首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mitochondrion plays a pivotal role in energy metabolism in eukaryotic cells. The electrochemical potential across the mitochondrial inner membrane is regulated to cope with cellular energy needs and thus reflects the bioenergetic state of the cell. Traditional assays for mitochondrial membrane potential are not amenable to high-throughput drug screening. In this paper, I describe a high-throughput assay that measures the mitochondrial membrane potential of living cells in 96- or 384-well plates. Cells were first treated with test compounds and then with a fluorescent potentiometric probe, the cationic-lipophilic dye tetramethylrhodamine methyl ester (TMRM). The cells were then washed to remove free compounds and probe. The amount of TMRM retained in the mitochondria, which is proportional to the mitochondrial membrane potential, was measured on an LJL Analyst fluorescence reader. Under optimal conditions, the assay measured only the mitochondrial membrane potential. The chemical uncouplers carbonylcyanide m-chlorophenyl hydrazone and dinitrophenol decreased fluorescence intensity, with IC(50) values (concentration at 50% inhibition) similar to those reported in the literature. A Z' factor of greater than 0.5 suggests that this cell-based assay can be adapted for high-throughput screening of chemical libraries. This assay may be used in screens for drugs to treat metabolic disorders such as obesity and diabetes, as well as cancer and neurodegenerative diseases.  相似文献   

2.
Two major plasma proteins in humans are primarily responsible for drug binding, the α1-acid-glycoprotein (AGP) and human serum albumin (HSA). The availability of at least a semiquantitative high-throughput assay for assessment of protein binding is expected to aid in bridging the current gap between high-throughput screening and early lead discovery, where cell-based and biochemical assays are deployed routinely to test up to several million compounds rapidly, as opposed to the late-stage candidate drug profiling methods which test at most dozens of compounds at a time. Here, we describe the miniaturization of a pair of assays based on the binding- and displacement-induced changes in fluorescence polarization (FP) of fluorescent small molecule probes known to specifically target the drug-binding sites of these two proteins. A robust and reproducible assay performance was achieved in ≤4 µL assay volume in 1,536-well format. The assays were tested against a validation set of 10 known protein binders, and the results compared favorably with data obtained using protein-coated beads with high-performance liquid chromatography analysis. The miniaturized assays were taken to a high-throughput level in a screen of the LOPAC1280 collection of 1,280 pharmacologically active compounds. The adaptation of the AGP and HSA FP assays to a 1,536-well format should allow their use in early-stage profiling of large-size compound sets.  相似文献   

3.
Mutations in mitochondrial genes cause mitochondrial genetic disease, which is often associated with deficiency of the mitochondrial membrane potential (MMP). We present a high-throughput method for measuring MMP in intact neural cells using TMRM, a well-known potentiometric dye, in a 48-well plate format. Addition of known MMP depolarizing agents, FCCP or DNP, resulted in a time- and concentration-dependent decrease in fluorescence, which was saturable, whereas the addition of drugs that affect non-mitochondrial properties did not. A cell line deficient in mtDNA had decreased fluorescence, which was not further depleted by a depolarizing agent. The high-throughput results are similar to those produced by more time-consuming and low-throughput flow cytometry or microscopy methods. This plate-based system could facilitate the identification of cell-permeant small molecules (i.e., drugs) that modify MMP, which could be used to enhance mitochondrial function, and also for screening small populations of neural cells for mutations in nuclear or mtDNA genes that decrease MMP.  相似文献   

4.
In the present study, we developed a cell-based protocol for the identification of drugs able to induce steatosis. The assay measures multiple markers of toxicity in a 96-well plate format using high-content screening (HCS) technology. After treating HepG2 cells with increasing concentrations of the tested compounds, toxicity parameters were analyzed using fluorescent probes: BODIPY493/503 (lipid content), 2',7'-dihydrodichlorofluorescein diacetate (reactive oxygen species [ROS] generation), tetramethyl rhodamine methyl ester (mitochondrial membrane potential), propidium iodide (cell viability), and Hoechst 33342 (nuclei staining). A total of 16 drugs previously reported to induce liver steatosis through different mechanisms (positive controls) and six nonsteatotic compounds (negative controls) were included in the study. All the steatosis-positive compounds significantly increased BODIPY493/503 fluorescence in HepG2 cells, whereas none of the negative controls induced lipid accumulation. In addition to effects on fat levels, increased ROS generation was produced by certain compounds, which could be indicative of increased risk of liver damage. Our results suggest that this in vitro approach is a simple, rapid, and sensitive screening tool for steatosis-inducing drugs. This conclusion should be confirmed by testing a larger number of steatosis-positive and -negative inducers.  相似文献   

