首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Although oligomeric intermediates are transiently formed in almost all known amyloid assembly reactions, their mechanistic roles are poorly understood. Recently, we demonstrated a critical role for the 17-amino-acid N-terminus (htt(NT) segment) of huntingtin (htt) in the oligomer-mediated amyloid assembly of htt N-terminal fragments. In this mechanism, the htt(NT) segment forms the α-helix-rich core of the oligomers, leaving much of the polyglutamine (polyQ) segment disordered and solvent-exposed. Nucleation of amyloid structure occurs within this local high concentration of disordered polyQ. Here we demonstrate the kinetic importance of htt(NT) self-assembly by describing inhibitory htt(NT)-containing peptides that appear to work by targeting nucleation within the oligomer fraction. These molecules inhibit amyloid nucleation by forming mixed oligomers with the htt(NT) domains of polyQ-containing htt N-terminal fragments. In one class of inhibitors, nucleation is passively suppressed due to the reduced local concentration of polyQ within the mixed oligomer. In the other class, nucleation is actively suppressed by a proline-rich polyQ segment covalently attached to htt(NT). Studies with D-amino acid and scrambled sequence versions of htt(NT) suggest that inhibition activity is strongly linked to the propensity of inhibitory peptides to make amphipathic α-helices. Htt(NT) derivatives with C-terminal cell-penetrating peptide segments also exhibit excellent inhibitory activity. The htt(NT)-based peptides described here, especially those with protease-resistant d-amino acids and/or with cell-penetrating sequences, may prove useful as lead therapeutics for inhibiting the nucleation of amyloid formation in Huntington's disease.  相似文献   

2.
The 17-amino-acid N-terminal segment (htt(NT)) that leads into the polyglutamine (polyQ) segment in the Huntington's disease protein huntingtin (htt) dramatically increases aggregation rates and changes the aggregation mechanism, compared to a simple polyQ peptide of similar length. With polyQ segments near or above the pathological repeat length threshold of about 37, aggregation of htt N-terminal fragments is so rapid that it is difficult to tease out mechanistic details. We describe here the use of very short polyQ repeat lengths in htt N-terminal fragments to slow this disease-associated aggregation. Although all of these peptides, in addition to htt(NT) itself, form α-helix-rich oligomeric intermediates, only peptides with Q(N) of eight or longer mature into amyloid-like aggregates, doing so by a slow increase in β-structure. Concentration-dependent circular dichroism and analytical ultracentrifugation suggest that the htt(NT) sequence, with or without added glutamine residues, exists in solution as an equilibrium between disordered monomer and α-helical tetramer. Higher order, α-helix rich oligomers appear to be built up via these tetramers. However, only htt(NT)Q(N) peptides with N=8 or more undergo conversion into polyQ β-sheet aggregates. These final amyloid-like aggregates not only feature the expected high β-sheet content but also retain an element of solvent-exposed α-helix. The α-helix-rich oligomeric intermediates appear to be both on- and off-pathway, with some oligomers serving as the pool from within which nuclei emerge, while those that fail to undergo amyloid nucleation serve as a reservoir for release of monomers to support fibril elongation. Based on a regular pattern of multimers observed in analytical ultracentrifugation, and a concentration dependence of α-helix formation in CD spectroscopy, it is likely that these oligomers assemble via a four-helix assembly unit. PolyQ expansion in these peptides appears to enhance the rates of both oligomer formation and nucleation from within the oligomer population, by structural mechanisms that remain unclear.  相似文献   

3.
Huntington's Disease (HD) is a neurodegenerative disorder that is defined by the accumulation of nanoscale aggregates comprised of the huntingtin (htt) protein. Aggregation is directly caused by an expanded polyglutamine (polyQ) domain in htt, leading to a diverse population of aggregate species, such as oligomers, fibrils, and annular aggregates. Furthermore, the length of this polyQ domain is directly related to onset and severity of disease. The first 17 N-terminal amino acids of htt have been shown to further modulate aggregation. Additionally, these 17 amino acids appear to have lipid binding properties as htt interacts with a variety of membrane-containing structures present in cells, such as organelles, and interactions with these membrane surfaces may further modulate htt aggregation. To investigate the interaction between htt exon1 and lipid bilayers, in situ atomic force microscopy (AFM) was used to directly monitor the aggregation of htt exon1 constructs with varying Q-lengths (35Q, 46Q, 51Q, and myc-53Q) on supported lipid membranes comprised of total brain lipid extract. The exon1 fragments accumulated on the lipid membranes, causing disruption of the membrane, in a polyQ dependent manner. Furthermore, the addition of an N-terminal myc-tag to the htt exon1 fragments impeded the interaction of htt with the bilayer.  相似文献   

