首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract Cytochrome components which participate in the oxidation of nitrite in Nitrobacter winogradskyi have been highly purified and their properties studied in detail. Cytochrome a 1 c 1 is an iron-sulphur molybdoenzyme which has haems a and c and acts as a nitrite-cytochrome c oxidoreductase. Cytochrome c -550 is homologous to eukaryotic cytochrome c and acts as the electron mediator between cytochrome a 1 c 1 and aa 3-type cytochrome c oxidase. The oxidase is composed of two kinds of subunits, has two molecules of haem a and two atoms of copper in the molecule, and oxidizes actively eukaryotic ferrocytochrome c as well as its own ferrocytochrome c -550. Further, a flavoenzyme has been obtained which has transhydrogenase activity and catalyses reduction of NADP+ with benzylviologen radical. This enzyme may be responsible for production of NADPH in N. winogradskyi . The electron transfer against redox potential from NO2 to cythochrome c could be pushed through prompt removal by cytochrome aa 3 of H+ formed by the dehydrogenation of NO2+ H2O. As cytochrome c in anaerobically kept cell-free extracts is rapidly reduced on addition of NO2, a membrane potential does not seem necessary for the reduction of cytochrome c by cytochrome a 1 c 1 with NO2 in vivo.  相似文献   

2.
We purified membrane-bound cytochrome c-550 [cytochrome c-550(m)] to an electrophoretically homogeneous state from Nitrobacter winogradskyi. The cytochrome showed peaks at 409 and 525 nm in the oxidized form and peaks at 416, 521, and 550 nm in the reduced form. The molecular weight of the cytochrome was estimated to be 18,400 on the basis of protein and heme c contents and 18,600 by gel filtration. The N-terminal amino acid sequence of cytochrome c-550(m) was determined to be A-P-T-S-A-A-D-A-E-S-F-N-K-A-L-A-S-A-?-A-E-?-G-A-?-L-V-K-P. We previously purified soluble cytochrome c-550 cytochrome c-550(s)] from N. winogradskyi and determined its complete amino acid sequence (Y. Tanaka, Y. Fukumori, and T. Y. Yamanaka, Biochim. Biophys. Acta 707:14-20, 1982). Although the sequence of cytochrome c-550(m) was completely different from that of cytochrome c-550(s), ferrocytochrome c-550(m) was rapidly oxidized by the cytochrome c oxidase of the bacterium. Furthermore, the liposomes into which nitrite cytochrome c oxidoreductase, cytochrome c oxidase, and nitrite were incorporated showed nitrite oxidase activity in the presence of cytochrome c-550(m). These results suggest that cytochrome c-550(m) may be an alternative electron mediator between nitrite cytochrome c oxidoreductase and cytochrome c oxidase.  相似文献   

3.
Cytochrome c oxidase of Nitrosomonas europaea reacts with not only the native cytochrome c (N. europaea cytochrome c-552) but also horse and yeast cytochromes c. The effects on its reactivity of various reagents were very different between the reactions with the native and eukaryotic cytochromes c as the electron donors. The oxidation of eukaryotic ferrocytochrome c by the oxidase was activated by addition of anionic detergents such as sodium dodecyl sulfate and sodium cholate, and anionic phospholipids such as cardiolipin, phosphatidylserine, phosphatidylinositol, and phosphatidylethanolamine, while the reaction was not activated by Triton X-100, Tween 20, or phosphatidylcholine. However, the reaction with the native cytochrome c of the enzyme was hardly affected by any of the detergents and phospholipids mentioned above, while it was activated by the presence of poly-L-lysine.  相似文献   

4.
Oxidized Pseudomonas cytochrome oxidase (ferrocytochrome c2: oxygen oxidoreductase; E.C.1.9.3.2) can be digested with subtilisin under controlled conditions that convert the original parent polypeptide chain (Mr on SDS gels approximately equal to 60,000) to a slightly smaller species (Mr on SDS gels approximately equal to 58,000). Under the conditions used (0.33% subtilisin, w/w, pH 7.4), the product formed from the oxidase was relatively stable to further digestion. Cytochrome oxidase activity was assayed at intervals during proteolysis by following the rate of oxidation of Pseudomonas ferrocytochrome c-551 by the enzyme in the presence of oxygen. The activity increased to a plateau that was more than two times the value for an untreated control. These observations suggest that clipping a small peptide from Pseudomonas cytochrome oxidase either facilitates the rate-limiting electron transfer between the intraprotein heme c and heme d1, enhances the interaction of the enzyme with ferrocytochrome c-551, or both.  相似文献   