5.
6.
The 1,536-well microplate format has widely supplanted the 384-well microplate format for high-throughput screening and for IC(50) assays. Previously, liquid chromatography/mass spectrometry (LC/MS) analyses of such samples required manual transfers of the wells of interest from a 1,536-well plate into a 384-well plate. Because this manual transfer introduced a source of potential error, it became clear that a more appropriate solution would be to sample directly from the 1,536-well plates. Currently, commercially available 1,536-well plate auto samplers are not compatible with Waters LC/MS systems. The authors have modified their CTC PAL autosampler to support injection from up to twenty-four 1,536-well plates. This allows them to cherry-pick any sample from up to 36,864 wells on the autosampler. Because of its success at this Institute, sampling from 1,536-well plates has not only become the preferred method for LC/MS analysis from IC(50) plates but also become the standard format used for the handling of and the sampling from large combinatorial libraries.  相似文献   

7.
TRPM2 is a member of the transient receptor potential melastatin (TRPM)-related ion channel family. The activation of TRPM2 induced by oxidative/nitrosative stress leads to an increase in intracellular free Ca(2+). Although further progress in understanding TRPM2's role in cell and organism physiology would be facilitated by isolation of compounds able to specifically modulate its function in primary cells or animal models, no cell-based assays for TRPM2 function well suited for high-throughput screening have yet been described. Here, a novel suspension B lymphocyte cell line stably expressing TRPM2 was used to develop a cell-based assay. The assay uses the Ca(2+)-sensitive fluorescence dye, Fluo-4 NW (no wash), to measure TRPM2-dependent Ca(2+) transients induced by H(2)O(2) and N-methyl-N'-nitrosoguanidine in a 96-well plate format. Assay performance was evaluated by statistical analysis of the Z' factor value and was consistently greater than 0.5 under optimal conditions, suggesting that the assay is very robust. For assay validation, the effects of known inhibitors of TRPM2 and TRPM2 gating secondary messenger production were determined. Overall, the authors have developed a cell-based assay that may be used to identify TRPM2 ion channel modulators from large compound libraries.  相似文献   

8.
Three mitochondrial uncoupling proteins (UCP1, 2, 3) have been described. The proton transport activity of UCP1 triggers mitochondrial uncoupling and thermogenesis but the roles of UCP2 and UCP3 remain debated. Accordingly, compounds able to finely control the proton permeability of the mitochondrial inner membrane where and when needed may have enormous practical consequences. Using purified hamster brown adipose tissue UCP1 reconstituted in liposomes, we describe herein a robust assay allowing the measurement of this artificial membrane conductance to protons in a format compatible with high-throughput screening. The assay was initially developed with a known chemical protonophore in an aproteic system. Then, using the proteolipid reconstituted UCP1 preparation, we assessed the assay with known modulators of UCP1, particularly retinoic acid and guanosine 5'-triphosphate. The system was developed for a 96-well plate format. We then exemplified its use by generating primary data on a set of compounds screened in this system. These primary data will open new routes for the search of candidate compounds that will help biochemical studies on UCPs.  相似文献   

9.
Cortisol is an important glucocorticoid in humans that regulates many physiological processes. Human 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone to cortisol in vivo and has emerged as an appealing therapeutic target for treating metabolic diseases. Here, we report a sensitive and robust high-throughput (HT) cell-based assay for screening 11beta-HSD1 inhibitors. This assay utilizes a HEK293 cell line transduced by a BacMam virus expressing human 11beta-HSD1. The enzyme activity in the cells was measured by quantifying cortisol levels released into the cell culture supernatant via a competitive homogenous time-resolved fluorescence (HTRF) method. We show that 11beta-HSD1 activity in supernatant of BacMam-transduced HEK293 cells increases with 11beta-HSD1 BacMam virus load in a dose-dependent manner, and is comparable to the enzyme activity detected in differentiated mouse adipocytes. In addition, we show that co-expression of hexose-6-phosphate dehydrogenase (H6PDH) is not required for the enzyme to function effectively as an oxo-reductase. This assay has been developed in low-volume 384-well format and it is sensitive, robust, and amenable to HT screening.  相似文献   

