首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined temporal and spatial changes in the subepithelial mesenchymal cell process meshwork (CPM) in normally developing medial (MNP) and lateral nasal prominences (LNP) in mouse embryos by light and scanning electron microscopy. Marked changes were found only in the MNP during the fusion of the MNP and LNP. The CPM density in the prospective fusion area of the MNP gradually increased as the epithelial surfaces approached each other, attained its maximum just before contact, and decreased after contact. The CPM density in the prospective fusion area of the LNP changed only slightly even when the epithelial surfaces approached each other. The increase in CPM density paralleled that in the density of mesenchymal cell bodies. The LNP grew more actively toward the line of fusion than did the MNP during the progressive fusion of the two prominences. A larger number of fusion-associated epithelial morphological changes--the appearance of superficial protruding cells and cell degeneration--occurred in the MNP than in the LNP. These findings suggest that the increased CPM density is closely related to the growth of the facial prominences and the fusion-associated epithelial morphology and that the CPM plays an important role in the epithelial-mesenchymal interaction during the formation of the upper lip and primary palate.  相似文献   

2.
The molecular mechanisms by which the primordia of the midface grow and fuse to form the primary palate portion of the craniofacial region are not well characterized. This is in spite of the fact that failure of growth and/or fusion of these primordia leads to the most common craniofacial birth defect in humans (i.e. clefts of the lip and/or palate). Bmp4 plays a critical role during early embryonic development and has previously been shown to play a role in epithelial-mesenchymal interactions in the craniofacial region of chicks. We analyze the expression of bmp4 in mouse as the midfacial processes undergo fusion to form the primary palate. We show that bmp4 is expressed in a very distinct manner in the three midfacial processes (lateral nasal, LNP, medial nasal, MNP, and maxillary processes, MxP) that ultimately fuse to form the midface. Prior to fusion of the midfacial processes, bmp4 is expressed in the ectoderm of the LNP, MNP, and MxP in a distinct spatial and temporal manner near and at the site of fusion of the midface. Bmp4 appears to demarcate the cells in the LNP and MNP that will eventually contact and fuse with each other. As fusion of the three prominences proceeds, some bmp4 expressing cells are trapped in the fusion line. Later, the expression of bmp4 switches to the mesenchyme of the midface underlying its initial expression in the ectoderm. The switch occurs soon after fusion of the three processes. The pattern of expression in the midfacial region implicates the important role of bmp4 in mediating the fusion process, possibly through apoptosis of cells in the putative site of fusion, during midfacial morphogenesis.  相似文献   

3.
Although oxygen concentrations affect the growth and function of mesenchymal stem cells (MSCs), the impact of hypoxia on osteoblastic differentiation is not understood. Likewise, the effect of hypoxia‐induced epigenetic changes on osteoblastic differentiation of MSCs is unknown. The aim of this study was to examine the in vitro hypoxic response of human periosteum‐derived cells (hPDCs). Hypoxia resulted in greater proliferation of hPDCs as compared with those cultured in normoxia. Further, hypoxic conditions yielded decreased expression of apoptosis‐ and senescence‐associated genes by hPDCs. Osteoblast phenotypes of hPDCS were suppressed by hypoxia, as suggested by alkaline phosphatase activity, alizarin red‐S‐positive mineralization, and mRNA expression of osteoblast‐related genes. Chromatin immunoprecipitation assays showed an increased presence of H3K27me3, trimethylation of lysine 27 on histone H3, on the promoter region of bone morphogenetic protein‐2. In addition, mRNA expression of histone lysine demethylase 6B (KDM6B) by hPDCs was significantly decreased in hypoxic conditions. Our results suggest that an increased level of H3K27me3 on the promoter region of bone morphogenetic protein‐2, in combination with downregulation of KDM6B activity, is involved in the suppression of osteogenic phenotypes of hPDCs cultured in hypoxic conditions. Although oxygen tension plays an important role in the viability and maintenance of MSCs in an undifferentiated state, the effect of hypoxia on osteoblastic differentiation of MSCs remains controversial. In addition, evidence regarding the importance of epigenetics in regulating MSCs has been limited. This study was to examine the role hypoxia on osteoblastic differentiation of hPDCs, and we examined whether histone methylation is involved in the observed effect of hypoxia on osteogenic differentiation of hPDCs.  相似文献   