4.
Huntington disease (HD), a neurodegenerative disorder, is caused by an expansion of more than 35-40 polyglutamine (polyQ) repeats located near the N-terminus of the huntingtin (htt) protein. The expansion of the polyQ domain results in the ordered assembly of htt fragments into fibrillar aggregates that are the main constituents of inclusion bodies, which are a hallmark of the disease. This paper describes protocols for studying the aggregation of mutant htt fragments and synthetic polyQ peptides with atomic force microscopy (AFM). Ex situ AFM is used to characterize aggregate formation in protein incubation as a function of time. Methods to quickly and unambiguously distinguish specific aggregate species from complex, heterogeneous aggregation reactions based on simple morphological features are presented. Finally, the application of time lapse atomic force microscopy in solution is presented for studying synthetic model polyQ peptides, which allows for tracking the formation and fate of individual aggregates on surfaces over time. This ability allows for dynamic studies of the aggregation process and direct observation of the interplay between different types of aggregates.  相似文献   

5.
Several neurodegenerative diseases, including Huntington disease (HD), are associated with aberrant folding and aggregation of polyglutamine (polyQ) expansion proteins. Here we established the zebrafish, Danio rerio, as a vertebrate HD model permitting the screening for chemical suppressors of polyQ aggregation and toxicity. Upon expression in zebrafish embryos, polyQ-expanded fragments of huntingtin (htt) accumulated in large SDS-insoluble inclusions, reproducing a key feature of HD pathology. Real time monitoring of inclusion formation in the living zebrafish indicated that inclusions grow by rapid incorporation of soluble htt species. Expression of mutant htt increased the frequency of embryos with abnormal morphology and the occurrence of apoptosis. Strikingly, apoptotic cells were largely devoid of visible aggregates, suggesting that soluble oligomeric precursors may instead be responsible for toxicity. As in nonvertebrate polyQ disease models, the molecular chaperones, Hsp40 and Hsp70, suppressed both polyQ aggregation and toxicity. Using the newly established zebrafish model, two compounds of the N'-benzylidene-benzohydrazide class directed against mammalian prion proved to be potent inhibitors of polyQ aggregation, consistent with a common structural mechanism of aggregation for prion and polyQ disease proteins.  相似文献   

6.
Aggregation of huntingtin (htt) in neuronal inclusions is associated with the development of Huntington's disease (HD). Previously, we have shown that mutant htt fragments with polyglutamine (polyQ) tracts in the pathological range (>37 glutamines) form SDS-resistant aggregates with a fibrillar morphology, whereas wild-type htt fragments with normal polyQ domains do not aggregate. In this study we have investigated the co-aggregation of mutant and wild-type htt fragments. We found that mutant htt promotes the aggregation of wild-type htt, causing the formation of SDS-resistant co-aggregates with a fibrillar morphology. Conversely, mutant htt does not promote the fibrillogenesis of the polyQ-containing protein NOCT3 or the polyQ-binding protein PQBP1, although these proteins are recruited into inclusions containing mutant htt aggregates in mammalian cells. The formation of mixed htt fibrils is a highly selective process that not only depends on polyQ tract length but also on the surrounding amino acid sequence. Our data suggest that mutant and wild-type htt fragments may also co-aggregate in neurons of HD patients and that a loss of wild-type htt function may contribute to HD pathogenesis.  相似文献   