10.
The effects of liver enzymes on drug activities are important considerations in the drug discovery process. Frequently, liver microsomes are used to simulate first-pass metabolism in the liver; however, there are significant disadvantages to the microsome system. As an alternative, a simple cell-based, high-throughput system that allows for examination of metabolite activity is described. Using multiparameter flow cytometry and the low-volume, high-sample format of 96-well plates, it is possible to rapidly evaluate a dose-response curve for metabolites based on variables including initial compound concentrations, hepatocyte cell line metabolic activities, and time. Using HepG2 cells as a surrogate for hepatic metabolism of a potential therapeutic, the impact of metabolites on Jurkat cell death was measured by both propidium iodide dye exclusion and cell cycle analysis. While this system is not proposed to supplant liver microsome studies, this alternative assay provides a highly adaptable, low-cost, and high-throughput measure of drug metabolism.  相似文献   

11.
G protein-coupled receptors (GPCRs) are involved in various physiological processes, such as behavior changes, mood alteration, and regulation of immune-system activity. Thus, GPCRs are popular targets in drug screening, and a well-designed assay can speed up the discovery of novel drug candidates. The Promega cAMP-Glo Assay is a homogenous bioluminescent assay to monitor changes in intracellular cyclic adenosine monophosphate (cAMP) concentrations in response to the effect of an agonist, antagonist, or test compound on GPCRs. Together with the Labcyte Echo 555 acoustic liquid handler and the Deerac Fluidics Equator HTS reagent dispenser, this setup can screen compounds in 96-, 384-, and 1536-well formats for their effects on GPCRs. Here, we describe our optimization of the cAMP-Glo assay in 1536-well format, validate the pharmacology, and assess the assay robustness for HTS. We have successfully demonstrated the use of the assay in primary screening applications of known agonist and antagonist compounds, and confirmed the primary hits via secondary screening. Implementing a high-throughput miniaturized GPCR assay as demonstrated here allows effective screening for potential drug candidates.  相似文献   

12.
13.
14.
15.
The thyroid-stimulating hormone (TSH; thyrotropin) receptor belongs to the glycoprotein hormone receptor subfamily of 7-transmembrane spanning receptors. TSH receptor (TSHR) is expressed mainly in thyroid follicular cells and is activated by TSH, which regulates the growth and function of thyroid follicular cells. Recombinant TSH is used in diagnostic screens for thyroid cancer, especially in patients after thyroid cancer surgery. Currently, no selective small-molecule agonists of the TSHR are available. To screen for novel TSHR agonists, the authors miniaturized a commercially available cell-based cyclic adenosine 3',5' monophosphate (cAMP) assay into a 1536-well plate format. This assay uses an HEK293 cell line stably transfected with the TSHR coupled to a cyclic nucleotide gated ion channel as a biosensor. From a quantitative high-throughput screen of 73,180 compounds in parallel with a parental cell line (without the TSHR), 276 primary active compounds were identified. The activities of the selected active compounds were further confirmed in an orthogonal homogeneous time-resolved fluorescence cAMP-based assay. Forty-nine compounds in several structural classes have been confirmed as the small-molecule TSHR agonists that will serve as a starting point for chemical optimization and studies of thyroid physiology in health and disease.  相似文献   

16.
High-throughput screening in the 1536-well format has been largely restricted to solution-based and cell-based screens. In this article, we show the feasibility of a completely automated, robust scintillation proximity assay in the 1536-well format that is suitable to identify inhibitors for a serine/threonine kinase from a compound library. The introduction of [(33)P]phosphate into a biotinylated peptide substrate mirrors the activity of the kinase. The peptide is immobilized on streptavidin-coated LEADseeker imaging beads and [(33)P]phosphate incorporation is detected with the LEADseeker imaging system of Amersham Pharmacia Biotech. To improve the liquid handling procedures for imaging bead suspensions in the low microliter range, we developed a novel trough with an integrated stirring function. A comparison of the 1536-well assay to a 384-well assay revealed a comparable assay quality with Z' factors of about 0.7 for the 384-well format and 0.6 for the 1536-well format. In an automated screen of a random compound collection, 94.4% of the inhibitory compounds could be identified with both assay formats. Dose-response curves were performed for a selection of identified kinase inhibitors and revealed similar IC(50) values for both assay formats.  相似文献   