4.
5.
6.
7.
Distinct functions for Bmp signaling in lip and palate fusion in mice   总被引:8,自引:0,他引:8  
Previous work suggested that cleft lip with or without cleft palate (CL/P) is genetically distinct from isolated cleft secondary palate (CP). Mutations in the Bmp target gene Msx1 in families with both forms of orofacial clefting has implicated Bmp signaling in both pathways. To dissect the function of Bmp signaling in orofacial clefting, we conditionally inactivated the type 1 Bmp receptor Bmpr1a in the facial primordia, using the Nestin cre transgenic line. Nestin cre; Bmpr1a mutants had completely penetrant, bilateral CL/P with arrested tooth formation. The cleft secondary palate of Nestin cre; Bmpr1a mutant embryos was associated with diminished cell proliferation in maxillary process mesenchyme and defective anterior posterior patterning. By contrast, we observed elevated apoptosis in the fusing region of the Nestin cre; Bmpr1a mutant medial nasal process. Moreover, conditional inactivation of the Bmp4 gene using the Nestin cre transgenic line resulted in isolated cleft lip. Our data uncover a Bmp4-Bmpr1a genetic pathway that functions in lip fusion, and reveal that Bmp signaling has distinct roles in lip and palate fusion.  相似文献   

8.
Cleft lip with or without cleft palate is one of the most common congenital malformations in newborns. While numerous studies on secondary palatogenesis exist, data regarding normal upper lip formation and cleft lip is limited. We previously showed that conditional inactivation of Tgf-beta type I receptor Alk5 in the ectomesenchyme resulted in total facial clefting. While the role of Tgf-beta signaling in palatal fusion is relatively well understood, its role in upper lip fusion remains unknown. In order to investigate a role for Tgf-beta signaling in upper lip formation, we used the Nes-Cre transgenic mouse line to delete the Alk5 gene in developing facial prominences. We show that Alk5/Nes-Cre mutants display incompletely penetrant unilateral or bilateral cleft lip. Increased cell death seen in the medial nasal process and the maxillary process may explain the hypoplastic maxillary process observed in mutants. The resultant reduced contact is insufficient for normal lip fusion leading to cleft lip. These mice also display retarded development of palatal shelves and die at E15. Our findings support a role for Alk5 in normal upper lip formation not previously reported.  相似文献   

9.
目的和方法:应用免疫组织化学、原位末端标记技术及Northern杂交等方法检测慢性缺氧大鼠肺内特别是肺血管壁细胞增殖、凋亡及相关基因cmyc、p53表达。结果:正常及慢性缺氧大鼠肺内检出一定比率的增殖、凋亡阳性细胞,两类细胞在肺内呈不均匀散在分布。在缺氧大鼠肺内,增殖阳性细胞绝大部分是肺小血管壁细胞,凋亡性染色细胞在肺小血管壁上较对照组少见。缺氧1、2周组大鼠肺内细胞增殖指数显著增高而凋亡指数显著减少,细胞增殖凋亡比值分别约为对照组3与35倍。cmyc及p53是细胞增殖、凋亡密切相关的两种癌(抑癌)基因,前者在缺氧大鼠肺内表达显著增加,而后者(野生型)表达显著减少。结论:可能由于cmyc及p53基因异常表达所致的细胞增殖、凋亡失衡参与了慢性缺氧性肺血管结构改建的调节。  相似文献   

10.
We isolated mesenchymal cells from individual facial primordia of mouse embryos on 11 days post coitum and examined the effects of retinoic acid (RA) on chondrogenesis, induction of cell death, and the protein expression of retinoic acid receptor (RAR) β and γ in micromass culture. Under the control condition, cells of both medial and lateral nasal prominences (MNP and LNP) displayed high chondrogenic potential, while those of maxillary and mandibular prominences (Mx and Md) had constant growth activity and low chondrogenic potential. Though none of the cells expressed detectable levels of the RAR β protein, RAR γ was expressed in the cells of all the facial primordia. One μM RA inhibited the chondrogenesis, and induced cell death accompanied with the induction of the RAR β protein in LNP, MX and Md cells within 6 hr. On the contrary, both cell death and RAR β protein induction were detected in the MNP cells treated with RA for 24 hr. These results suggest that the RAR β is involved in the process of the cell death induced by the RA treatment in the mesenchymal cells of the mouse facial primordia.  相似文献   

