首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of hepatocyte growth factor (HGF) on intracellular Ca2+ mobilization were studied using fura-2-loaded single rat hepatocytes. Hepatocytes microperfused with different amounts of HGF responded with a rapid concentration-dependent rise in the cytosolic free Ca2+ concentration with a maximum increase of 142% at 80 ng/ml of HGF. The lag period of the Ca2+ response was decreased with increasing HGF concentrations, being 64 +/- 12 s, 42 +/- 6 s, and 14 +/- 2 s, respectively, with 8, 20, and 80 ng/ml of HGF. The detailed pattern of Ca2+ transients, however, was variable. Out of 16 cells tested using 20 ng/ml of HGF, 68% showed sustained oscillatory responses, whereas other cells showed a sustained increase in the cytosolic-free Ca2+ upon exposure to HGF, which was dependent on the presence of extracellular Ca2+. HGF also induced Ca2+ entry across the plasma membrane. Mobilization of Ca2+ by HGF was accompanied by a rapid accumulation of inositol 1,4,5-trisphosphate (Ins 1,4,5-P3). The effects of HGF and epidermal growth factor (EGF) were comparable and partly additive for Ins 1,4,5-P3 production and for the sustained phase of Ca2+ mobilization. Preincubation of cells with 10 microM of genistein to inhibit protein tyrosine kinases abolished the HGF-induced Ca2+ response and also inhibited HGF-induced Ins 1,4,5-P3 production in rat liver cells. These data indicate that early events in the signal transduction pathways mediated by HGF and EGF have in common the requirements for tyrosine kinase activity, Ins 1,4,5-P3 production, and Ca2+ mobilization.  相似文献   

2.
Isolated rat hepatocytes in primary monolayer culture were maintained for 18-24 h in the presence of 10% (v/v) serum and [3H]inositol. Vasopressin (100 nM) stimulated the production of inositol mono-, bis- and tris-phosphates (IP1, IP2, and IP3). Prior exposure of hepatocytes to 8-bromo cyclic AMP (8Br-cAMP; 100 microM), but not 8-bromo cyclic GMP, enhanced the vasopressin-mediated stimulation of inositol phosphate accumulation, but had no significant effect on their formation in the absence of vasopressin. The effect of the cyclic AMP analogue was mimicked by glucagon (10 nM), and was seen whether cyclic AMP or glucagon was added 5 min or 12 h before the addition of vasopressin. An 8 h incubation with dexamethasone (100 nM) enhanced the accumulation of IP3, but not that of IP2 or IP1, in the presence of 8Br-cAMP and vasopressin. Cycloheximide or actinomycin D had little effect on the vasopressin stimulation of inositol phosphate accumulation, after an 8 h incubation in the presence or absence of 8Br-cAMP.  相似文献   

3.
The level of inositol phosphates was measured in rat hepatocytes treated with 2-methyl-1,4-naphthoquinone (menadione) or tert-butyl hydroperoxide, which cause Ca2+ mobilization from intracellular stores and an increase in cytosolic free Ca2+ concentration. Although neither agent produced any apparent changes in the resting level of inositol phosphates, pretreatment of hepatocytes with either menadione or tert-butyl hydroperoxide, as well as with several sulfhydryl reagents, markedly inhibited the increase in inositol phosphates induced by both hormonal and nonhormonal stimuli. Addition of dithiothreitol to menadione- or tert-butyl hydroperoxide-treated hepatocytes reversed this inhibition and reestablished responsiveness to extracellular stimuli. Our findings suggest that the inhibition of the inositol phosphate response by menadione and tert-butyl hydroperoxide occurs through the modification of critical sulfhydryl group(s) and that the alterations in intracellular Ca2+ homeostasis occurring during the metabolism of menadione and tert-butyl hydroperoxide in hepatocytes are not mediated by inositol phosphates.  相似文献   