7.
The pathology of Huntington's disease is characterized by neuronal degeneration and inclusions containing N-terminal fragments of mutant huntingtin (htt). To study htt aggregation, we examined purified htt fragments in vitro, finding globular and protofibrillar intermediates participating in the genesis of mature fibrils. These intermediates were high in beta-structure. Furthermore, Congo Red, a dye that stains amyloid fibrils, prevented the assembly of mutant htt into mature fibrils, but not the formation of protofibrils. Other proteins capable of forming ordered aggregates, such as amyloid beta and alpha-synuclein, form similar intermediates, suggesting that the mechanisms of mutant htt aggregation and possibly htt toxicity may overlap with other neurodegenerative disorders.  相似文献   

8.
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expansion of the polyglutamine (polyQ) stretch in huntingtin (htt). Previously, it has been shown that inhibition of the inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) activity reduced aggregation of pathogenic polyQ proteins. Experimentally, this effect was achieved by modification of the intracellular IP3 levels or by application of IP3R1 inhibitors, such as 2-aminoethyl diphenylborinate (2-APB). Unfortunately, there are certain concerns about the 2-APB specificity and cytotoxicity. Moreover, a direct link between IP3R1 and polyQ aggregation has not been shown yet. In this study we show, that down-regulation of the IP3R1 levels by shRNA reduced the aggregation of mutant htt. We tested 2-APB analogs in an attempt to identify less toxic and more IP3R1-specific compounds and found that the effect of these analogs on the reduction of the mutant htt aggregation did weakly correlate with their inhibitory action toward the IP3-induced Ca(2+) release (IICR). Their effect on aggregation was not correlated with the store-operated Ca(2+) entry (SOCE), which is another target of the 2-APB related compounds. Our findings suggest that besides functional contribution of the IP3R inhibition on the mutant htt aggregation there are additional mechanisms for the anti-aggregation effect of the 2-APB related compounds.  相似文献   

9.
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (polyQ) tract in the huntingtin (htt) protein. Mutant htt toxicity is exposed after htt cleavage by caspases and other proteases release NH(2)-terminal fragments containing the polyQ expansion. Here, we show htt interacts and colocalizes with cdk5 in cellular membrane fractions. Cdk5 phosphorylates htt at Ser434, and this phosphorylation reduces caspase-mediated htt cleavage at residue 513. Reduced mutant htt cleavage resulting from cdk5 phosphorylation attenuated aggregate formation and toxicity in cells expressing the NH(2)-terminal 588 amino acids (htt588) of mutant htt. Cdk5 activity is reduced in the brains of HD transgenic mice compared with controls. This result can be accounted for by the polyQ-expanded htt fragments reducing the interaction between cdk5 and its activator p35. These data predict that the ability of cdk5 phosphorylation to protect against htt cleavage, aggregation, and toxicity is compromised in cells expressing toxic fragments of htt.  相似文献   

10.
Aberrant folding and fibrillar aggregation by polyglutamine (polyQ) expansion proteins are associated with cytotoxicity in Huntington's disease and other neurodegenerative disorders. Hsp70 chaperones have an inhibitory effect on fibril formation and can alleviate polyQ cytotoxicity. Here we show that the cytosolic chaperonin, TRiC, functions synergistically with Hsp70 in this process and is limiting in suppressing polyQ toxicity in a yeast model. In vitro reconstitution experiments revealed that TRiC, in cooperation with the Hsp70 system, promotes the assembly of polyQ-expanded fragments of huntingtin (Htt) into soluble oligomers of approximately 500 kDa. Similar oligomers were observed in yeast cells upon TRiC overexpression and were found to be benign, in contrast to conformationally distinct Htt oligomers of approximately 200 kDa, which accumulated at normal TRiC levels and correlated with inhibition of cell growth. We suggest that TRiC cooperates with the Hsp70 system as a key component in the cellular defense against amyloid-like protein misfolding.  相似文献   

