首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fusidic acid (FA), a narrow spectrum steroidal antibiotic, is useful for treatment of most skin, conjunctival, and corneal infections and also in infections caused by atypical microbes in the surface of the eye. Liposome electrokinetic capillary chromatography (LEKC) was used to study the interactions between FA and lipid membranes. Liposomes prepared by extrusion were composed of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleyl-sn-glysero-3-phosphor-l-serine (POPS), cholesterol, FA, and sphingomyelin (SM) in various molar ratios. 26 different liposome dispersions were studied as dispersed (pseudostationary) phase in LEKC. The hydrophobicities of the liposomes were evaluated by calculating the retention factors of model neutral steroids. The retention factors were calculated using the EOF and the effective electrophoretic mobilities of the analytes and the liposomes. The latter were separately determined by capillary electrophoresis with a polyacrylamide (PAA)-coated capillary. FA-lipid membrane interactions were studied by determining the retention factor of FA. In addition, liposomes prepared from lipids extracted from Escherichia coli bacterium were studied and used as dispersed phase in LEKC for interaction studies between FA and lipid membranes.  相似文献   

2.
To obtain cationic liposomes of which affinity to negatively charged membranes can be controlled by temperature, cationic liposomes consisting of 3beta-[N-(N', N'-dimethylaminoethane)carbamoyl]cholesterol and dioleoylphosphatidylethanolamine were modified with poly(N-acryloylpyrrolidine), which is a thermosensitive polymer exhibiting a lower critical solution temperature (LCST) at ca. 52 degrees C. The unmodified cationic liposomes did not change its zeta potential between 20-60 degrees C. The polymer-modified cationic liposomes revealed much lower zeta potential values below the LCST of the polymer than the unmodified cationic liposomes. However, their zeta potential increased significantly above this temperature. The unmodified cationic liposomes formed aggregates and fused intensively with anionic liposomes consisting of egg yolk phosphatidylcholine and phosphatidic acid in the region of 20-60 degrees C, due to the electrostatic interaction. In contrast, aggregation and fusion of the polymer-modified cationic liposomes with the anionic liposomes were strongly suppressed below the LCST. However, these interactions were enhanced remarkably above the LCST. In addition, the polymer-modified cationic liposomes did not cause leakage of calcein from the anionic liposomes below the LCST, but promoted the leakage above this temperature as the unmodified cationic liposomes did. Temperature-induced conformational change of the polymer chains from a hydrated coil to a dehydrated globule might affect the affinity of the polymer-modified cationic liposomes to the anionic liposomes.  相似文献   

3.
Functioning of membrane proteins, in particular ionic channels, can be modulated by alteration of their arrangement in membranes. We addressed this issue by studying the effect of different chain length polylysines on the kinetics of ionic channels formed in a bilayer lipid membrane (BLM) by O-pyromellitylgramicidin carrying three negative charges at the C-terminus. The method of sensitized photoinactivation was applied to the analysis of the channel association-dissociation kinetics (characterized by the exponential factor of the curve describing the time course of the flash-induced decrease in the transmembrane current, tau). Addition of polylysine to the bathing solutions of BLM led to the deceleration of the photoinactivation kinetics, i.e. to the increase in tau. It was shown here that for a series of polylysines differing in their chain lengths, the value of tau grew as their concentration increased above a threshold level until at a certain concentration of each polylysine tau reached maximum. At higher polylysine concentrations tau began to decrease and finally became close to the control level observed in the absence of polylysine. With lengthening of the polylysine chain the maximum value of tau increased, the concentration dependence became steeper, and the threshold concentration decreased. The increase in the ionic strength of the medium shifted the concentration dependence of tau to higher polylysine concentrations and decreased the maximum value of tau. It was concluded that the increase in tau was caused by the formation of domains of O-pyromellitylgramicidin molecules induced by binding of polylysines. This can be related to functional aspects of polycation-induced sequestering of negatively charged transmembrane peptides in neutral membranes.  相似文献   