5.
The reaction between cytochrome c oxidase and ferrocytochrome c has been investigated by the stopped-flow method. It has been found that only one electron acceptor, a heme group, in the oxidase is rapidly reduced by cytochrome c. The presence of N3- does not affect the reduction of the acceptor, which supports the hypothesis that this is identical with cytochrome a. The results are consistent with the existence of a simple equilibrium between cytochrome a and cytochrome c: c-2 + a-3+ in equilibrium c-3+ + a-2+ with an equilibrium constant corresponding to an oxidation-reduction potential of cytochrome a 30 mV higher than that for cytochrome c at pH 7.4. The oxidation-reduction potential of the a-3+ /a-2+ couple, 285 mV (based on a potential of 255 mV for cytochrome c), and the optical properties of the reduced form indicate that it is identical with neither of the reduced hemes seen in potentiometric titrations. The oxidase species resulting from the rapid reduction of cytochrome a by cytochrome c is proposed to represent a metastable intermediate state which, under anaerobic conditions, eventually is transformed into a more stable state characterized by a reduced high-potential heme.  相似文献   

6.
Cytochrome c oxidase (cytochrome aa3-type) [EC 1.9.3.1] was purified from Nitrobacter agilis to an electrophoretically homogeneous state and some of its properties were studied. The enzyme showed absorption peaks at 422, 598, and 840 nm in the oxidized form, and at 442 and 606 nm in the reduced form. The CO compound of the reduced enzyme showed peaks at 436 and 604 nm, and the latter peak had a shoulder at 599 nm. The enzyme possessed 1 mol of heme a and 1.6 g-atom of copper per 41,000 g, and was composed of two kinds of subunits of 51,000 and 31,000 daltons. These results show that the structurally minimal unit of the enzyme molecule is composed of one molecule each of the two subunits and contains 2 molecules of heme a and 2-3 atoms of copper. the enzyme rapidly oxidized ferrocytochromes c of several eukaryotes as well as N. agilis ferrocytochrome c-552. The reactions catalyzed by the enzyme were strongly inhibited by KCN. The reduction product of oxygen catalyzed by the enzyme was concluded to be water on the basis of the ratio of ferrocytochrome c oxidized to molecular oxygen consumed.  相似文献   

7.
Cytochrome c oxidase (cytochrome aa3-type) [EC 1.9.3.1] was purified from Erythrobacter longus to homogeneity as judged by polyacrylamide gel electrophoresis, and some of its properties were studied. The spectral properties of the oxidase closely resembled those of mitochondrial and other bacterial cytochromes aa3. The enzyme showed absorption peaks at 430 and 598 nm in the oxidized form, and at 444 and 603 nm in the reduced form. The CO compound of the reduced enzyme showed peaks at 432 and 600 nm. The enzyme oxidized eukaryotic ferrocytochromes C more rapidly than E. longus ferrocytochrome c. The reactions catalyzed by the enzyme were 50% inhibited by 0.7 microM KCN. The enzyme contained 1 g atom of copper and 1 g atom of magnesium per mol of heme a. The enzyme molecule seemed to be composed of two identical subunits, each with a molecular weight of 43,000.  相似文献   