4.
Insulin and dexamethasone, usually added to culture media, play an important role in maintaining the survival of functional hepatocytes. Adenine nucleotide concentrations and energy charge values of cultured hepatocytes were determined to investigate the relationship between the beneficial effects of these hormones and the energy status of the cells. The results indicate that insulin and dexamethasone are essential in maintaining the metabolic competence of cultured hepatocytes and that this correlates with the absolute concentration of ATP rather than with the energy charge.  相似文献   

5.
The ability of the glucocorticoid dexamethasone to modulate the insulin receptor was examined directly in primary cultures of hepatocytes prepared from adult male rats. Hepatocytes were cultured in a defined medium in the presence and absence of dexamethasone, 0.1 microM. The exposure of hepatocytes to dexamethasone resulted in a time-dependent (steady state by 32 h) increase in insulin binding in both intact hepatocytes and Triton X-100-soluble extracts (total insulin receptor content). The enhanced insulin binding found in soluble extracts of dexamethasone-treated hepatocytes was the result of an increase in insulin receptor number without a change in receptor affinity. In order to assess the mechanism by which dexamethasone "up-regulates" the insulin receptor, the heavy isotope density-shift technique was used to analyze insulin receptor turnover in control and dexamethasone-treated hepatocytes. Hepatocytes were initially cultured for 32 h in standard culture media containing only "light" (14C, 12C, 1H) amino acids. In hepatocytes exposed to dexamethasone, a 417% increase in insulin binding in Triton X-100-soluble extracts was observed. After 32 h, when steady state binding is achieved in dexamethasone-treated cultures, parallel cultures of hepatocytes incubated in the absence and presence of dexamethasone were washed and subsequently cultured in media containing "heavy" amino acids (15N, 13C, 2H). The time-dependent disappearance of light insulin receptor (receptor degradation) and appearance of heavy insulin receptor (receptor synthesis) were monitored using CsCl gradients to resolve the two density species of receptor. At steady state, the rate of receptor synthesis (k8) was 2.94 and 0.62 fmol of insulin bound h-1 in dexamethasone-treated and control hepatocytes, respectively. In contrast to this large increase in the rate of receptor synthesis observed in dexamethasone-treated cells, the first order rate constant for decay (k d) was the same in dexamethasone-treated (0.074 h-1) and in control (0.077 h-1) hepatocytes. We therefore conclude that glucocorticoid-induced up-regulation of the insulin receptor in the liver is due to stimulation of insulin receptor synthesis.  相似文献   

6.
It has been suggested that tumor necrosis factor alpha (TNF-alpha) plays a pivotal role in the pathogenesis of insulin resistance. It could act directly or indirectly in liver. The aim of this study was to determine direct short time (4 h) and long time (24 h) action of TNF-alpha on amino acid transport in cultured rat hepatocytes and possible role of protein kinase C (PKC) in insulin signal pathway and insulin resistance. Hepatocytes were isolated by a modified collagenase perfusion technique and cultured for 24 h in M 199 medium. In the presence of insulin basal alpha-amino isobutyric acid (AIB) uptake was increased 55%. TNF-alpha in short time action did not change basal AIB transport, but significantly (25%) increased insulin stimulated uptake. Short time action of TNF-alpha was ameliorated by phorbol ester treatment. These results indicated that PKC activation is important in insulin signaling and TNF-alpha action. TNF-alpha acting directly did not cause insulin resistance in cultured hepatocytes.  相似文献   

7.
Isolated rat hepatocytes were prepared in KHB buffer, pH 7.4; were centrifuged and washed twice in KHB buffer containing various amounts of phosphate and calcium; and were incubated at 30 degrees in the presence of tracer [2,3-14C]succinate and a 0.5 mM concentration of each of the 20 natural amino acids. Hepatocytes washed and incubated in KHB buffer containing less than 0.1 mM phosphate failed to show any insulin stimulation of [2,3-14C]succinate oxidation or protein incorporation of tracer carbons. The absence or presence of extracellular phosphate did not alter the specific activity of 32P-adenine nucleotides; they remained the same in the presence or absence of insulin. The maximal insulin stimulatory effect on succinate oxidation and tracer incorporation into protein was observed in the presence of 1.18 mM phosphate and 1.9 mM calcium ion. The lack of external phosphate did not prevent the stimulation of succinate oxidation by either glucagon on epinephrine, whereas removal of calcium from the medium abolished their hormonal effects. The lack of medium calcium also prevented the insulin stimulation of succinate oxidation and protein synthesis. Our data indicate that a diminished insulin responsiveness in hypophosphatemic patients may be due to the insensitivity of mitochondria to insulin in the hypophosphatemic state.  相似文献   

