首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current clinically approved thrombolytic agents have significant drawbacks including reocclusion and bleeding complications. To address these problems, a staphylokinase-based thrombolytic agent equipped with antithrombotic activity from hirudin was engineered. Because the N termini for both staphylokinase and hirudin are required for their activities, a Y-shaped molecule is generated using engineered coiled-coil sequences as the heterodimerization domain. This agent, designated HE-SAKK, was produced and assembled from Bacillus subtilis via secretion using an optimized co-cultivation approach. After a simple in vitro treatment to reshuffle the disulfide bonds of hirudin, both staphylokinase and hirudin in HE-SAKK showed biological activities comparable with their parent molecules. This agent was capable of targeting thrombin-rich fibrin clots and inhibiting clot-bound thrombin activity. The time required for lysing 50% of fibrin clot in the absence or presence of fibrinogen was shortened 21 and 30%, respectively, with HE-SAKK in comparison with staphylokinase. In plasma clot studies, the HE-SAKK concentration required to achieve a comparable 50% clot lysis time was at least 12 times less than that of staphylokinase. Therefore, HE-SAKK is a promising thrombolytic agent with the capability to target thrombin-rich fibrin clots and to minimize clot reformation during fibrinolysis.  相似文献   

2.
On the mechanism of fibrin-specific plasminogen activation by staphylokinase   总被引:10,自引:0,他引:10  
The mechanism of plasminogen activation by recombinant staphylokinase was studied both in the absence and in the presence of fibrin, in purified systems, and in human plasma. Staphylokinase, like streptokinase, forms a stoichiometric complex with plasminogen that activates plasminogen following Michaelis-Menten kinetics with Km = 7.0 microM and k2 = 1.5 s-1. In purified systems, alpha 2-antiplasmin inhibits the plasminogen-staphylokinase complex with k1(app) = 2.7 +/- 0.30 x 10(6) M-1 s-1 (mean +/- S.D., n = 12), but not the plasminogen-streptokinase complex. Addition of 6-aminohexanoic acid induces a concentration-dependent reduction of k1(app) to 2.0 +/- 0.17 x 10(4) M-1 s-1 (mean +/- S.D., n = 5) at concentrations greater than or equal to 30 mM, with a 50% reduction at a 6-aminohexanoic acid concentration of 60 microM. Staphylokinase does not bind to fibrin, and fibrin stimulates the initial rate of plasminogen activation by staphylokinase only 4-fold. Staphylokinase induces a dose-dependent lysis of a 0.12-ml 125I-fibrin-labeled human plasma clot submersed in 0.5 ml of citrated human plasma; 50% lysis in 2 h is obtained with 17 nM staphylokinase and is associated with only 5% plasma fibrinogen degradation. Corresponding values for streptokinase are 68 nM and more than 90% fibrinogen degradation. In the absence of a fibrin clot, 50% fibrinogen degradation in human plasma in 2 h requires 790 nM staphylokinase, but only 4.4 nM streptokinase. These results suggest the following mechanism for relatively fibrin-specific clot lysis with staphylokinase in a plasma milieu. In plasma in the absence of fibrin, the plasminogen-staphylokinase complex is rapidly neutralized by alpha 2-antiplasmin, thus preventing systemic plasminogen activation. In the presence of fibrin, the lysine-binding sites of the plasminogen-staphylokinase complex are occupied and inhibition by alpha 2-antiplasmin is retarded, thus allowing preferential plasminogen activation at the fibrin surface.  相似文献   

3.
In this report, we demonstrate an interaction between subtilisin NAT (formerly designated BSP, or nattokinase), a profibrinolytic serine proteinase from Bacillus subtilis, and plasminogen activator inhibitor 1 (PAI-1). Subtilisin NAT was purified to homogeneity (molecular mass, 27.7 kDa) from a saline extract of B. subtilis (natto). Subtilisin NAT appeared to cleave active recombinant prokaryotic PAI-1 (rpPAI-1) into low molecular weight fragments. Matrix-assisted laser desorption/ionization in combination with time-of-flight mass spectroscopy and peptide sequence analysis revealed that rpPAI-1 was cleaved at its reactive site (P1-P1': Arg(346)-Met(347)). rpPAI-1 lost its specific activity after subtilisin NAT treatment in a dose-dependent manner (0.02-1.0 nm; half-maximal effect at approximately 0.1 nm). Subtilisin NAT dose dependently (0.06-1 nm) enhanced tissue-type plasminogen activator-induced fibrin clot lysis both in the absence of rpPAI-1 (48 +/- 1.4% at 1 nm) and especially in the presence of rpPAI-1 (78 +/- 2.0% at 1 nm). The enhancement observed in the absence of PAI-1 seems to be induced through direct fibrin dissolution by subtilisin NAT. The stronger enhancement by subtilisin NAT of rpPAI-1-enriched fibrin clot lysis seems to involve the cleavage and inactivation of active rpPAI-1. This mechanism is suggested to be important for subtilisin NAT to potentiate fibrinolysis.  相似文献   