8.
Cytochrome aa3 from Nitrosomonas europaea   总被引:3,自引:0,他引:3  
Cytochrome c oxidase has been purified from the ammonia oxidizing chemoautotroph Nitrosomonas europaea by ion-exchange chromatography in the presence of Triton X-100. The enzyme has absorption maxima at 420 and 592 nm in the resting state and at 444 and 598 nm in the dithionite-reduced form; optical extinction coefficient (598 nm minus 640 nm) = 21.9 cm-1 nM-1. The enzyme has approximately 11 nmol of heme a and approximately 11 nmol of copper per mg of protein (Lowry procedure). There appear to be three subunits (approximate molecular weights 50,800, 38,400, and 35,500), two heme groups (a and a3), and two copper atoms per minimal unit. The EPR spectra of the resting and partially reduced enzyme are remarkably similar to the corresponding spectra of the mitochondrial cytochrome aa3-type oxidase. Although the enzyme had been previously classified as "cytochrome a1" on the basis of its ferrous alpha absorption maximum (598 nm), its metal content and EPR spectral properties clearly show that it is better classified as a cytochrome aa3. Neither the data reported here nor a review of the literature supports the existence of cytochrome a1 as an entity discrete from cytochrome aa3. The purified enzyme is reduced rapidly by ferrous horse heart cytochrome c or cytochrome c-554 from N. europaea, but not with cytochrome c-552 from N. europaea. The identity of the natural electron donor is as yet unestablished. With horse heart cytochrome c as electron donor, the purified enzyme could account for a significant portion of the terminal oxidase activity in vivo.  相似文献   

9.
Cytochrome aa3 (cytochrome c oxidase) and cytochrome c were purified from Nitrobacter agilis, and some of their properties were compared with those of the respective counterparts of eukaryote from the evolutionary point of view. N. agilis cytochrome aa3 has many functional and structural properties similar to those of eukaryotic cytochrome aa3, although its molecule is composed of only two kinds of subunits unlike the eukaryotic cytochrome which is composed of 7 kinds of subunits. N. agilis cytochrome c is homologous to eukaryotic cytochrome c; 50 amino acid residues of the bacterial cytochrome c are identical with those of horse cytochrome c. It reacts with yeast cytochrome c peroxidase as rapidly as eukaryotic cytochrome c does. So far as based on the molecular features of cytochromes aa3 and c, N. agilis appears to be one of the organisms which may link in evolution prokaryote to eukaryote.  相似文献   

10.
Cytochrome c-551, the electron donor of SoxB-type cytochrome c oxidase in thermophilic bacilli, can be over-expressed in Bacillus thermodenitrificans cells by tranformation with pSTEc551. Several mutant cytochromes c-551 were prepared by site-directed mutagenesis to this expression plasmid. Among them, several Lys residues were changed to Ala/Ser, and we found that these mutant cytochromes retained their activity as substrates, although their K(m) values were 0.04-0.12 microM, depending on the site replaced. In contrast, the C19A mutant cytochrome, which was produced in Brevibacillus choshinensis as a secretion protein, lost its activity as a substrate, suggesting that the fatty acyl-glyceryl residue covalently bound to the cysteine residue of the wild-type c-551 plays a very important role in the activity. The importance of the hydrophobic fatty acid residue for the binding of cytochrome c-551 to the oxidase was also shown by the loss of substrate activity in deacylated cytochrome c-551. These results show the importance of the hydrophobic interaction between this cytochrome and SoxB-type oxidase, despite the fact that the importance of an electrostatic interaction between cytochrome c and mitochondrial cytochrome aa(3) oxidase has already been established.  相似文献   

11.
The amino acid sequences of Thiobacillus novellus and Nitrobacter winogradskyi cytochromes c have been compared with those of cytochromes c from several other organisms. The two bacterial cytochromes resemble eukaryotic cytochromes c; 49 amino-acid residues are identical between T. novellus and horse cytochromes c, and 50 residues identical between N. winogradskyi and horse cytochromes c. However, their reactivity with cow cytochrome c oxidase is about 80% lower than the reactivity of eukaryotic cytochromes c with the cow mitochondrial oxidase, while they react with yeast cytochrome c peroxidase as rapidly as eukaryotic cytochromes c. The numbers of identical amino-acid residues between T. novellus and animal cytochromes c are 45-53 and those between N. winogradskyi and animal cytochromes c 47-53, while those between the two bacterial cytochromes and yeast and protozoan cytochromes c are around 40. Thus, N. winogradskyi and T. novellus cytochromes c are more similar to animal cytochromes c than to yeast and protozoan cytochromes c on the basis of the amino-acid sequence.  相似文献   