8.
Isolated rat hepatocytes were cultured in monolayer for about 24 h. During this period the cells exhibited constant protein and lipid synthesis. When the culture medium contained compactin, a competitive inhibitor of the 3-hydroxyl-3-methylglutary-coenzyme-A reductase, dolichyl-P synthesis was inhibited by 91% at the end of the incubation, as estimated by the incorporation of [3H]acetate and by 77% as estimated by the incorporation of 32Pi. These results indicate that in primary cultures of rat hepatocytes dolichyl monophosphate is mainly synthesized through a de novo process, while phosphorylation through the CTP-mediated kinase is of limited functional importance.  相似文献   

9.
Increased dietary fat intake in general, and saturated fat specifically, will lead to the impairment of insulin action. The aim of this study was to find out the changes in hepatic glucose output in dependence of fat diet and a possible direct action of insulin and trogitazone in hepatocytes. Hepatocytes were isolated by a collagenase perfusion technique and cultured for 24 h in M 199 serum-free medium. The glucose production in hepatocytes isolated from rats on high fat diet (unsaturated fat) was 79% higher compared to control and even 139% higher than in rats on high-fat diet (saturated fat). Troglitazone significantly decreased the glucose production in hepatocytes obtained from rats on unsaturated fat diet. The troglitazone in presence of insulin totally normalized glucose production but also only in hepatocytes obtained from rats on unsaturated-fat diet. The troglitazone showed an insulinomimetic as well as insulin-sensitizing effect but only in rats on unsaturated-fat diet.  相似文献   

10.
Platelet-activating factor (PAF) stimulates glycogenolysis in perfused livers but not in isolated hepatocytes [(1984) J. Biol. Chem. 259, 8685-8688]. PAF-induced glycogenolysis in liver is associated closely with a pronounced constriction of the hepatic vasculature [(1986) J. Biol. Chem. 261, 644-649]. These and other observations suggest that PAF stimulates glycogenolysis in liver indirectly by interactions with cells other than hepatocytes. We have evaluated effects of PAF on hepatic Kupffer cells, which regulate flow through the hepatic sinusoids. Application of PAF to [3H]inositol-labeled Kupffer cells produced dose-dependent increases in [3H]inositol phosphates with an EC50 value of 4 x 10(-10) M. Increases in inositol phosphate production in response to PAF were inhibited by a specific PAF receptor antagonist, SRI 63-675 (2 x 10(-7) M), and stimulus of protein kinase C, phorbol 12-myristate 13-acetate (1 x 10(-7) M). Measurements of cytosolic free Ca2+ concentrations ([Ca2+]i) in single Kupffer cells loaded with Fura-2 demonstrated that application of PAF (2 x 10(-9) M) resulted in significant increases in [Ca2+]i. These observations lead us to propose that interactions of PAF with Kupffer cells may result in the hemodynamic and metabolic responses to PAF in liver.  相似文献   