4.
A novel triple-kringle plasminogen activator protein, PK1 delta FE1X, has been produced which is a genetic chimera between the fibrin binding kringle 1 domain of plasminogen and the two kringles and serine protease domains of naturally occurring wild-type tissue plasminogen activator (wt t-PA). This chimera also contains a modification to prevent high mannose type N-linked glycosylation on kringle 1 of t-PA. PK1 delta FE1X is biochemically and fibrinolytically similar to wt t-PA in vitro but retains the decreased plasma clearance rate characteristic of other t-PA variants which lack fibronectin finger-like and epidermal growth factor domains. The serine protease domain of PK1 delta FE1X exhibits the amidolytic activity characteristic of wt t-PA. In an indirect coupled plasminogen activator assay, the specific activity of PK1 delta FE1X is approximately 1.4 times greater than that of wt t-PA. In a fibrin film-binding assay, greater binding to untreated fibrin is observed with wt t-PA than with PK1 delta FE1X. However, following limited plasmin digestion of the fibrin film, PK1 delta FE1X binding increases to the level observed with wt t-PA. The incremental binding to plasmin-digested fibrin observed with PK1 delta FE1X is eliminated if plasmin digestion of the fibrin film is followed by carboxypeptidase B treatment. This result suggests that plasminogen kringle 1 binds plasmin-digested fibrin even after recombination with a heterologous protein. The fibrinolytic activity of PK1 delta FE1X in human plasma clot lysis assays was similar to that of wt t-PA at activator concentrations of approximately 1 microgram/ml. At substantially lower concentrations, approximately 0.1 microgram/ml, PK1 delta FE1X was only slightly less active than wt t-PA. Pharmacokinetic analysis showed that wt t-PA activity is cleared approximately 15 times as rapidly as PK1 delta FE1X following intravenous bolus injection. In a rabbit jugular vein clot lysis model, intravenous bolus injection of 0.06 mg/kg of PK1 delta FE1X showed greater thrombolytic potency than a similar administration of 0.5 mg/kg of wt t-PA. Thus it appears that in vitro exon shuffling techniques can be used to generate novel fibrinolytic agents which biochemically and pharmacologically represent the combination of individual domains of naturally occurring proteins.  相似文献   

5.
The family 2a carbohydrate-binding module (CBM), Cel5ACBM2a, from the C-terminus of Cel5A from Cellulomonas fimi, and Xyn10ACBM2a, the family 2a CBM from the C-terminus of Xyn10A from C. fimi, were compared as fusion partners for proteins produced in the methylotrophic yeast Pichia pastoris. Gene fusions of murine stem-cell factor (SCF) with both CBMs were expressed in P. pastoris. The secreted SCF-Xyn10ACBM2a polypeptides were highly glycosylated and bound poorly to cellulose. In contrast, fusion of SCF to Cel5ACBM2a, which lacks potential N-linked glycosylation sites, resulted in the production of polypeptides which bound tightly to cellulose. Cloning and expression of these CBM2a in P. pastoris without a fusion partner confirmed that N-linked glycosylation at several sites was responsible for the poor cellulose binding. The nonglycosylated CBMs produced in E. coli had very similar cellulose-binding properties.  相似文献   