12.
The aa3 oxidases from bacteria form a group of related enzymes that resemble the far more complex mitochondrial cytochrome c oxidase, both functionally and structurally. These enzymes catalyze electron transfer from ferrocytochrome c to oxygen to produce water. This transfer is coupled to proton translocation. Several oxidases of this type have been purified from cytoplasmic membranes of bacteria. This review summarizes the present knowledge on purified bacterial aa3 oxidases and correlates these findings with data available for the eukaryotic cytochrome c-oxidases.  相似文献   

13.
The integrated rate law for the reaction of the nitrite reductase of Paracoccus denitrificans, a cytochrome cd, has been established for turnover assays using donor ferrocytochromes c and either nitrite or molecular oxygen as the ultimate acceptor. The time course for the concentration of ferrocytochrome follows the law: formula: (see text), where S is the concentration of donor ferrocytochrome c, So is the initial concentration, t is time, and u1, u2, and u3 are empirical parameters that are constant for a given experiment but depend upon the initial substrate concentration. In particular, all the u1 increase with decreasing initial ferrocytochrome concentration. Saturation of reaction rates at high donor ferrocytochrome concentrations was not observed. The parameter u1 was proportional to the enzyme concentration while u2 and u3 were not. The form of the integrated rate law and the behavior of the u1 impose severe restrictions on possible kinetic schemes for the activity of the enzyme. Contemporary mechanisms that have been proposed for mitochondrial oxidase aa3 are examined and found to be inadequate to explain the reactivity of cytochrome cd. The simplest interpretations of the cytochrome cd data suggest that the enzyme does not bind the ferri and ferro forms of donor cytochromes c with equal affinity and that the enzyme is subject to inhibition by a product of reaction. Eucaryotic horse cytochrome c reacts with the Paracoccus cytochrome cd with 77% of the activity when Paracoccus cytochrome c550 is used as the electron donor.  相似文献   

14.
Cytochrome c-550 of Thiobacillus versutus functions as an electron transfer protein in a chain of redox proteins that enables T. versutus to grow on methylamine. It is a single-heme protein of 134 residues, related to mitochondrial cytochrome c. Cytochrome c-550, as well as several other bacterial c2-type cytochromes, contain a C-terminal extension of 13-16 amino acids of unknown function, compared to mitochondrial cytochrome c. NMR experiments were performed to obtain structural and dynamic information on the protein in solution. For this purpose, T. versutus cytochrome c-550 was labeled with 15N and 13C using 13C-methanol grown Paracoccus denitrificans as a host for heterologous expression. NMR assignments were obtained for the 1H, 15N, and 13C nuclei in the backbone and the beta-positions of the protein and the secondary structure was determined. 15N-relaxation studies were performed to characterize the dynamic properties of the protein. The results indicate that the main part of T. versutus ferrocytochrome c-550 exists in solution as a rigid, well-ordered molecule with a secondary structure that is very similar to that of P. denitrificans cytochrome c-550, as observed in crystals. The C-terminal extension, however, is unstructured and highly mobile. The possible origin and function of the extension are discussed.  相似文献   

15.
1. Beef heart mitochondria have a cytochrome c1:c:aa3 ratio of 0.65:1.0:1.0 as isolated; Keilin-Hartree submitochondrial particles ahve a ratio of 0.65:0.4:1.0. More than 50% of the submitochondrial particle membrane is in the 'inverted' configuration, shielding the catalytically active cytochrome c. The 'endogenous' cytochrome c of particles turns over at a maximal rate between 450 and 550 s-1 during the oxidation of succinate or ascorbate plus TMPD; the maximal turnover rate for cytochrome c in mitochondria is 300-400 s-1, at 28 degrees-30 degrees C, pH 7.4. 2. Ascorbate plus N,N,N',N'-tetramethyl-p-phenylene diamine added to antimycin-treated particles induces anomalous absorption increases between 555 and 565 nm during the aerobic steady state, which disappear upon anaerobiosis; succinate addition abolishes this cycle and permits the partial resolution of cytochrome c1 and cytochrome c steady states at 552.5-547 nm and 550-556.5 nm, respectively. 3. Cytochrome c1 is rather more reduced than cytochrome c during the oxidation of succinate and of ascorbate + N,N,N',N'-tetramethyl-p-phenylene diamine in both mitochondria and submitochondrial particles; a near equilibrium condition exists between cytochromes c1 and c in the aerobic steady state, with a rate constant for the c1 leads to c reduction step greater than 10(3) s-1. 4. The greater apparent response of the c/aa3 electron transfer step to salts, the hyperbolic inhibition of succinate oxidation by azide and cyanide, and the kinetic behaviour of the succinate-cytochrome c reductase system, are all explicable in terms of a near-equilibrium condition prevailing at the c1/c step. Endogenous cytochrome c of mitochondria and submitochondrial particles is apparently largely bound to cytochrome aa3 units in situ. Cytochrome c1 can either reduce the cytochrome c-cytochrome aa3 complex directly, or requires only a small extra amount of cytochrome c to carry the full electron transfer flux.  相似文献   