4.
We have investigated the binding of a new dansylcadaverine derivative of substance P (DNC-SP) with negatively charged small unilamellar vesicles composed of a mixture of phosphatidylcholine (PC) and either phosphatidylglycerol (PG) or phosphatidylserine (PS) using fluorescence spectroscopic techniques. The changes in fluorescence properties were used to obtain association isotherms at variable membrane negative charges and at different ionic strengths. The experimental association isotherms were analyzed using two binding approaches: (i) the Langmuir adsorption isotherm and the partition equilibrium model, that neglect the activity coefficients; and (ii) the partition equilibrium model combined with the Gouy-Chapman formalism that considers electrostatic effects. A consistent quantitative analysis of each DNC-SP binding curve at different lipid composition was achieved by means of the Gouy-Chapman approach using a peptide effective interfacial charge (v) value of (0.95 +/- 0.02), which is lower than the physical charge of the peptide. For PC/PG membranes, the partition equilibrium constant were 7.8 x 10(3) M(-1) (9/1, mol/mol) and 6.9 x 10(3) M(-1) (7/3, mol/mol), whereas for PC/PS membranes an average value of 6.8 x 10(3) M(-1) was estimated. These partition equilibrium constants were similar to those obtained for the interaction of DNC-SP with neutral PC membranes (4.9 x 10(3) M(-1)), as theoretically expected. We demonstrate that the v parameter is a determinant factor to obtain a unique value of the binding constant independently of the surface charge density of the vesicles. Also, the potential of fluorescent dansylated SP analogue in studies involving interactions with cell membranes is discussed.  相似文献   

5.
Abstract

Golgi-Associated Plant Pathogenesis-Related protein 1 (GAPR-1) is a mammalian protein that belongs to the superfamily of plant pathogenesis-related proteins group 1 (PR-1). GAPR-1 strongly associates with lipid rafts at the cytosolic leaflet of the Golgi membrane. The myristoyl moiety at the N-terminus of GAPR-1 contributes to membrane binding but is not sufficient for stable membrane anchorage. GAPR-1 is positively charged at physiological pH, which allows for additional membrane interactions with proteins or lipids. To determine the potential contribution of lipids to membrane binding of GAPR-1, we used a liposome binding assay. Here we report that non-myristoylated GAPR-1 stably binds liposomes that contain the negatively charged lipids phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, or phosphatidic acid. GAPR-1 displays the highest preference for phosphatidic acid-containing liposomes. In contrast, lysozyme, which contains a similar surface charge, did not bind to these liposomes, except for a weak membrane association with PA-containing liposomes. Interestingly, GAPR-1 binds to phosphatidylinositol with unusual characteristics. Denaturation or organic extraction of GAPR-1 does not result in dissociation of phosphatidylinositol from GAPR-1. The association of phosphatidylinositol with GAPR-1 results in a diffuse gel-shift in SDS-PAGE. Mass spectrometric analysis of gel-shifted GAPR-1 showed the association of up to 3 molecules of phosphatidylinositol with GAPR-1. These results suggest that the lipid composition contributes to the GAPR-1 binding to biological membranes.  相似文献   

6.
A series of artificial peptides bearing cationic functional groups with different side chain lengths were designed, and their ability to increase the thermal stability of nucleic acid duplexes was investigated. The peptides with amino groups selectively increased the stability of RNA/RNA duplexes, and a relationship between the side chain length and the melting temperature (Tm) of the peptide–RNA complexes was observed. On the other hand, while peptides with guanidino groups exhibited a similar tendency with respect to the peptide structure and thermal stability of RNA/RNA duplexes, those with longer side chain lengths, such as l-2-amino-4-guanidinobutyric acid (Agb) or l-arginine (Arg) oligomers, stabilized both RNA/RNA and DNA/DNA duplexes, and those with shorter side chain lengths exhibited a higher ability to selectively stabilize RNA/RNA duplexes. In addition, peptides were designed with different levels of flexibility by introducing glycine (Gly) residues into the l-2-amino-3-guanidinopropionic acid (Agp) oligomers. It was found that insertion of Gly did not affect the thermal stability of the peptide–RNA complexes, but an alternate arrangement of Gly and Agp apparently decreased the thermal stability. Therefore, in the Agp oligomer, consecutive Agp sequences are essential for increasing the stability of RNA/RNA duplexes.  相似文献   