11.
Alzheimer disease is characterized by the abnormal aggregation of amyloid beta peptide into extracellular fibrillar deposits known as amyloid plaques. Soluble oligomers have been observed at early time points preceding fibril formation, and these oligomers have been implicated as the primary pathological species rather than the mature fibrils. A significant issue that remains to be resolved is whether amyloid oligomers are an obligate intermediate on the pathway to fibril formation or represent an alternate assembly pathway that may or may not lead to fiber formation. To determine whether amyloid beta oligomers are obligate intermediates in the fibrillization pathway, we characterized the mechanism of action of amyloid beta aggregation inhibitors in terms of oligomer and fibril formation. Based on their effects, the small molecules segregated into three distinct classes: compounds that inhibit oligomerization but not fibrillization, compounds that inhibit fibrillization but not oligomerization, and compounds that inhibit both. Several compounds selectively inhibited oligomerization at substoichiometric concentrations relative to amyloid beta monomer, with some active in the low nanomolar range. These results indicate that oligomers are not an obligate intermediate in the fibril formation pathway. In addition, these data suggest that small molecule inhibitors are useful for clarifying the mechanisms underlying protein aggregation and may represent potential therapeutic agents that target fundamental disease mechanisms.  相似文献   

12.
Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a polyglutamine (polyQ) tract near the N-terminus of the huntingtin (htt) protein. Expanded polyQ tracts are prone to aggregate into oligomers and insoluble fibrils. Mutant htt (mhtt) localizes to variety of organelles, including mitochondria. Specifically, mitochondrial defects, morphological alteration, and dysfunction are observed in HD. Mitochondrial lipids, cardiolipin (CL) in particular, are essential in mitochondria function and have the potential to directly interact with htt, altering its aggregation. Here, the impact of mitochondrial membranes on htt aggregation was investigated using a combination of mitochondrial membrane mimics and tissue-derived mitochondrial-enriched fractions. The impact of exposure of outer and inner mitochondrial membrane mimics (OMM and IMM respectively) to mhtt was explored. OMM and IMM reduced mhtt fibrillization, with IMM having a larger effect. The role of CL in mhtt aggregation was investigated using a simple PC system with varying molar ratios of CL. Lower molar ratios of CL (<5%) promoted fibrillization; however, increased CL content retarded fibrillization. As revealed by in situ AFM, mhtt aggregation and associated membrane morphological changes at the surface of OMM mimics was markedly different compared to IMM mimics. While globular deposits of mhtt with few fibrillar aggregates were observed on OMM, plateau-like domains were observed on IMM. A similar impact on htt aggregation was observed with exposure to purified mitochondrial-enriched fractions. Collectively, these observations suggest mitochondrial membranes heavily influence htt aggregation with implication for HD.  相似文献   

13.
Polyglutamine (polyQ, a peptide) with an abnormal repeat length is the causative agent of polyQ diseases, such as Huntington’s disease. Although glutamine is a polar residue, polyQ peptides form insoluble aggregates in water, and the mechanism for this aggregation is still unclear. To elucidate the detailed mechanism for the nucleation and aggregation of polyQ peptides, replica exchange molecular dynamics simulations were performed for monomers and dimers of polyQ peptides with several chain lengths. Furthermore, to determine how the aggregation mechanism of polyQ differs from those of other peptides, we compared the results for polyQ with those of polyasparagine and polyleucine. The energy barrier between the monomeric and dimeric states of polyQ was found to be relatively low, and it was observed that polyQ dimers strongly favor the formation of antiparallel β-sheet structures. We also found a characteristic behavior of the monomeric polyQ peptide: a turn at the eighth residue is always present, even when the chain length is varied. We previously showed that a structure including more than two sets of β-turns is stable, so a long monomeric polyQ chain can act as an aggregation nucleus by forming several pairs of antiparallel β-sheet structures within a single chain. Since the aggregation of polyQ peptides has some features in common with an amyloid fibril, our results shed light on the mechanism for the aggregation of polyQ peptides as well as the mechanism for the formation of general amyloid fibrils, which cause the onset of amyloid diseases.  相似文献   

14.
15.
Insulin assembly follows different pathways under different environments. But the mechanism of insulin assembly and the pathology of insulin-related amyloidosis diseases remain unclear. This work, illustrating different pathways of insulin aggregation induced by short peptide segment, may shed light on these research areas. We find that the short peptide segment LVEALYL (7aa, a segment of insulin B chain) can alter the pathway of insulin aggregation and induce the generation of highly toxic oligomers. However, when a bulky cyclen is attached to the peptide segment, β-sheet enriched fibrils will be formed again. This phenomenon may be induced by the disruptive effect of cyclen on the interaction between the short peptide and insulin, which alters the aggregation pathway.  相似文献   

