首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The nucleotide sequence of a 1455-base pair TaqI-HinfI fragment of the rbs operon of Escherichia coli K12 has been determined. It includes the 3' terminus of rbsB (the gene for ribose-binding protein) and the entire rbsK gene, encoding ribokinase. Potential consensus promoter sequences and a stable stem-loop structure are present in the rbsB-rbsK intercistronic region. The regulatory significance of these sequence features is discussed with respect to the rbs operon. rbsK has been cloned downstream from the Serratia marcescens trp promoter on a multicopy plasmid. Cells harboring this plasmid, when grown on minimal ribose plus ampicillin, express ribokinase at the level of 2% of the soluble protein, and induction with indoleacrylic acid raises ribokinase levels another 8-fold. Ribokinase has been purified to homogeneity (216 mumol/min/mg) from a strain harboring this plasmid. Protein sequence analyses of peptides generated by cyanogen bromide cleavage and o-iodosobenzoic acid cleavage confirmed the translation initiation site and the reading frame of the DNA sequence. Amino acid compositions of native ribokinase and the C-terminal dodecapeptide agree with the predicted amino acid compositions, confirming the accuracy of the DNA sequence and the translation termination site.  相似文献   

6.
Mutational damage of the ptsH gene leads to pleiotropic disturbance of sugar utilization in Escherichia coli K12. A fruS mutation suppresses the defect because of a constitutional expression of the fruB and fruA genes. FruB protein possessing a pseudo-HPr activity replaces the HPr. It was shown that wild type allele fruS+ dominates over the fruS1156 mutation in heterozygous merodiploid. The existence of thermosensitive mutations (fruS4 and fruS12) which repair the ptsH damage was also demonstrated. The fruS mutations were located in the fru operon. Fructose utilization was not disturbed in fruS1156 mutant, but fruS2 and fruS12 mutants were unable to utilize fructose. Spontaneous mutations (fruS6 and fruS13) possessing the same phenotype at any temperature similar to the thermosensitive ones under nonpermissive conditions were isolated. They were mapped using the P1vir transduction. The fruS mutations were found in the structural gene of the fructose operon. Presumably it is the fruA gene that cods for the fructose-specific multidomain protein IIB'Bc of the phosphoenolpyruvate-dependent phosphotransferase system.  相似文献   

7.
8.
9.
Summary Multiple regulatory events are involved in the expression of the uidA gene. A regulatory region of this gene has been located on a 460 base pair Sau3A-EcoRI fragment and its nucleotide sequence was determined by the dideoxy method using pEMBL plasmids. A preliminary analysis of this sequence revealed the presence of numerous palindromic structures with some overlaps.  相似文献   

10.
Summary The complete nucleotide sequence of the Escherichia coli cybB gene for diheme cytochrome b 561 and its flanking region was determined. The cybB gene comprises 525 nucleotides and encodes a 175 amino acid polypeptide with a molecular weight of 20160. From its deduced amino acid sequence, cytochrome b 561 is predicted to be very hydrophobic (polarity 33.7%) and to have three membrane spanning regions. Histidines, canonical ligand residues for protohemes, are localized in these regions, and the heme pockets are thought to be in the cytoplasmic membrane. No significant homology of the primary structure of cytochrome b 561 with those of other bacterial b-type cytochromes was observed.  相似文献   

11.
12.
(1) The nucleotide sequence of a 1991 bp segment of DNA that expresses the GMP reductase (guaC) gene of Escherichia coli K12 was determined. (2) This gene comprises 1038 bp, 346 codons (including the initiation codon but excluding the termination codon), and it encodes a polypeptide of Mr 37,437 which is in good agreement with previous maxicell studies. (3) The sequence contains a putative promoter 102 bp upstream of the translational start codon, and this is immediately followed by a (G + C)-rich discriminator sequence suggesting that guaC expression may be under stringent control (4) The GMP reductase exhibits a high degree of sequence identity (34%) with IMP dehydrogenase (the guaB gene product) indicative of a close evolutionary relationship between the salvage pathway and the biosynthetic enzymes, GMP reductase and IMP dehydrogenase, respectively. (5) A single conserved cysteine residue, possibly involved in IMP binding to IMP dehydrogenase, was located within a region that possesses some of the features of a nucleotide binding site. (6) The IMP dehydrogenase polypeptide contains an internal segment of 123 amino acid residues that has no counterpart in GMP reductase and may represent an independent folding domain flanked by (alanine + glycine)-rich interdomain linkers.  相似文献   