7.
Intestinal fatty acid binding protein (IFABP) is thought to participate in the intracellular transport of fatty acids (FAs). Fatty acid transfer from IFABP to phospholipid membranes is proposed to occur during protein-membrane collisional interactions. In this study, we analyzed the participation of electrostatic and hydrophobic interactions in the collisional mechanism of FA transfer from IFABP to membranes. Using a fluorescence resonance energy transfer assay, we examined the rate and mechanism of transfer of anthroyloxy-fatty acid analogs a) from IFABP to phospholipid membranes of different composition; b) from chemically modified IFABPs, in which the acetylation of surface lysine residues eliminated positive surface charges; and c) as a function of ionic strength. The results show clearly that negative charges on the membrane surface and positive charges on the protein surface are important for establishing the "collisional complex", during which fatty acid transfer occurs. In addition, changes in the hydrophobicity of the protein surface, as well as the hydrophobic volume of the acceptor vesicles, also influenced the rate of fatty acid transfer. Thus, ionic interactions between IFABP and membranes appear to play a primary role in the process of fatty acid transfer to membranes, and hydrophobic interactions can also modulate the rates of ligand transfer.  相似文献   

8.
Molecular dynamics (MD) simulations complement experimental methods in studies of the structure and dynamics of lipid bilayers. The choice of algorithms employed in this computational method represents a trade-off between the accuracy and real calculation time. The largest portion of the simulation time is devoted to calculation of long-range electrostatic interactions. To speed-up evaluation of these interactions, various approximations have been used. The most common ones are the truncation of long-range interactions with the use of cut-offs, and the particle-mesh Ewald (PME) method. In this study, several multi-nanosecond cut-off and PME simulations were performed to establish the influence of the simulation protocol on the bilayer properties. Two bilayers were used. One consisted of neutral phosphatidylcholine molecules. The other was a mixed lipid bilayer consisting of neutral phosphatidylethanolamine and negatively charged phosphatidylglycerol molecules. The study shows that the cut-off simulation of a bilayer containing charge molecules generates artefacts; in particular the mobility and order of the charged molecules are vastly different from those determined experimentally. In the PME simulation, the bilayer properties are in general agreement with experimental data. The cut-off simulation of bilayers containing only uncharged molecules does not generate artefacts, nevertheless, the PME simulation gives generally better agreement with experimental data.  相似文献   

9.
The effects of changed ionic environments on the frog taste nerve responses to the bitter substances were examined. The responses to quinine and strychnine carrying a positive charge were suppressed by an increase in ionic strength of stimulating solutions. It was concluded that electrostatic interaction of these positive bitter substances with the receptor membranes greatly contributes to the adsorption of the substances on the membranes and that this interaction was suppressed by an increase in ionic strength. The responses to neutral bitter substances (caffeine and theophylline) were unchanged by an increase in salt concentration. The zeta potential of the mouse neuroblastoma (N-18 clone), which was depolarized by various bitter substances similarly to a taste cell, was measured in the presence of the bitter substances. The zeta potential was a little changed by quinine and practically unchanged by strychnine, caffeine and theophylline. The membrane fluidity of the N-18 cell monitored with 2-(9-anthroyloxy)stearic acid was changed in response to the bitter substances, while the fluidity monitored with 12-(9-anthroyloxy)stearic acid or 1,6-diphenyl-1,3,5-hexatriene was unchanged. This suggested that the bitter substances are adsorbed on the hydrophobic region near the surface and induce a conformational change at the region. The depolarization by the bitter substances seems to stem from changes in the “boundary potential” at the region near the surface within the membrane interior.  相似文献   

10.
Fluorescence energy transfer studies reveal that negatively charged lipid vesicles interact with nuclei from mouse liver cells. This interaction was observed with charged lipid vesicles composed of PA or PS but not with the uncharged PC or PE:PC vesicles. The vesicles were prepared by bath sonication and contained either a fluorescent marker in the lipid bilayer or in the vesicular interior. The negatively charged vesicles showed an adsorption to the nuclear membrane visible by fluorescence microscopy. The results obtained by resonance energy transfer experiments are interpreted in terms of a mixing of the lipids from the vesicles with the nuclear membrane. Encapsulation studies documented a staining of the nuclei only if the dye molecules of high or low molecular weight were encapsulated inside negatively charged vesicles. As consequence of the vesicle-nuclei interaction morphological changes on the nuclear surface became visible.  相似文献   