16.
Paracoccus denitrificans strains with mutations in the genes encoding the cytochrome c(550), c(552), or c(1) and in combinations of these genes were constructed, and their growth characteristics were determined. Each mutant was able to grow heterotrophically with succinate as the carbon and free-energy source, although their specific growth rates and maximum cell numbers fell variably behind those of the wild type. Maximum cell numbers and rates of growth were also reduced when these strains were grown with methylamine as the sole free-energy source, with the triple cytochrome c mutant failing to grow on this substrate. Under anaerobic conditions in the presence of nitrate, none of the mutant strains lacking the cytochrome bc(1) complex reduced nitrite, which is cytotoxic and accumulated in the medium. The cytochrome c(550)-deficient mutant did denitrify provided copper was present. The cytochrome c(552) mutation had no apparent effect on the denitrifying potential of the mutant cells. The studies show that the cytochromes c have multiple tasks in electron transfer. The cytochrome bc(1) complex is the electron acceptor of the Q-pool and of amicyanin. It is also the electron donor to cytochromes c(550) and c(552) and to the cbb(3)-type oxidase. Cytochrome c(552) is an electron acceptor both of the cytochrome bc(1) complex and of amicyanin, as well as a dedicated electron donor to the aa(3)-type oxidase. Cytochrome c(550) can accept electrons from the cytochrome bc(1) complex and from amicyanin, whereas it is also the electron donor to both cytochrome c oxidases and to at least the nitrite reductase during denitrification. Deletion of the c-type cytochromes also affected the concentrations of remaining cytochromes c, suggesting that the organism is plastic in that it adjusts its infrastructure in response to signals derived from changed electron transfer routes.  相似文献   

17.
N R Mattatall  L M Cameron  B C Hill 《Biochemistry》2001,40(44):13331-13341
Cytochrome aa3-600 or menaquinol oxidase, from Bacillus subtilis, is a member of the heme-copper oxidase family. Cytochrome aa3-600 contains cytochrome a, cytochrome a3, and CuB, and each is coordinated via histidine residues to subunit I. Subunit II of cytochrome aa3-600 lacks CuA, which is a common feature of the cytochrome c oxidase family members. Anaerobic reduction of cytochrome aa3-600 by the substrate analogue 2,3-dimethyl-1,4-naphthoquinone (DMN) resolves two distinct kinetic phases by stopped-flow, single-wavelength spectrometry. Global analysis of time-resolved, multiwavelength spectra shows that during these distinct phases cytochromes a and a3 are both reduced. Cyanide binding to cytochrome a3 enhances the fast phase rate, which in the presence of cyanide can be assigned to cytochrome a reduction, whereas cytochrome a3-cyanide reduction is slow. The steady-state activity of cytochrome aa3-600 exhibits saturation kinetics as a function of DMN concentration with a Km of 300 microM and a maximal turnover of 63.5 s(-1). Global kinetic analysis of steady-state spectra reveals a species that is characteristic of a partially reduced oxygen adduct of cytochrome a3-CuB, whereas cytochrome a remains oxidized. Electron paramagnetic resonance (EPR) spectroscopy of the oxidase in the steady state shows the expected signal from ferricytochrome a, and a new EPR signal at g = 2.01. A model of the catalytic cycle for cytochrome aa3-600 proposes initial electron delivery from DMN to cytochrome a, followed by rapid heme to heme electron transfer, and suggests possible origins of the radical signal in the steady-state form of the enzyme.  相似文献   