6.
In a previous report we showed that plasmin-dependent lysis of a fibrin polymer, produced from purified components, was totally blocked if annexin II heterotetramer (AIIt) was present during fibrin polymer formation. Here, we show that AIIt inhibits fibrin clot lysis by stimulation of plasmin autodegradation, which results in a loss of plasmin activity. Furthermore, the C-terminal lysine residues of its p11 subunit play an essential role in the inhibition of fibrin clot lysis by AIIt. We also found that AIIt binds to fibrin with a K(d) of 436 nm and a stoichiometry of about 0.28 mol of AIIt/mol of fibrin monomer. The binding of AIIt to fibrin was not dependent on the C-terminal lysines of the p11 subunit. Furthermore, in the presence of plasminogen, the binding of AIIt to fibrin was increased to about 1.3 mol of AIIt/mol of fibrin monomer, suggesting that AIIt and plasminogen do not compete for identical sites on fibrin. Immunohistochemical identification of p36 and p11 subunits of AIIt in a pathological clot provides important evidence for its role as a physiological fibrinolytic regulator. These results suggest that AIIt may play a key role in the regulation of plasmin activity on the fibrin clot surface.  相似文献   

7.
8.
Human Csk Homologous Kinase (CHK), a protein of 527 amino acid residues, is involved in suppression of breast tumors. The kinase domain of CHK (amino acid residues 228 to 485) expressed with C-terminal 6HIS fusion in Pichia pastoris is heavily glycosylated. Expression of the C-terminal 6HIS fused kinase domain of CHK, with an N-terminal glutathione S-transferase fusion, in Pichia pastoris alleviated the hyperglycosylation. The expressed protein was purified by affinity chromatography to 1 mg l(-1) culture and remained active. A simple plate assay to identify colonies of P. pastoris expressing the recombinant protein is also presented.  相似文献   

9.
The role of Asn-linked oligosaccharide in the functional properties of both human tissue-type plasminogen activator (t-PA) and a genetic variant of t-PA was studied. Nonglycosylated and glycosylated wild-type t-PA were produced in mammalian cells which express recombinant t-PA. These proteins were compared in fibrin binding and 125I-labeled fibrin clot lysis assays, using purified components. The nonglycosylated form showed higher fibrin binding, as well as higher fibrinolytic potency than the glycosylated form. Subsequently, prevention of glycosylation of a t-PA variant which lacked the finger and epidermal growth factor domains (delta FE), was carried out in an attempt to enhance its fibrinolytic activity. Glycosylation was prevented by changing Asn to Gln; at Asn-117 to produce delta FE1X t-PA, and at Asn-117, -184, and -448 to produce delta FE3X t-PA. All variants were similar to wild-type t-PA in their catalytic dependence on fibrinogen fragments, fibrinolytic activity in fibrin autography analysis, and plasminogen activator activity. In a clot lysis assay, using citrated human plasma, the fibrinolytic potency of the variants were comparable to that of wild-type t-PA at activator concentrations of 17-51 nM (approximately 1-3 micrograms/ml). At 0.5-5.1 nM (approximately 0.03-0.3 micrograms/ml), however, the variant proteins had lower fibrinolytic potency than wild-type t-PA. Fifty percent lysis in 1.5 h for wild-type, delta FE, delta FE1X, and delta FE3X t-PA, required 2.5, 10, 7.5, and 5.5 nM t-PA, respectively. The fibrinogenolytic activity in human plasma was measured for wild-type, delta FE, delta FE1X, and delta FE3X t-PA, and showed significant fibrinogen depletion after 3 h of incubation at 51 nM, decreasing to 11, 11, 50, and 72% of basal levels, respectively. These data indicate that partial or total nonglycosylated t-PA variants have a higher fibrinolytic versus fibrinogenolytic ratio than their fully glycosylated counterparts.  相似文献   

10.
Galleria mellonella juvenile hormone binding protein (JHBP) is a single chain glycoprotein with two disulfide bonds and a molecular mass of 25,880 Da. This report describes the expression of JHBP in bacteria and yeast cells (Pichia pastoris). The expression in bacteria was low and the protein was rapidly degraded upon cell lysis. The expression of His8-tagged rJHBP (His8-rJHBP) in P. pastoris was high and the non-degraded protein was purified to homogeneity with high yield in a one-step immobilized Ni++ affinity chromatography. His8-rJHBP from P. pastoris contains one JH III binding site with KD of 3.7 +/- 1.3x10(-7) M. The results suggest that P. pastoris is the preferred system for expression of His8-rJHBP in non-degraded fully active form.  相似文献   