11.
Chicken liver bile acid-binding protein (L-BABP) is a member of the fatty acid-binding proteins super family. The common fold is a β-barrel of ten strands capped with a short helix-loop-helix motif called portal region, which is involved in the uptake and release of non-polar ligands. Using multiple-run molecular dynamics simulations we studied the interactions of L-BABP with lipid membranes of anionic and zwitterionic phospholipids. The simulations were in agreement with our experimental observations regarding the electrostatic nature of the binding and the conformational changes of the protein in the membrane. We observed that L-BABP migrated from the initial position in the aqueous bulk phase to the interface of anionic lipid membranes and established contacts with the head groups of phospholipids through the side of the barrel that is opposite to the portal region. The conformational changes in the protein occurred simultaneously with the binding to the membrane. Remarkably, these conformational changes were observed in the portal region which is opposite to the zone where the protein binds directly to the lipids. The protein was oriented with its macrodipole aligned in the configuration of lowest energy within the electric field of the anionic membrane, which indicates the importance of the electrostatic interactions to determine the preferred orientation of the protein. We also identified this electric field as the driving force for the conformational change. For all the members of the fatty acid-binding protein family, the interactions with lipid membranes is a relevant process closely related to the uptake, release and transfer of the ligand. The observations presented here suggest that the ligand transfer might not necessarily occur through the domain that directly interacts with the lipid membrane. The interactions with the membrane electric field that determine orientation and conformational changes described here can also be relevant for other peripheral proteins.  相似文献   

12.
Chicken liver bile acid-binding protein (L-BABP) is a member of the fatty acid-binding proteins super family. The common fold is a beta-barrel of ten strands capped with a short helix-loop-helix motif called portal region, which is involved in the uptake and release of non-polar ligands. Using multiple-run molecular dynamics simulations we studied the interactions of L-BABP with lipid membranes of anionic and zwitterionic phospholipids. The simulations were in agreement with our experimental observations regarding the electrostatic nature of the binding and the conformational changes of the protein in the membrane. We observed that L-BABP migrated from the initial position in the aqueous bulk phase to the interface of anionic lipid membranes and established contacts with the head groups of phospholipids through the side of the barrel that is opposite to the portal region. The conformational changes in the protein occurred simultaneously with the binding to the membrane. Remarkably, these conformational changes were observed in the portal region which is opposite to the zone where the protein binds directly to the lipids. The protein was oriented with its macrodipole aligned in the configuration of lowest energy within the electric field of the anionic membrane, which indicates the importance of the electrostatic interactions to determine the preferred orientation of the protein. We also identified this electric field as the driving force for the conformational change. For all the members of the fatty acid-binding protein family, the interactions with lipid membranes is a relevant process closely related to the uptake, release and transfer of the ligand. The observations presented here suggest that the ligand transfer might not necessarily occur through the domain that directly interacts with the lipid membrane. The interactions with the membrane electric field that determine orientation and conformational changes described here can also be relevant for other peripheral proteins.  相似文献   

13.
We introduce here i, i + 3 and i, i + 4 side chain interactions into the modified Lifson-Roig helix-coil theory of Doig et al. (1994, Biochemistry 33:3396-3403). The helix/coil equilibrium is a function of initiation, propagation, capping, and side chain interaction parameters. If each of these parameters is known, the helix content of any isolated peptide can be predicted. The model considers every possible conformation of a peptide, is not limited to peptides with only a single helical segment, and has physically meaningful parameters. We apply the theory to measure the i, i + 4 interaction energies between Phe and Met side chains. Peptides with these residues spaced i, i + 4 are significantly more helical than controls where they are spaced i, i + 5. Application of the model yields delta G for the Phe-Met orientation to be -0.75 kcal.mol-1, whereas that for the Met-Phe orientation is -0.54 kcal.mol-1. These orientational preferences can be explained, in part, by rotamer preferences for the interacting side chains. We place Phe-Met i, i + 4 at the N-terminus, the C-terminus, and in the center of the host peptide. The model quantitatively predicts the observed helix contents using a single parameter for the side chain-side chain interaction energy. This result indicates that the model works well even when the interaction is at different locations in the helix.  相似文献   