17.
The rapid increase of viral strains that are resistant to the currently available antiretroviral drugs is a threat to the success of current human immunodeficiency virus type 1 (HIV-1) treatment and emphasizes the importance of developing novel anti-HIV-1 compounds. To improve the current abilities to screen for novel HIV-1 inhibitors, here we introduce a T-cell-based reporter cell line (JLTRG-RS) that expresses both HIV-1 coreceptors, CXCR4 and CCRS, and provides the convenience of using enhanced green fluorescent protein (EGFP) as a direct and quantitative marker. Unlike previous EGFP-based reporter cell lines, JLTRG-RS cells have an unusually high dynamic signal range, sufficient for plate reader detection using a 384-well format. In this format, JLTRG-R5 cell-based infectivity assays have a Z'-factor of 0.78, which defines the assay as extremely robust and clearly amenable to high-throughput screening. The functional similarity of the JLTRG-R5 cell line and peripheral blood mononuclear cells (PBMCs) was demonstrated through the identity of the inhibitory concentrations, 50% (IC50s) for four antiretroviral compounds or neutralizing antibodies. Because EGFP can be directly and continuously quantified in cell culture, the reporter cell line requires no manipulation during assay preparation or analysis. In addition, the EGFP marker allows for data acquisition at an optimal time point by prescreening selected positive control wells using fluorescent microscopy. These characteristics make the system extremely flexible, rapid, and inexpensive. Due to its intrinsic flexibility, the JLTRG-R5 cell-based reporter system provides a powerful tool to greatly facilitate future screening for HIV-1 inhibitors.  相似文献   

18.
The recently identified mas-related-gene (MRG) family of receptors, located primarily in sensory neurons of the dorsal root ganglion, has been implicated in the perception of pain. Thus, antagonists of this class of receptors have been postulated to be useful analgesics. Toward this end, we developed a cell-based beta-lactamase (BLA) reporter gene assay to identify small molecule antagonists of the human MRG-X1 receptor from a library of compounds. Single-cell clones expressing functional receptors were selected using the BLA reporter gene technology. The EC50 for the MRG agonist peptide, BAM15, appeared to be comparable between the BLA assay and the intracellular Ca2+ transient assays in these cells. Ultra high-throughput screening of approximately 1 million compounds in a 1.8-microl cell-based BLA reporter gene assay was conducted in a 3456-well plate format. Compounds exhibiting potential antagonist profile in the BLA assay were confirmed in the second messenger Ca2+ transient assay. A cell-based receptor trafficking assay was used to further validate the mechanism of action of these compounds. Several classes of compounds, particularly the 2,3-disubstituted azabicyclo-octanes, appear to be relatively potent antagonists at the human MRG-X1 receptors, as confirmed by the receptor trafficking assay and radioligand binding studies. Furthermore, the structure-activity relationship reveals that within this class of compounds, the diphenylmethyl moiety is constant at the 2-substituent, whereas the 3-substituent is directly correlated with the antagonist activity of the compound.  相似文献   

19.
The colony formation assay (CFA) is the gold standard for measuring the effects of cytotoxic agents on cancer cells in vitro; however, in its traditional 6-well format, it is a time-consuming assay, particularly when evaluating combination therapies. In the interest of increased efficiency, the 6-well CFA was converted to a 96-well format using an automated colony counting algorithm. The 96-well CFA was validated using ionizing radiation therapy on the FaDu (human hypopharyngeal squamous cell) and A549 (human lung) cancer cell lines. Its ability to evaluate combination therapies was investigated by the generation of dose-response curves for the combination of cisplatin and radiation therapy on FaDu and A549 cells. The 96-well CFA was then transferred to a robotic platform for evaluating its potential as a high-throughput screening (HTS) readout. The LOPAC1280 library was screened against FaDu cells, and eight putative hits were identified. Using the 96-well CFA to validate the eight putative chemicals, six of the eight were confirmed, resulting in a positive hit rate of 75%. These data indicate that the 96-well CFA can be adopted as an efficient alternative assay to the 6-well CFA in evaluating single and combination therapies in vitro, providing a possible readout that could be used on a HTS platform.  相似文献   

20.
A simple assay for monoacylglycerol hydrolysis suitable for high-throughput screening is described. The assay uses [(3)H]2-oleoylglycerol as substrate, with the tritium label in the glycerol part of the molecule and the use of phenyl sepharose gel to separate the hydrolyzed product ([(3)H]glycerol) from substrate. Using cytosolic fractions derived from rat cerebella as a source of hydrolytic activity, the assay gives the appropriate pH profile and sensitivity to inhibition with compounds known to inhibit hydrolysis of this substrate. The assay could also be adapted to a 96-well plate format, using C6 cells as the source of hydrolytic activity. Thus the assay is simple and appropriate for high-throughput screening of inhibitors of monoacylglycerol hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号