11.
Both glycosylated and nonglycosylated forms of recombinant human prourokinase were produced to the level of 20 mg/L by yeast Pichia pastoris in BMMY medium after 2 days of culture. The expressed pro-UK was 98% secreted into the culture medium and easily purified by carboxymethyl cellulose chromatography. More than 99% of pro-UK in the culture medium was found in single-chain form. This was contradictory to a previous finding which found that glycosylation of pro-UK by yeast inhibited its secretion. The absence of glycosylation at Asn302 of pro-UK has no measurable effect on its secretion from the yeast cells. However, the nonglycosylated pro-UK was much less stable in the culture medium, probably due to proteolysis. Nonglycosylated pro-UK from yeast had a clot lysing activity comparable to that of Escherichia coli-derived or mammalian cell-derived recombinant pro-UK. By contrast, the glycosylated yeast pro-UK was less activatable by plasmin and had a lower enzymatic activity against plasminogen and a lower clot lysing activity than nonglycosylated pro-UK from yeast, while their amidolytic activity against S2444 was equivalent. It was concluded that glycosylation of pro-UK by yeast P. pastoris interferes with the catalytic site but not secretion of this protein.  相似文献   

12.
Serum IgE directed against Der f 1, a protease found in the feces of Dermatophagoides farinae, correlates well with allergic sensitization to house dust mite in humans and is a risk factor for developing asthma. Native Der f 1 (nDer f 1) is produced as a pre-pro form and processed to an approximately 25-kDa mature form. We have expressed recombinant forms of Der f 1 (rDer f 1) in Pichia pastoris using AOX1-promoter expression vectors. Fusion of either the pro-enzyme form or the mature form to the Saccharomyces cerevisiae alpha factor pre-pro sequence resulted in secretion of the mature form of the protein from P. pastoris. The secreted protein was heterogeneously glycosylated at a single N-glycosylation site and had an apparent molecular mass of 35-50 kDa. Both the alpha factor signal peptide and the pro-enzyme region were efficiently processed during secretion. A version of the pro-enzyme with a mutated consensus N-linked glycosylation site was secreted from P. pastoris as a mature, unglycosylated, approximately 25-kDa protein. The IgE binding activity of this unglycosylated rDer f 1 was similar to that of glycosylated forms produced by P. pastoris and to nDer f 1 obtained from mites. Thus, oligosaccharides are not required for secretion from P. pastoris or for IgE binding in vitro. Recombinant and native versions of Der f 1 displayed protease activity on casein zymogram gels. The availability of a highly purified recombinant Der f 1 will facilitate experimental and clinical studies of mite allergy.  相似文献   

13.
Sixty-four variants of human tissue-type plasminogen activator (tPA) were produced using recombinant DNA techniques. Charged residues were converted to alanine in clusters of from one to four changes per variant; these clusters spanned all the domains of the molecule. The variants were expressed by mammalian cells and were analyzed for a variety of properties. Variants of tPA were found that had reduced activity with respect to each tested property; in a few cases increased activity was observed. Analysis of these effects prompted the following conclusions: 1) charged residues in the nonprotease domains are less involved in fibrin stimulation of tPA activity than those in the protease domain, and it is possible to increase the fibrin specificity (i.e. the stimulation of tPA activity by fibrin compared to fibrinogen) by mutations at several sites in the protease domain; 2) the difference in enzymatic activity between the one- and two-chain forms of tPA can be increased by mutations at several sites on the protease domain; 3) binding of tPA to lysine-Sepharose was affected only by mutations to kringle-2, whereas binding to fibrin was affected most by mutations in the other domains; 4) clot lysis was influenced by mutations in all domains except kringle-2; 5) sensitivity to plasminogen activator inhibitor-1 seems to reside exclusively in the region surrounding residue 300. A model of the tPA protease domain has been used to map some of the critical residues and regions.  相似文献   

14.