14.
Day PJ  Pinheiro TJ  Roberts LM  Lord JM 《Biochemistry》2002,41(8):2836-2843
Ricin is a heterodimeric protein toxin in which a catalytic polypeptide (the A-chain or RTA) is linked by a disulfide bond to a cell-binding polypeptide (the B-chain or RTB). During cell entry, ricin undergoes retrograde vesicular transport to reach the endoplasmic reticulum (ER) lumen, from where RTA translocates into the cytosol, probably by masquerading as a substrate for the ER-associated protein degradation (ERAD) pathway. In partitioning studies in Triton X-114 solution, RTA is predominantly found in the detergent phase, whereas ricin holotoxin, native RTB, and several single-chain ribosome-inactivating proteins (RIPs) are in the aqueous phase. Fluorescence spectroscopy and far-UV circular dichroism (CD) demonstrated significant structural changes in RTA as a result of its interaction with liposomes containing negatively charged phospholipid (POPG). These lipid-induced structural changes markedly increased the trypsin sensitivity of RTA and, on the basis of the protein fluorescence determinations, abolished its ability to bind to adenine, the product resulting from RTA-catalyzed depurination of 28S ribosomal RNA. RTA also released trapped calcein from POPG vesicles, indicating that it destabilized the lipid bilayer. We speculate that membrane-induced partial unfolding of RTA during cell entry may facilitate its recognition as an ERAD substrate.  相似文献   

15.
The interaction between a positively charged peptide (poly-L-lysine) and model membranes containing charged lipids has been investigated. Conformational changes of the polypeptide as well as changes in the membrane lipid distribution were observed upon lipid-protein agglutination: 1. The strong binding of polylysine is shown directly by the use of spinlabelled polypeptide. Upon binding to phosphatidic acid a shift in the hyperfine coupling constant from 16.5 to 14.6 Oe is observed. The spectrum of the lipid-bound peptide is superimposed on the spectrum of polylysine in solution. Half of the lysine groups are bound to the charged membranes. A change in the conformation of polylysine from a random coil to a partially ordered configuration is suggested. 2. Spin labelling of the lipid component gives evidence concerning the molecular organization of a lipid mixture containing charged phosphatitid acid. Addition of polylysine induces the formation of crystalline patches of bound phosphatidic acid. 3. Excimer forming pyrene decanoic acid has been employed. Addition of positively charged polylysine (pH 9.0) to phosphatidic acid membranes increases the transition temperature of the lipid from Tt = 50 to Tt = 62 degrees C. Thus, a lipid segregation of lipid into regions of phosphatidic acid bound to the peptide which differ in their microviscosity from the surrounding membrane is induced. One lysine group binds one phosphatidic acid molecule, but only half of the phosphatidic acid is bound. 4. Direct evidence for charge induced domain formation in lipid mixtures containing phosphatidic acid is given by electron microscopy. Addition of polylysine leads to a change in the surface curvature of the bound charged lipid. The domain size is estimated from the electron micrographs. The number of domains present is dependent on both the ratio of charged to uncharged lipids as well as on the amount of polylysine added to the vesicles. The size of the domains is not dependent on membrane composition. However, the size seems to increase in a stepwise manner that is correlated with a multiple of the area covered by one polylysine molecule.  相似文献   

16.
The effect of trivalent (Gd(3+) and Yb(3+)) and divalent (Be(2+) and Ca(2+)) cations on suspensions of multilamellar liposomes formed from brain PS and DMPS has been studied using microelectrophoresis and DSC techniques, respectively. The zeta potential values have been shown to strongly depend on the total lipid concentration in the suspension. At moderate concentrations of the polyvalent cations, the total cation concentration exceeds the bulk one several times due to adsorption of cations to the liposomes. A modification of the Gouy-Chapman-Stern theory in the case of unknown bulk concentration of the polyvalent cation is presented. An intrinsic association constant for Be(2+) ions was evaluated to be about K(2) approximately 50 M(-1). The algorithm for estimating the concentrations of the accessible (to exogenously added polyvalent cations) lipid-binding sites is described. These values are consistent with the subsurface concentrations of the polyvalent cations, which monotonously increase with the total concentration of the polyvalent cations. The calculated lipid accessibilities are shown to be in accordance with the DSC data.  相似文献   