16.
Abnormal polyglutamine (polyQ) tracts are the only common feature in nine proteins that each cause a dominant neurodegenerative disorder. In Huntington's disease, tracts longer than 36 glutamines in the protein huntingtin (htt) cause degeneration. In situ, monoclonal antibody 3B5H10 binds to different htt fragments in neurons in proportion to their toxicity. Here, we determined the structure of 3B5H10 Fab to 1.9?? resolution by X-ray crystallography. Modeling demonstrates that the paratope forms a groove suitable for binding two β-rich polyQ strands. Using small-angle X-ray scattering, we confirmed that the polyQ epitope recognized by 3B5H10 is a compact two-stranded hairpin within monomeric htt and is abundant in htt fragments unbound to antibody. Thus, disease-associated polyQ stretches preferentially adopt compact conformations. Since 3B5H10 binding predicts degeneration, this compact polyQ structure may be neurotoxic.  相似文献   

17.
The mechanisms linking deposits of insoluble amyloid fibrils to the debilitating neuronal cell death characteristic of neurodegenerative diseases remain enigmatic. Recent findings implicate transiently formed intermediates of mature amyloid fibrils as the principal toxic agent. Hence, determining which intermediate aggregates represent on-pathway precursors or off-pathway side branches is critical for understanding amyloid self-assembly, and for devising therapeutic approaches targeting relevant toxic species. We examined amyloid fibril self-assembly in acidic solutions, using the model protein hen egg-white lysozyme. Combining in situ dynamic light scattering with calibrated atomic-force microscopy, we monitored the nucleation and growth kinetics of multiple transient aggregate species, and characterized both their morphologies and physical dimensions. Upon incubation at elevated temperatures, uniformly sized oligomers formed at a constant rate. After a lag period of several hours, protofibrils spontaneously nucleated. The nucleation kinetics of protofibrils and the tight match of their widths and heights with those of oligomers imply that protofibrils both nucleated and grew via oligomer fusion. After reaching several hundred nanometers in length, protofibrils assembled into mature fibrils. Overall, the amyloid fibril assembly of lysozyme followed a strict hierarchical aggregation pathway, with amyloid monomers, oligomers, and protofibrils forming on-pathway intermediates for assembly into successively more complex structures.  相似文献   

18.
Aggregation of the amyloid-β protein (Aβ) plays a pathogenic role in the progression of Alzheimer's disease, and small molecules that attenuate Aβ aggregation have been identified toward a therapeutic strategy that targets the disease's underlying cause. Compounds containing aromatic structures have been repeatedly reported as effective inhibitors of Aβ aggregation, but the functional groups that influence inhibition by these aromatic centers have been less frequently explored. The current study identifies analogs of naturally occurring coumarin as novel inhibitors of Aβ aggregation. Derivatization of the coumarin structure is shown to affect inhibitory capabilities and to influence the point at which an inhibitor intervenes within the nucleation dependent Aβ aggregation pathway. In particular, functional groups found within amyloid binding dyes, such as benzothiazole and triazole, can improve inhibition efficacy. Furthermore, inhibitor intervention at early or late stages within the amyloid aggregation pathway is shown to correlate with the ability of these functional groups to recognize and bind amyloid species that appear either early or late within the aggregation pathway. These results demonstrate that functionalization of small aromatic molecules with recognition elements can be used in the rational design of Aβ aggregation inhibitors to not only enhance inhibition but to also manipulate the inhibition mechanism.  相似文献   