11.
Zhang H  Li W  Sun S  Yu S  Zhang M  Zou F 《Cell proliferation》2012,45(2):167-175
Objectives: Sphingosine kinase (SphK), which is regulated by hypoxia, catalyses phosphorylation of sphingosine to produce sphingosine‐1‐phosphate, which stimulates invasiveness of gliomas. However, whether SphK is involved in proliferation of glioma cells under hypoxic conditions is not clearly understood. In this study, we have investigated the role of SphK in of proliferation glioma cells under hypoxia. Materials and methods: Effects of small interfering RNA (siRNA) on SphKs, SKI (inhibitor of SphK) and U0126 (inhibitor of ERK) on proliferation of glioma cells under hypoxia were studied using CCK‐8 assay and flow cytometry. Protein expression profiles were evaluated by Western blot analysis. Results:  SKI suppressed proliferation of glioma cells under hypoxia. Similarly, downregulation of SphKs by siRNA inhibited glioma cell proliferation, and the cell cycle was arrested in G2/M phase when SphK1 was inhibited. In addition, inhibition of SphK1 attenuated phosphorylation of ERK in hypoxic conditions. Furthermore, U0126 markedly inhibited cell population growth and arrested cells in G2/M as effectively as SKI. However, silencing SphK2 induced cell cycle arrest in the S phase and it showed little effect on hypoxia‐induced activation of ERK. Conclusions: SphK1 and SphK2 are involved in proliferation of glioma cells in hypoxic conditions through distinct signalling pathways. SphK1, but not SphK2, promotes cell population expansion in hypoxic conditions by activating ERK.  相似文献   

12.
Outgrowth and fusion of the lateral and medial nasal processes and of the maxillary process of the first branchial arch are integral to lip and primary palate development. Wnt9b mutations are associated with cleft lip and cleft palate in mice; however, the cause of these defects remains unknown. Here, we report that Wnt9b(-/-) mice show significantly retarded outgrowth of the nasal and maxillary processes due to reduced proliferation of mesenchymal cells, which subsequently results in a failure of physical contact between the facial processes that leads to cleft lip and cleft palate. These cellular defects in Wnt9b(-/-) mice are mainly caused by reduced FGF family gene expression and FGF signaling activity resulting from compromised canonical WNT/β-catenin signaling. Our study has identified a previously unknown regulatory link between WNT9B and FGF signaling during lip and upper jaw development.  相似文献   

13.
Hypoxia is a global phenomenon affecting recruitment as well as the embryonic development of aquatic fauna. The present study depicts hypoxia induced disruption of the intrinsic pathway of programmed cell death (PCD), leading to embryonic malformation in the goldfish, Carrasius auratus. Constant hypoxia induced the early expression of pro-apoptotic/tumor suppressor p53 and concomitant expression of the cell death molecule, caspase-3, leading to high level of DNA damage and cell death in hypoxic embryos, as compared to normoxic ones. As a result, the former showed delayed 4 and 64 celled stages and a delay in appearance of epiboly stage. Expression of p53 efficiently switched off expression of the anti-apoptotic Bcl-2 during the initial 12 hours post fertilization (hpf) and caused embryonic cell death. However, after 12 hours, simultaneous downregulation of p53 and Caspase-3 and exponential increase of Bcl-2, caused uncontrolled cell proliferation and prevented essential programmed cell death (PCD), ultimately resulting in significant (p<0.05) embryonic malformation up to 144 hpf. Evidences suggest that uncontrolled cell proliferation after 12 hpf may have been due to downregulation of p53 abundance, which in turn has an influence on upregulation of anti-apoptotic Bcl-2. Therefore, we have been able to show for the first time and propose that hypoxia induced downregulation of p53 beyond 12 hpf, disrupts PCD and leads to failure in normal differentiation, causing malformation in gold fish embryos.  相似文献   

14.
15.
16.
低氧诱导因子-1的转录活性调控及其信号传导   总被引:5,自引:0,他引:5  
低氧诱导因子-1(hypoxia-inducible factor-1,HIF-1)是氧平衡调控相关的转录因子.依赖HIF-1的基因表达调控系统广泛影响葡萄糖代谢、细胞增殖、凋亡和血管发生,与机体低氧适应、胚胎发育、各种缺血性疾病及肿瘤相关.HIF-1自身活性调节是低氧应答基因表达调控的中心环节.调控主要发生在源于Ras的两条信号途径:Ras/Raf/MEK介导的HIF-1反式激活功能调控,PI(3)K/Akt依赖的HIF-1alpha蛋白稳定性调控.这两个信号传导途径分别独立又协调地调控着HIF-1的转录活性.  相似文献   

