perturbed the binding of D1- and D2-selective dopamine receptor antagonists were identified by screening at 5 m M cation. Pseudo-noble-gas-configuration d-transition metals, such as zinc, exerted a complete inhibition of specific binding, whereas most other cations had little or no effect. The nature of zinc's actions was characterized by measuring the radioligand binding properties of [3H]SCH-23390 and [3H]methylspiperone to cloned D1A and D2L dopamine receptors in either the presence or absence of Zn2+. Zinc exerts a low-affinity, dose-dependent, EDTA-reversible inhibition of the binding of subtype-specific antagonists primarily by decreasing the ligands' affinity for their receptors. The mechanism of zinc inhibition appears to be allosteric modulation of the dopamine receptor proteins because zinc increases the dissociation constant ( K D) of ligand binding, Schild-type plots of zinc inhibition reach a plateau, and zinc accelerates antagonist dissociation rates. Here we demonstrate the effect of zinc on the binding of D1- and D2-selective antagonists to cloned dopamine receptors and show that the inhibition by zinc is through a dose-dependent, reversible, allosteric, two-state modulation of dopamine receptors.  相似文献   

18.
Abstract: Astrocytes have been shown to express endothelin (ET) receptors functionally coupled, via different heterotrimeric G proteins, to several intracellular pathways. To assess the relative contribution of each subtype in the astrocytic responses to ET-1, effects of BQ123, an antagonist selective for the ET receptor subtype A (ETA-R), and IRL1620, an agonist selective for the ET receptor subtype B (ETB-R), were investigated in primary cultures of rat astrocytes. Binding experiments indicated that the ETB-R is the predominant subtype in these cells. Inhibition of forskolin-stimulated cyclic AMP production was observed under ETB-R stimulation. Bordetella pertussis toxin (PTX) pretreatment completely abolished this effect, indicating that this pathway is coupled to the ETB-R via Gi protein. Increases of tyrosine phosphorylation of cellular proteins, stimulation of mitogen-activated protein kinase (MAPK), and DNA synthesis were also found to be mediated by the ETB-R, but through PTX-insensitive G protein. IRL1620-induced MAPK activation involved the adapter proteins Shc and Grb2 and the serine/threonine kinase Raf-1. This study reveals that the various effects of ET-1 in astrocytes are mediated by the ETB-R, which couples to multiple signaling pathways including the MAPK cascade.  相似文献   

19.
TRPC4 and TRPC5 channels are important regulators of electrical excitability in both gastrointestinal myocytes and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and Gαq protein coupled receptor or epidermal growth factor in particular. However, our understanding of the roles of Gαi/o proteins on TRPC4/5 channels is still rudimentary. We discuss potential roles for Gαi/o proteins in channel activation in addition to their known role in cellular signaling.  相似文献   

20.
In a previous study we showed that in vivo treatment with pertussis toxin could inhibit some, but not all, effects of adenosine in the rat hippocampus. In this study we investigated the effect of pertussis toxin on the binding of adenosine analogues to A1 receptors in rat brain. Intraventricular injection of pertussis toxin (10 micrograms into the lateral ventricle) did not affect A1 receptor binding in any brain region studied, as evaluated by autoradiography. In vitro treatment of brain sections (10 microns) with pertussis toxin for 5 h, under conditions when greater than 80% of the G proteins were ADP ribosylated, did not alter radioligand binding to adenosine A1 receptors. GTP (10 microM) virtually abolished the high-affinity agonist binding to the A1 receptor. On the other hand, in solubilized cortical membrane preparations, pertussis toxin pretreatment induced a complete shift of the A1 receptors to the low-affinity state. This suggests that the ability of pertussis toxin to affect G proteins coupled to A1 receptors in brain depends not only on the distribution of the toxin but also on the configuration of receptors and G proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号