Background  

Although staphylokianse (SAK) is among the most promising blood dissolving agents, it is far from ideal. It is interesting to hypothesize that the clot lysis efficacy of SAK can be enhanced with direct active platelet binding ability, and at the same time the rethrombosis complication after successful recanalization can be minimized with an antiplatelet aggregation activity. The present study was performed to characterize the functional properties of RGD-SAK, a novel mutant of staphylokinase (SAK).  相似文献   

15.
Triticum aestivum xylanase inhibitor I (TAXI-I) is a wheat protein that inhibits microbial xylanases belonging to glycoside hydrolase family 11. In the present study, recombinant TAXI-I (rTAXI-I) was successfully produced by the methylotrophic yeast Pichia pastoris at high expression levels (approximately 75 mg/L). The rTAXI-I protein was purified from the P. pastoris culture medium using cation exchange and gel filtration chromatographic steps. rTAXI-I has an iso-electric point of at least 9.3 and a mass spectrometry molecular mass of 42,013 Da indicative of one N-linked glycosylation. The recombinant protein fold was confirmed by circular dichroism spectroscopy. Xylanase inhibition by rTAXI-I was optimal at 20-30 degrees C and at pH 5.0. rTAXI-I still showed xylanase inhibition activity at 30 degrees C after a 40 min pre-incubation step at temperatures between 4 and 70 degrees C and after 2 h pre-incubation at room temperature at a pH ranging from 3.0 to 12.0, respectively. All tested glycoside hydrolase family 11 xylanases were inhibited by rTAXI-I whereas those belonging to family 10 were not. Specific inhibition activities against family 11 Aspergillus niger and Bacillus subtilis xylanases were 3570 and 2940IU/mg protein, respectively. The obtained biochemical characteristics of rTAXI-I produced by P. pastoris (no proteolytical cleft) were similar to those of natural TAXI-I (mixture of proteolytically processed and non-processed forms) and non-glycosylated rTAXI-I expressed in Escherichia coli. The present results show that xylanase inhibition activity of TAXI-I is only affected to a limited degree by its glycosylation or proteolytic processing.  相似文献   

16.
Plasma kallikrein is a serine protease that has many important functions, including modulation of blood pressure, complement activation, and mediation and maintenance of inflammatory responses. Although plasma kallikrein has been purified for 40 years, its structure has not been elucidated. In this report, we described two systems (Pichia pastoris and baculovirus/Sf9 cells) for expression of the protease domain of plasma kallikrein, along with the purification and high resolution crystal structures of the two recombinant forms. In the Pichia pastoris system, the protease domain was expressed as a heterogeneously glycosylated zymogen that was activated by limited trypsin digestion and treated with endoglycosidase H deglycosidase to reduce heterogeneity from the glycosylation. The resulting protein was chromatographically resolved into four components, one of which was crystallized. In the baculovirus/Sf9 system, homogeneous, crystallizable, and nonglycosylated protein was expressed after mutagenizing three asparagines (the glycosylation sites) to glutamates. When assayed against the peptide substrates, pefachrome-PK and oxidized insulin B chain, both forms of the protease domain were found to have catalytic activity similar to that of the full-length protein. Crystallization and x-ray crystal structure determination of both forms have yielded the first three-dimensional views of the catalytic domain of plasma kallikrein. The structures, determined at 1.85 A for the endoglycosidase H-deglycosylated protease domain produced from P. pastoris and at 1.40 A for the mutagenically deglycosylated form produced from Sf9 cells, show that the protease domain adopts a typical chymotrypsin-like serine protease conformation. The structural information provides insights into the biochemical and enzymatic properties of plasma kallikrein and paves the way for structure-based design of protease inhibitors that are selective either for or against plasma kallikrein.  相似文献   

17.
Type 1 plasminogen activator inhibitor binds to fibrin via vitronectin   总被引:2,自引:0,他引:2  
Type 1 plasminogen activator inhibitor (PAI-1), the primary inhibitor of tissue-type plasminogen activator (t-PA), circulates as a complex with the abundant plasma glycoprotein, vitronectin. This interaction stabilizes the inhibitor in its active conformation In this report, the effects of vitronectin on the interactions of PAI-1 with fibrin clots were studied. Confocal microscopic imaging of platelet-poor plasma clots reveals that essentially all fibrin-associated PAI-1 colocalizes with fibrin-bound vitronectin. Moreover, formation of platelet-poor plasma clots in the presence of polyclonal antibodies specific for vitronectin attenuated the inhibitory effects of PAI-1 on t-PA-mediated fibrinolysis. Addition of vitronectin during clot formation markedly potentiates PAI-1-mediated inhibition of lysis of (125)I-labeled fibrin clots by t-PA. This effect is dependent on direct binding interactions of vitronectin with fibrin. There is no significant effect of fibrin-associated vitronectin on fibrinolysis in the absence of PAI-1. The binding of PAI-1 to fibrin clots formed in the absence of vitronectin was characterized by a low affinity (K(d) approximately 3.5 micrometer) and rapid loss of PAI-1 inhibitory activity over time. In contrast, a high affinity and stabilization of PAI-1 activity characterized the cooperative binding of PAI-1 to fibrin formed in the presence of vitronectin. These findings indicate that plasma PAI-1.vitronectin complexes can be localized to the surface of fibrin clots; by this localization, they may modulate fibrinolysis and clot reorganization.  相似文献   