19.
Huntington disease (HD) is a neurodegenerative disorder caused by an expansion of a polyglutamine (polyQ) domain in the N-terminal region of huntingtin (htt). PolyQ expansion above 35–40 results in disease associated with htt aggregation into inclusion bodies. It has been hypothesized that expanded polyQ domains adopt multiple potentially toxic conformations that belong to different aggregation pathways. Here, we used atomic force microscopy to analyze the effect of a panel of anti-htt antibodies (MW1–MW5, MW7, MW8, and 3B5H10) on aggregate formation and the stability of a mutant htt-exon1 fragment. Two antibodies, MW7 (polyproline-specific) and 3B5H10 (polyQ-specific), completely inhibited fibril formation and disaggregated preformed fibrils, whereas other polyQ-specific antibodies had widely varying effects on aggregation. These results suggest that expanded polyQ domains adopt multiple conformations in solution that can be readily distinguished by monoclonal antibodies, which has important implications for understanding the structural basis for polyQ toxicity and the development of intrabody-based therapeutics for HD.Huntington disease (HD)5 is a fatal neurodegenerative disorder that is caused by an expansion of a polyglutamine (polyQ) domain in the protein huntingtin (htt), which leads to its aggregation into fibrils (1). HD is part of a growing group of diseases that are classified as “conformational diseases,” which include Alzheimer disease (AD), Parkinson disease (PD), the prion encephalopathies, and many more (24). The length of polyQ expansion in HD is tightly correlated with disease onset, and a critical threshold of 35–40 glutamine residues is required for disease manifestation (5). Biochemical and electron microscopic studies with htt fragments demonstrated that expanded polyQ repeats (>39) form detergent-insoluble aggregates that share characteristics with amyloid fibrils (68), and the formation of amyloid-like fibrils by polyQ was confirmed by studies with synthetic polyQ peptides (9). Collectively, these studies demonstrated a correlation between polyQ length and the kinetics of aggregation. This phenomenon has been recapitulated in cell-culture models that express htt fragments (1012). Although it is clear that proteins with expanded polyQ repeats assemble into fibrils in vitro, recent studies have reported that htt fragments can also assemble into spherical and annular oligomeric structures (1316) similar to those formed by Aβ and α-synuclein, which are implicated in AD and PD, respectively.While the major hallmark of HD is the formation of intranuclear and cytoplasmic inclusion bodies of aggregated htt (17), the role of these structures in the etiology of HD remains controversial. For instance, the onset of symptoms in a transgenic mouse model of HD follows the appearance of inclusion bodies (18), while other studies indicate that inclusion body formation may protect against toxicity by sequestering diffuse, soluble forms of htt (10, 19, 20). Based on the direct correlation between polyQ length, htt aggregation propensity, and toxicity (6), it has been hypothesized that the aggregation of htt may mediate neurodegeneration in HD. However, there is no clear consensus on the aggregate form(s) that underlie toxicity, and there likely exist bioactive, oligomeric aggregates undetectable by traditional biochemical and electron microscopic approaches whose formation precedes disease symptoms. Although identification of the one or more toxic species of htt that trigger neurodegeneration in HD remains elusive, such species might exist in a diffuse, mobile fraction rather than in inclusion bodies (19). A thioredoxin-polyQ fusion protein was recently reported to exhibit toxicity in a meta-stable, β-sheet-rich, monomeric conformation (21), suggesting that polyQ can adopt multiple monomeric conformations, only some of which may be toxic. Consistent with such a scenario, molecular dynamic simulations and fluorescence correlation spectroscopy experiments with synthetic polyQ peptides indicate that polyQ domains can adopt a heterogeneous collection of collapsed conformations that are in equilibrium before aggregation (2225).Although biochemical, biophysical, and computational approaches have yielded insight into the structures formed by polyQ in vitro, whether such structures form in vivo remains largely unknown. Indeed, determining the conformational state of any misfolded/aggregated protein in situ and/or in vivo remains a major technical challenge.Toward this goal, antibodies have been explored as a potentially powerful tool for detecting specific conformations or multimeric states of aggregated proteins in situ. Antibodies specific for amyloid fibrils often do not react with natively folded globular proteins from which they are derived, suggesting that such antibodies recognize a conformational epitope (26, 27). Several antibodies display