17.
A characterization of the structural alterations induced by melittin in model-membranes of dioleoylphosphatidic acid and egg phosphatidylglycerol is presented, based on the use of 31P-NMR, freeze-fracture electron microscopy and small angle X-ray scattering. In accordance with earlier findings on the cardiolipin-melittin system, melittin is found to have an inverted phase inducing effect on these negatively charged lipids, in contrast to the influence on zwitterionic phospholipids. In phosphatidic acid this is expressed in the formation of an HII phase; in phosphatidylglycerol a less ordered, non-lamellar structure with low water content is adopted.  相似文献   

18.
The binding of native cytochrome c to negatively charged lipid dispersions of dioleoyl phosphatidylglycerol has been studied over a wide range of ionic strengths. Not only is the strength of protein binding found to decrease rapidly with increasing ionic strength, but also the binding curves reach an apparent saturation level that decreases rapidly with increasing ionic strength. Analysis of the binding isotherms with a general statistical thermodynamic model that takes into account not only the free energy of the electrostatic double layer, but also the free energy of the surface distribution of the protein, demonstrates that the apparent saturation effects could arise from a competition between the out-of-plane binding reaction and the lateral in-plane interactions between proteins at the surface. It is found that association with nonlocalized sites results in binding isotherms that display the apparent saturation effect to a much more pronounced extent than does the Langmuir adsorption isotherm for binding to localized sites. With the model for nonlocalized sites, the binding isotherms of native cytochrome c can be described adequately by taking into account only the entropy of the surface distribution of the protein, without appreciable enthalpic interactions between the bound proteins. The binding of cytochrome c to dioleoyl phosphatidylglycerol dispersions at a temperature at which the bound protein is denatured on the lipid surface, but is nondenatured when free in solution, has also been studied. The binding curves for the surface-denatured protein differ from those for the native protein in that the apparent saturation at high ionic strength is less pronounced. This indicates the tendency of the denatured protein to aggregate on the lipid surface, and can be described by the binding isotherms for nonlocalized sites only if attractive interactions between the surface-bound proteins are included in addition to the distributional entropic terms. Additionally, it is found that the binding capacity for the native protein is increased at low ionic strength to a value that is greater than that for complete surface coverage, and that corresponds more closely to neutralization of the effective charge (determined from the ionic strength dependence), rather than of the total net charge, on the protein. Electron spin resonance experiments with spin-labeled lipids indicate that this different mode of binding arises from a penetration or disturbance of the bilayer surface by the protein that may alleviate the effects of in-plane interactions under conditions of strong binding.  相似文献   

19.
We have recently reported that electrostatic interactions may play a critical role in alcohol-induced aggregation of alpha-chymotrypsin (CT). In the present study, we have investigated the heat-induced aggregation of this protein. Thermal aggregation of CT obeyed a characteristic pattern, with a clear lag phase followed by a sharp rise in turbidity. Intrinsic and ANS fluorescence studies, together with fluorescence quenching by acrylamide, suggested that the hydrophobic patches are more exposed in the denatured conformation. Typical chaperone-like proteins, including alpha- and beta-caseins and alpha-crystalline could inhibit thermal aggregation of CT, and their inhibitory effect was nearly pH-independent (within the pH range of 7-9). This was partially counteracted by alpha-, beta- and especially gamma-cyclodextrins, suggesting that hydrophobic interactions may play a major role. Loss of thermal aggregation at extreme acidic and basic conditions, combined with changes in net charge/pH profile of aggregation upon chemical modification of lysine residues are taken to support concomitant involvement of electrostatic interactions.  相似文献   

20.
The adhesion of three microorganisms (Saccharomyces cerevisiae, Acetobacter aceti, and Moniliella pollinis) to different materials has been studied using various supports (glass, metals, plastics), some of which were treated by an Fe(III) solution. The surface properties of the cells were characterized by the zeta potential and an index of hydrophobicity; characterization of the supports involved surface chemical analysis (XPS) and contact angle measurements. Cell suspensions in pure water at a given pH were left to settle on plates; the latter were then rinsed and examined microscopically, Saccharomyces cerevisiae and A. aceti adhere to metals under certain pH conditions but do not adhere to any of the other materials tested unless it is previously treated by ferric ions; adhesion of these hydrophilic cells is essentially controlled by electrostatic interactions. Moniliella pollinis adhere spontaneously to glass and to polymeric materials, but its attachment is also influenced by cell-cell or cell-support electrostatic repulsions; near the cell isoelectric point, cell flocculation is competing with adhesion to a support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号