18.
Fibrinogen is a serum multi-chain protein which, when activated, aggregates to form fibrin, one of the main components of a blood clot. Fibrinolysis controls blood clot dissolution through the action of the enzyme plasmin, which cleaves fibrin at specific locations. Although the main biochemical factors involved in fibrin formation and lysis have been identified, a clear mechanistic picture of how these processes take place is not available yet. This picture would be instrumental, for example, for the design of improved thrombolytic or anti-haemorrhagic strategies, as well as, materials with improved biocompatibility. Here, we present extensive molecular dynamics simulations of fibrinogen which reveal large bending motions centered at a hinge point in the coiled-coil regions of the molecule. This feature, likely conserved across vertebrates according to our analysis, suggests an explanation for the mechanism of exposure to lysis of the plasmin cleavage sites on fibrinogen coiled-coil region. It also explains the conformational variability of fibrinogen observed during its adsorption on inorganic surfaces and it is supposed to play a major role in the determination of the hydrodynamic properties of fibrinogen. In addition the simulations suggest how the dynamics of the D region of fibrinogen may contribute to the allosteric regulation of the blood coagulation cascade through a dynamic coupling between the a- and b-holes, important for fibrin polymerization, and the integrin binding site P1.  相似文献   

19.
As a novel attempt for the intracellular recombinant protein over expression and easy purification from Pichia pastoris, the therapeutic cytokine human granulocyte macrophage colony stimulating factor (hGMCSF) gene was fused to an intein-chitin-binding domain (gene from pTYB11 vector) fusion tag by overlap extension PCR and inserted into pPICZB vector, allowing for the purification of a native recombinant protein without the need for enzymatic cleavage. The fusion protein under the AOX1 promoter was integrated into the P. pastoris genome (SMD 1168) and the recombinant Pichia clones were screened for multicopy integrants. Expression of hGMCSF was done using glycerol and methanol based synthetic medium by three stage cultivation in a bioreactor. Purification of the expressed hGMCSF fusion protein was done after cell disruption and binding of the solubilized fusion protein to chitin affinity column, followed by DTT induced on column cleavage of hGMCSF from the intein tag. In this study, final biomass of 89 g dry cell weight/l and purified hGMCSF of 120 mg/l having a specific activity of 0.657 x 10(7) IU/mg was obtained. This strategy has an edge over the other--His or--GST based fusion protein purification where non-specific protein binding, expensive enzymatic cleavage and further purification of the enzyme is required. It distinguishes itself from all other purification systems by its ability to purify, in a single chromatographic step.  相似文献   

20.
Based on the sequences of the highly conserved segments in the previously cloned sialyltransferases, a cDNA encoding Galbeta1, 3GalNAc alpha2,3-sialyltransferase (SIATFL) has been isolated from human fetal liver. Expression analysis of the gene has been performed with various carcinoma cell lines, fetal tissues, fetal and adult liver and both hepatoma and the surrounding tissue from the same liver. The SIATFL gene was expressed poorly in fetal liver and in adult liver, slightly in hepatoma and highly in the surrounding tissue of hepatoma. The cDNA encoding the putative active domain was expressed in COS-1, Escherichia coli, and Pichia pastoris. The recombinant protein expressed in COS-1 could catalyse the transfer of NeuAc from CMP-NeuAc to asialo-fetuin. No enzyme activity was detected with a 32-kDa protein in E. coli and both 32-kDa and 41-kDa proteins in P. pastoris. These results suggested that correct glycosylation of the enzyme might play a key role in its folding that may be directly related to the enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号