17.
18.
Oxygen is a vital requirement for multi-cellular organisms to generate energy and cells have developed multiple compensatory mechanisms to adapt to stressful hypoxic conditions. Such adaptive mechanisms are intricately interconnected with other signaling pathways that regulate cellular functions such as cell growth. However, our understanding of the overall system governing the cellular response to the availability of oxygen remains limited. To identify new genes involved in the response to hypoxic stress, we have performed a genome-wide gene knockdown analysis in human lung carcinoma PC8 cells using an shRNA library carried by a lentiviral vector. The knockdown analysis was performed under both normoxic and hypoxic conditions to identify shRNA sequences enriched or lost in the resulting selected cell populations. Consequently, we identified 56 candidate genes that might contribute to the cellular response to hypoxia. Subsequent individual knockdown of each gene demonstrated that 13 of these have a significant effect upon oxygen-sensitive cell growth. The identification of BCL2L1, which encodes a Bcl-2 family protein that plays a role in cell survival by preventing apoptosis, validates the successful design of our screen. The other selected genes have not previously been directly implicated in the cellular response to hypoxia. Interestingly, hypoxia did not directly enhance the expression of any of the identified genes, suggesting that we have identified a new class of genes that have been missed by conventional gene expression analyses to identify hypoxia response genes. Thus, our genetic screening method using a genome-wide shRNA library and the newly-identified genes represent useful tools to analyze the cellular systems that respond to hypoxic stress.  相似文献   

19.
An adenosine triphosphatase of the sucrose nonfermenting 2 protein family, androgen receptor-interacting protein 4 (ARIP4), modulates androgen receptor activity. To elucidate receptor-dependent and -independent functions of ARIP4, we have analyzed Arip4 gene-targeted mice. Heterozygous Arip4 mutants were normal. Arip4 is expressed mainly in the neural tube and limb buds during early embryonic development. Arip4-/- embryos were abnormal already at embryonic d 9.5 (E9.5) and died by E11.5. At E9.5 and E10.5, almost all major tissues of Arip4-null embryos were proportionally smaller than those of wild-type embryos, and the neural tube was shrunk in some Arip4-/- embryos. Dramatically reduced cell proliferation and increased apoptosis were observed in E9.5 and E10.5 Arip4-null embryos. Mouse embryonic fibroblasts (MEFs) isolated from Arip4-/- embryos ceased to grow after two to three passages and exhibited increased apoptosis and decreased DNA synthesis compared with wild-type MEFs. Comparison of gene expression profiles of Arip4-/- and wild-type MEFs at E9.5 revealed that putative ARIP4 target genes are involved in cell growth and proliferation, apoptosis, cell death, DNA replication and repair, and development. Collectively, ARIP4 plays an essential role in mouse embryonic development and cell proliferation, and it appears to coordinate multiple essential biological processes, possibly through a complex chromatin remodeling system.  相似文献   

20.
The cleft lip with or without cleft palate (CL/P) is one of the most common congenital defects in humans. Genome-wide association studies (GWAS) have been widely used for identifying candidate genes, and different genes or chromosomal regions have shown strong evidence for the presence of causal genes in CL/P. To date, two independent GWAS have identified GADD45G as influencing risk for CL/P. However, there is no animal model evidence about GADD45G related to CL/P. Here, we reported the generation of a novel GADD45G mutated rabbit model by CRISPR/Cas9 and CRISPR-based BE4-Gam systems. The homozygous (GADD45G−/−) while not heterozygous (GADD45G+/−) pups died after birth due to severe craniofacial defects of unilateral or bilateral cleft lip (CL). Moreover, the disorder of proliferation, apoptosis and epithelial-mesenchymal transition (EMT) were also determined in the medial and lateral nasal processes (MNP and LNP) of the embryonic day 13 (E13) GADD45G−/− rabbits, which compared with the normal wild type (WT) rabbits. Thus, our study confirmed for the first time that loss of GADD45G lead to CL at the animal level and provided new insights into the crucial role of GADD45G for upper lip formation and fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号