11.
Regulation of insulin-binding and basal (insulin-independent) as well as insulin-stimulated glycogen synthesis from [14C]glucose, net glycogen deposition and glycogen synthase activation by insulin and dexamethasone were studied in primary cultures of adult rat hepatocytes maintained under chemically defined conditions. (1) Insulin receptor number was increased in a dose-dependent fashion by dexamethasone added to the medium between 24 and 48 h of culture and reduced by insulin, whereas ligand affinity remained unaltered. Insulin-induced down-regulation of insulin receptors was not affected by the glucocorticoid. (2) Although the changes in the sensitivity to insulin of glycogen synthesis from glucose and net glycogen deposition paralleled the modulation of the number of insulin receptors, postbinding events appear to be implicated also in the regulation of insulin-sensitivity. (3) Alterations of the responsiveness of glycogen synthesis to insulin caused by the glucocorticoid and/or insulin and by variation between individual rats were inversely related to cellular glycogen contents, suggesting that hepatocellular glycogen content participates in the regulation of insulin-responsiveness of this metabolic pathway. (4) Regulation of insulin-independent glycogenesis in response to an increase from 5 to 10 mM glucose, and of insulin-dependent glycogen synthesis were different. Since the effects of this ‘physiological’ increase in exogenous glucose were small compared to the acute action of insulin, insulin rather than portal venous glucose is considered to represent the prime stimulator of hepatic glycogen synthesis.  相似文献   

12.
Regulation of insulin-binding and basal (insulin-independent) as well as insulin-stimulated glycogen synthesis from [14C]glucose, net glycogen deposition and glycogen synthase activation by insulin and dexamethasone were studied in primary cultures of adult rat hepatocytes maintained under chemically defined conditions. Insulin receptor number was increased in a dose-dependent fashion by dexamethasone added to the medium between 24 and 48 h of culture and reduced by insulin, whereas ligand affinity remained unaltered. Insulin-induced down-regulation of insulin receptors was not affected by the glucocorticoid. Although the changes in the sensitivity to insulin of glycogen synthesis from glucose and net glycogen deposition paralleled the modulation of the number of insulin receptors, postbinding events appear to be implicated also in the regulation of insulin-sensitivity. Alterations of the responsiveness of glycogen synthesis to insulin caused by the glucocorticoid and/or insulin and by variation between individual rats were inversely related to cellular glycogen contents, suggesting that hepatocellular glycogen content participates in the regulation of insulin-responsiveness of this metabolic pathway. Regulation of insulin-dependent glycogen synthesis were different. Since the effects of this 'physiological' increase in exogenous glucose were small compared to the acute action of insulin, insulin rather than portal venous glucose is considered to represent the prime stimulator of hepatic glycogen synthesis.  相似文献   

13.
The regulation of RNA degradation by specific amino acids and insulin was investigated in cultured rat hepatocytes from fed rats previously injected in vivo with [6-14C]orotic acid. The effects of three groups of amino acids were compared to those of a complete amino acid mixture. The first one consisted of the eight amino acids (leucine, proline, glutamine, histidine, phenylalanine, tyrosine, methionine, tryptophan) previously found to be particularly effective in the control of proteolysis. The two other groups were defined from our study with single additions of amino acids, one consisting of proline, asparagine, glutamine, alanine, phenylalanine, and leucine and the other including the latter group with serine, histidine, and tyrosine. The results showed that these three groups were able to strongly inhibit deprivation-induced RNA breakdown at one and ten times normal plasma concentrations but to a lower extent than the complete amino acid mixture. Six amino acids (proline, asparagine, glutamine, alanine, phenylalanine, leucine) inhibited individually RNA degradation by more than 20%. However, the deletions of proline, asparagine, glutamine, or alanine from the group of these six amino acids were not followed by a loss of inhibitory effect. On the contrary, an important loss of inhibition was observed when leucine and phenylalanine were deleted. Furthermore, only these two amino acids exhibited an additive inhibitory effect. Thus leucine and phenylalanine could be considered as important inhibitors of RNA breakdown in cultured rat hepatocytes. Finally, insulin which had no significant effect on RNA degradation in the absence of amino acids, was able to potentiate the inhibitory effect of different amino acid groups. © 1993 Wiley-Liss, Inc.  相似文献   