conformation-dependent interactions with amyloids, aggregation intermediates, or natively folded precursor proteins. For example, there are antibodies specific for paired helical filaments of Tau (2831), of aggregated forms of Aβ ranging from dimers to fibrils (3234), and of native (35) or disease-related (36) forms of the prion protein. Antibodies have also been developed that are specific for common structural motifs associated with amyloid diseases, such as oligomers (37) and fibrils (38), independent of the peptide sequence of the amyloid forming protein from which they are derived, suggesting the potential for a common mechanism of aggregation and toxicity for these diseases.With regard to htt, several antibodies (MW1, MW2, MW3, MW4, MW5, IC2, and IF8), which are specific for polyQ repeats, stain Western blots of htt with expanded polyQ repeats much more strongly than htt with normal polyQ length (39, 40), suggesting that these antibodies may recognize abnormal polyQ conformations. Furthermore, these polyQ-specific antibodies have distinct staining patterns in immunohistochemical studies of brain tissue sections (39). In one study, the affinity and stoichiometry of MW1 binding to htt increased with polyQ length, suggesting a “linear lattice” model for polyQ (41). This model is supported by a crystal structure of polyQ bound to MW1, which showed that polyQ can adopt an extended, coil-like structure (42). However, an independent structural study showed that the anti-polyQ antibody 3B5H10 binds to a compact β-sheet-like structure of polyQ in a monomeric htt fragment.6 These results clearly indicate that polyQ domains can fold into at least two unique, stable, monomeric conformations and suggest that the “linear lattice” model is not generally applicable to all polyQ structures.Not only are antibodies useful for understanding what polyQ structures exist in situ, especially in the diffuse htt fraction of neurons, but antibodies and/or intrabodies may also have potential as therapeutic agents. For example, several studies showed that intrabodies reduce htt toxicity in cellular models (4449). Moreover, one intrabody (C4) slows htt aggregation and prolongs lifespan in a Drosophila model of HD (50, 51), while another (mEM48) ameliorates neurological symptoms in a mouse model of HD (48).Three of the antibodies examined in this study (MW1, MW2, and MW7) modulate htt-induced cell death when co-transfected as single-chain variable region fragment antibodies (scFvs) in 293 cells with htt exon 1 containing an expanded polyQ domain (46). In these studies MW1 and MW2, which bind to the polyQ repeat in htt, increased htt-induced toxicity and aggregation (46). Conversely, MW7, which binds to the polyproline (polyP) regions adjacent to the polyQ repeat in htt, decreased its aggregation and toxicity (46). Interestingly, MW7 has also been shown to increase the turnover of mutant htt in cultured cells and reduce its toxicity in corticostriatal brain slice explants (49).Given the difficulty in understanding which specie(s) of htt exist and mediate pathogenesis in the putative toxic diffuse fraction of neurons, we sought to rigorously characterize the conformational specificity of a panel of anti-htt antibodies, the best in situ probes currently available for distinguishing specie(s) of htt. We reasoned that if htt can adopt multiple conformations that mediate different aggregation pathways, then anti-htt antibodies should differentially alter htt aggregation pathways by stabilizing or sequestering the specific conformers or aggregates they recognize. We therefore examined the effects of various antibodies on mutant htt fragment fibril formation and stability by atomic force microscopy (AFM). Our results are consistent with the hypothesis that monoclonal antibodies recognize distinct conformational epitopes formed by polyQ in a mutant htt fragment.  相似文献   

20.
Human islet amyloid polypeptide (hIAPP) is a cytotoxic protein that aggregates into oligomers and fibrils that kill pancreatic β-cells. Here we analyze hIAPP aggregation in vitro, measured via thioflavin-T fluorescence. We use mass-action kinetics and scaling analysis to reconstruct the aggregation pathway, and find that the initiation step requires four hIAPP monomers. After this step, monomers join the nucleus in pairs, until the first stable nucleus (of size approximately 20 monomers) is formed. This nucleus then elongates by successive addition of single monomers. We find that the best-fit of our data is achieved when we include a secondary fibril-dependent nucleation pathway in the reaction scheme. We predict how interventions that change rates of fibril elongation or nucleation rates affect the accumulation of potentially cytotoxic oligomer species. Our results demonstrate the power of scaling analysis in reverse engineering biochemical aggregation pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号