18.
Spectral and potentiometric analysis of cytochromes from Bacillus subtilis   总被引:4,自引:0,他引:4  
Bacillus subtilis cytoplasmic membranes contain several cytochromes which are linked to the respiratory chain. At least six different cytochromes have been separated and identified by ammonium sulphate fractionation and ion-exchange chromatography. They include two terminal oxidases with CO-binding properties and cyanide sensitivity. One of these is an aa3-type cytochrome c oxidase which has characteristic absorption maxima in the reduced-oxidized difference spectrum at 601 nm in the alpha-band and at 443 nm in the Soret band regions. In the alpha-band two separate electron transitions with Em = +205 mV and Em = +335 mV can be discriminated by redox potentiometric titration. The other CO-binding cytochrome c oxidase contains two cytochrome b components with alpha-band maxima at 556 nm and 559 nm. Cytochrome b556 can be reduced by ascorbate and has an Em + +215 mV, whereas cytochrome b559 has an Em = +140 mV. Furthermore a complex consisting of a cytochrome b564 (Em = +140 mV) associated with a cytochrome c554 (Em = +250 mV) was found. This cytochrome c554, which can be reduced by ascorbate, appears to have an asymmetrical alpha-peak and stains for heme-catalyzed peroxidase activity on SDS-containing polyacrylamide gels. A protein with a molecular mass of about 30 kDa is responsible for this activity. A cytochrome b559 (Em = +65 mV) appears to be an essential part of succinate dehydrogenase. Finally a cytochrome c550 component with an apparent mid-point potential of Em = +195 mV has been detected.  相似文献   

19.
The ratio between the nitrite reductase and cytochrome oxidase activities of Pseudomonas aeruginosa nitrite reductase [EC 1.9.3.2.] varies with kind of C-type cytochrome used as the electron donor. Withe cytochrome c-548, 554 (Micrococcus sp.), the nitrite reductase activity is greater than the cytochrome oxidase activity, while the former is smaller than the latter with cytochrome c-554 (Navicula pelliculosa). The aerobic oxidation catalyzed by this enzyme of denitrifying bacterial ferrocytochrome c is greatly accelerated on addition of nitrite, while that of the algal ferrocytochrome c is not affected or is even depressed by the salt. An accelerative effect of nitrite is generally observed with many kinds of C-type cytochromes which react with the enzyme very or fairly rapidly. The difference in the ratio of the two activities of the enzyme seems to arise according to whether or not nitrite affects the interaction of C-type cytochrome with the enzyme.  相似文献   

20.
In the aerobic steady state of the classical eukaryotic cytochrome c oxidase, three aa(3) redox metal centres (cytochrome a, CuA and CuB) are partially reduced while the fourth, cytochrome a(3), remains almost fully oxidized. Turnover depends primarily upon the rate of cytochrome a(3) reduction. When prokaryotic cytochrome c-552 oxidase (ba(3)) of Thermus thermophilus turns over, three different metal centres (cytochromes b, a(3) and CuA) share the steady state electrons; it is the fourth, CuB, that apparently remains almost fully oxidized until anaerobiosis. Cytochrome a(3) stays partially reduced during turnover and a possible P/F state may also be populated. Cyanide traps the aerobic ba(3) CuB centre in the a(3)(2+)CNCuB(2+) state; the corresponding eukaryotic cyanide trapped state is a(3)(3+)CNCuB(+). Both states become the fully reduced a(3)(2+)CNCuB(+) upon anaerobiosis. The different reactivities of the aa(3) and ba(3) binuclear centres may be correlated with the very different proximal histidine N-Fe distances in the two enzymes (3.3 A for ba(3) compared to 1.9 A for aa(3)) which may in turn relate to the functioning of thermophilic Thermus cytochrome ba(3) in vivo at a very elevated temperature. But the differences may also just exemplify how evolution can find surprisingly different solutions to the common problem of electron transfer to oxygen. Some of these alternatives were potentially enshrined in a model of the oxidase reaction already adopted by Gerry Babcock in the early 1990s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号