14.
The present study was conducted to examine an involvement of G protein in the action of activin A in rat parenchymal liver cells. Activin A induced a dose-dependent increase in inositol phosphates in cells prelabelled with [3H]inositol. The effect of activin A was completely blocked by pretreatment of the cells with pertussis toxin. In contrast, pertussis toxin had little effect on angiotensin II-induced production of inositol phosphates. Both activin A and angiotensin II inhibited glucagon-mediated production of cAMP. Pretreatment of the cells with pertussis toxin blocked the inhibition induced by both activin A and angiotensin II. In permeabilized cells, activin A augmented production of inositol phosphates. Activin-mediated production of inositol trisphosphate was enhanced by GTP-gamma S and was attenuated by GDP-beta S. These results suggest that a pertussis toxin-sensitive G protein(s) may be involved in the action of activin A in hepatocytes.  相似文献   

15.
Pharmacomechanical coupling of vascular smooth muscle is believed to be mediated by inositol trisphosphate (IP3). Numerous studies have demonstrated an increase in inositol phosphates following tissue stimulation using either intact aortic strips or cultured cells from aorta. However, little information is available concerning inositol phosphates in vascular tissue other than in the large conduit vessel, the aorta. This present study was designed to examine the role of inositol phosphate metabolism following adrenergic stimulation of the muscular rat tail artery as compared to the aorta. Segments of thoracic aorta and tail artery from male Sprague Dawley rats were labeled with [3H]inositol and stimulated with norepinephrine. The norepinephrine concentration that resulted in a half-maximal stimulation of inositol phosphates was approximately 10(-6) M in both the aorta and tail artery. Although the sensitivity of the two vessels to norepinephrine stimulation were similar, the stimulated levels of IP, IP2, and IP3 were from 1 to 2 orders of magnitude greater in the tail artery than in aorta. IP production in aorta and tail artery was a linear function of time (from 0 to 30 min). Significant levels of IP3 (the 1,4,5-IP3 isomer as determined by HPLC) could only be detected in the tail artery and appeared to be produced optimally after 5 min of stimulation. The several order of magnitude increase in adrenergic stimulated inositol phosphate production in the tail artery was not due to either an increased magnitude of [3H]inositol incorporated into PI, PIP, and PIP2 or to a greater percentage of smooth muscle cells per unit tissue of the rat tail artery. We believe the results of this study demonstrate that the increased inositol phosphate metabolism in the vascular smooth muscle cells of the tail artery is an intrinsic property of the cell. Moreover, due to the significant levels of all inositol phosphates produced in the tail artery, this muscular artery may be a better model, as compared to the aorta, for future studies investigating pharmacomechanical coupling of vascular smooth muscle.  相似文献   

16.
Evidence for a direct metabolic effect of insulin in isolated liver preparations is scarce. The stimulation of glycolysis by insulin previously demonstrated in monolayer cultures of adult rat hepatocytes [(1982) Eur. J. Biochem. 126, 271-278] was further investigated. The degree of stimulation varied with the age of the culture and amounted to 250%, 200%, 500% and 200% of the control value using cells at the culture age of 2 h, 24 h, 48 h, and 72 h, respectively. Half-maximal dose of insulin was 0.1 nM. Maximal stimulation was reached within 5 min and lasted for at least 4 h. Dexamethasone acted both as a long-term and short-term modulator. Long-term pretreatment of the cells with dexamethasone proved necessary to permit insulin action. In addition to this permissive action, pretreatment with dexamethasone reduced the insulin-independent basal glycolytic rate. In short-term experiments dexamethasone decreased the basal glycolytic flux, however, it did not affect the absolute increase in glycolysis brought about by insulin. The half-maximal dose of dexamethasone was 10 nM. The stimulatory effects of insulin may in part be attributed to the activation of pyruvate kinase. Insulin produced a left-shift of the substrate saturation curve, decreasing the K0.5 value for phosphoenolpyruvate.  相似文献   