13.
The dnaJ and dnaK genes are essential for replication of Escherichia coli DNA, and they constitute an operon, dnaJ being downstream from dnaK. The amount of the dnaJ protein in E. coli is substantially less than that of the dnaK protein, which is produced abundantly. In order to construct a system that over-produces the dnaJ protein, we started our study by determining the DNA sequence of the entire dnaJ gene, and an operon fusion was constructed by inserting the gene downstream of the lambda PL promoter of an expression vector plasmid, pPL-lambda. Cells containing the recombinant plasmid produced dnaJ protein amounting to 2% of the total cellular protein when cells were induced. The overproduced protein was purified, and Edman degradation of the protein indicated that the NH2-terminal methionine was found to be processed. From the DNA sequence of the dnaJ gene, the processed gene product is composed of 375 amino acid residues, and its molecular weight is calculated to be 40,975.  相似文献   

14.
Adenylosuccinate synthetase (EC 6.3.4.4), encoded by the purA gene of Escherichia coli K12, catalyzes the synthesis of adenylosuccinate (SAMP) from IMP, the first committed step in AMP biosynthesis. The E. coli K12 purA gene and flanking DNA was cloned by miniMu-mediated transduction, and the nucleotide sequence was determined. The mature SAMP synthetase subunit, as deduced from the DNA sequence, contains 427 amino acid residues and has a calculated Mr of 47,277. The size of the purA mRNA was determined by Northern blotting to be approximately 1.5 kilobase pairs. The 5'-end of the purA mRNA was identified by primer extension and is located 23 nucleotides upstream of the ATG translational initiation codon. Comparison of the purA control region with the guaBA control region revealed a common region of dyad symmetry which may suggest mutual elements of regulation. The purA control region did not resemble the control regions of the other known pur loci.  相似文献   

15.
The precise location of the rhaT gene, encoding rhamnose permease, has been established between sodA and rhaC at 3605-3607 kb of Kohara's physical map, which corresponds to 88.4 min on the Escherichia coli chromosomal map. The dependence of the activity of the rhaT product on the function of rhaC, the rhamnose operon regulatory gene, was established by measuring rhamnose transport in wild-type and rhaC-deficient strains. The sequence of the sodA-rhaC interval displayed a single ORF corresponding to rhaT, which is transcribed counterclockwise on the E. coli chromosome. The ORF was shown to be preceded by a ribosome binding consensus sequence and a catabolite repression protein consensus sequence. The derived amino acid sequence displayed very low homology with any other permease and was clearly dissimilar to the homologous group formed by the xylose, arabinose, galactose and several glucose transporters. Analysis of the rhaT primary sequence identified potential membrane-spanning regions, possibly defining a protein structure model different from the one corresponding to the above-mentioned homologous group.  相似文献   

16.
The nucleotide sequence of a 3180-base-pair segment of DNA, containing the sucA gene encoding the 2-oxoglutarate dehydrogenase component (E1o) of the 2-oxoglutarate dehydrogenase complex of Escherichia coli, has been determined by the dideoxy chain-termination method. The sucA structural gene contains 2796 base pairs (932 codons, excluding the initiation codon AUG) and encodes a polypeptide having a glutamine residue at the amino terminus, a glutamate residue at the carboxy-terminus and a calculated Mr = 104905. The predicted amino acid composition is in good agreement with published information obtained by hydrolysis of the purified enzyme. There is a striking lack of sequence homology between the 2-oxoglutarate dehydrogenase (E1o) and the corresponding pyruvate dehydrogenase (E1p), which suggests that the two components are not closely related in evolutionary terms. The location and polarity of the sucA gene, relative to the restriction map of the corresponding segment of DNA, are consistent with it being the proximal gene of the suc operon, as defined in previous genetic and post-infection labelling studies, but it could also form part of a more complex regulatory unit. The sucA gene is preceded by a segment of DNA that contains many substantial regions of hyphenated dyad symmetry including an IS-like sequence of the type that is thought to function as an intercistronic regulatory element. This segment also contains three putative RNA polymerase binding sites and a good ribosome binding site.  相似文献   

17.
Nucleotide sequence of the dcm locus of Escherichia coli K12.   总被引:3,自引:6,他引:3       下载免费PDF全文
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号