17.
The influence of cortisol and other culture conditions on insulin degradation by the chloroquine-sensitive pathway and the chloroquine-nonsensitive pathway (CNP) was investigated in fetal rat hepatocytes during 3 days of culture. The proportions of the chloroquine nonsensitive release of 125I-insulin degradation products into the conditioned medium/h increased from the 1st to the 3rd day of culture, i.e. from 19 to 50% by cells grown in the presence of cortisol and from 17 to 82% by those grown in the absence of cortisol. Replacement of the conditioned medium with the respective fresh medium dramatically enhanced cellular insulin degradation by CNP, i.e. from 22 to 58%, and 19 to 85% in cells grown for 2 days in the presence and absence of cortisol, respectively. Thus, the conditioned medium contained some factor(s) that inhibited CNP. Therefore, we used the inhibited insulin and alpha-casein degradation by papain in vitro as an assay to investigate the nature of the putative anti-(insulin) protease. Cycloheximide completely prevented the appearance of anti-papain activity in the medium. Conditioned medium obtained from cells grown in the presence of cortisol contained about 2-fold more anti-papain activity than the medium that was obtained in the absence of the steroid. The release of anti-papain activity also declined with time from 1 to 3 days of culture and showed an inverse relationship with the magnitude of cellular insulin degradation by CNP. The inhibition of papain-mediated insulin degradation by the anti-(insulin) protease was noncompetitive. The anti-(insulin) protease was nondialyzable (up to the 10-kDa exclusion limit) and inactivated by heat treatment at 50 degrees C for 30 min. These results suggest that fetal hepatocytes synthesize and secrete a glucocorticoid-regulated heat-labile low molecular mass (less than 25 kDa) anti-(insulin) protease, which may contribute to the suppression of insulin degradation caused by the enzymes involved in CNP.  相似文献   

18.
The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on serotonin-induced inositol phosphate (IP) accumulation and intracellular free Ca2+ concentrations [( Ca2+]i) was investigated in cultured rat vascular smooth muscle cells. Pretreatment with TPA had no effect on basal levels of both IP production and [Ca2+]i, whereas it significantly attenuated serotonin-induced increases in both IP production and [Ca2+]i. These data suggest that protein kinase C is involved in the negative feedback control of serotonin-induced rises in both IP production and [Ca2+]i.  相似文献   

19.
Long-term (24–48 h) and short-term (10–30 min) regulation by hormones of hepatic pyruvate kinase activity was investigated in adult rat hepatocytes cultured under serum-free conditions. In the absence of hormones, pyruvate kinase total activity decreased to 83%, 67% and 39% of the initial level at 24, 48 and 72 h of culture. Insulin (100 nM) maintained total activity significantly above control levels throughout this period. In contrast, glucagon (100 nM) and dexamethasone (100 nM) accelerated the gradual decrease within 24 h (glucagon) or 48 h (dexamethasone) of culture. In these long-term experiments, activity at non-saturating concentrations of phosphoenolpyruvate was decreased by glucagon and dexamethasone but not directly modulated by insulin. However, insulin increased the cellular content of the pyruvate kinase activator fructose-1,6-diphosphate. In short-term experiments on cells cultured under serum- and hormone-free conditions for 48 h, both glucagon and dexamethasone independently caused a rapid, dose-dependent increase of the K0.5 for phosphoenolpyruvate within 10 min, while Vmax was not affected. Insulin inhibited this action of glucagon and dexamethasone and, in their absence, significantly increased substrate affinity for phosphoenolpyruvate within 30 min. Cellular fructose-1,6-diphosphate contents remained unchanged under these conditions. The data identify glucocorticoids and insulin - in addition to glucagon - as short-term regulators of the catalytic properties of pyruvate kinase. All three hormones are effective in the long-term control of total enzyme activity.  相似文献   

20.
The effects of colchicine, an inhibitor of microtubule polymerization, on the maintenance of steady state binding of insulin to isolated hepatocytes was studied. Colchicine (10?5M) produced a 35–45% decrease in binding in presence of insulin (10?8M) at 37°C. This decrease in binding was time and temperature dependent. The decrease was also dependent on the amount of insulin bound to the cell. The results suggest that colchicine may prevent the maintenance of steady state binding of insulin by impairing transfer of newly synthesized or recycled receptor from within the cell to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号