首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Johan Månsson 《Ecography》2009,32(4):601-612
Understanding temporal variation in habitat selection and browsing intensity by large herbivores is fundamental because of their large impact on the ecosystems. I studied the annual variation in winter browsing pressure on young trees and habitat selection by moose Alces alces over a ten year period. Specifically, the relationships between browsing pressure on Scots pine Pinus sylvestris and two birch species ( Betula ssp.) and three explanatory variables – 1) availability of forage, 2) moose density (estimated by pellet group counts) and 3) snow cover was studied. At a larger spatial scale (forest stand level) the relationship between moose habitat selection between three different habitat types (forest <30 yr, forest>30 yr and mire) and two explanatory variables, 1) snow condition and 2) moose density, were studied. Browsing pressure on Scots pine, the dominating food plant, was related to forage availability, moose density and snow condition. No significant relationships between any of the three explanatory variables and browsing pressure on the two birch species were found. Moose selection for certain habitats varied between years and was affected by number of days with >0.10 m of snow.
Habitat selection was not significantly related to moose density and the relationship between overall moose density and habitat specific moose densities was proportional within the studied density range. These findings have implications for understanding varying browsing patterns – and will affect both the ability to predict herbivores' effect on the forest ecosystem. A snow dependent browsing pattern also indicates that one can expect a long term decrease in browsing pressure on the tree and shrub layer as a consequence of the ongoing large-scale climate change.  相似文献   

2.
Logging in the boreal forest may benefit moose by increasing food availability. However, the influence of tree plantations on moose behavior, especially on moose spatial ecology, is poorly understood. We assessed the impacts of black spruce plantations on moose winter distribution at a landscape scale in the Bas-Saint-Laurent region (Québec, Canada). We used winter aerial surveys to examine relationships among plantation characteristics and other habitat variables known to affect moose distribution. The total area of plantations positively influenced moose abundance, but highly aggregated plantations resulted in fewer moose. Moose abundance was also positively associated with food availability and the density of edges between stands providing cover and stands offering high food availability, but moose abundance was negatively associated with road density. Although plantation characteristics were less influential than habitat variables related to foraging and predator avoidance, we demonstrate that the area of black spruce plantations and their configuration should be considered in moose management. We conclude that an integrated management strategy is needed to find a balance between overdeveloped road networks (needed to join homogeneously distributed plantations) and agglomerated plantations in order to mitigate impacts on moose winter distribution. © 2012 The Wildlife Society.  相似文献   

3.
Habitat selection can be influenced by the distribution of the habitat types in the landscape as well as net gain in visiting patches of resources, causing individual variation in habitat selection. Moreover, the hypothesis of functional response in habitat selection predicts that the degree of selection of a resource depends on its relative availability. We used radio-telemetry data from individual moose on an island off the coast of northern Norway to evaluate whether the selection of habitat types at the landscape scale differed from the choice of habitat types within the home range, and investigated the functional response in habitat selection by relating individual habitat selection to home range characteristics. At the landscape scale, moose selected for habitat types that provided both good forage and cover, with small differences between sex and age groups. At the home range scale, all individuals selected habitat types that were associated with cover and low human impact. Habitat selection was not modified by local moose density, but was related to home range size at both spatial scales. Larger home ranges contained larger proportions of non-preferred habitat types compared to smaller home ranges. At the home range scale, the selection for a habitat type decreased with its relative availability, indicating a functional response in habitat selection. This suggests that habitat selection is modified by home range size, which influences the availability of habitat types and shapes individual habitat selection patterns. Our results support previous suggestions that analyses of habitat or resource selection should follow a multi-scale approach. Both the relative availability of habitat types as well as individual variation in home range size should be accounted for in order to disentangle the complex mechanisms that contribute to shape patterns of resource selection in animals.  相似文献   

4.
Abstract: Moose (Alces alces) and roe deer (Capreolus pygargus) are sympatric in the forest region of northeastern China. Using univariate analyses of feeding sign data, we found the 2 species were positively associated, but there were distinctions between their use of forage resources across landscape, patch, and microhabitat scales. We used resource selection function models to predict the influence of environmental covariates on moose and roe deer foraging; we detected covariate effects at the landscape and microhabitat scales but not at the patch scale. Forage resources used by the 2 species were similar, but moose used wetter areas and more low-visibility habitats than did roe deer, which strongly avoided areas with sparse vegetation. Both species were influenced by forage abundance and distribution at the microhabitat scale but exhibited differences in intensity of use of plant species and microhabitats. Moose used areas with deeper snow and avoided hiding cover; roe deer avoided areas with higher total basal areas of tree stems and preferred areas with high plant species richness. For moose, there was a trade-off in the use of concealment cover between the landscape and microhabitat scales. We detected avoidance by moose of roads where roe deer occurred. Roe deer exhibited more capacity for coping with human disturbance and interspecific interaction. In areas similar to our study area, road closures and suppression of roe deer near roads within 3–5 years postlogging may benefit moose. Furthermore, a mosaic of areas with different logging intervals may contribute to spatial separation of moose and roe deer and promote their coexistence.  相似文献   

5.
Spatial variation in ecological systems can arise both as a consequence of variation in the quality and availability of resources and as an emergent property of spatially structured interactions. We used a spatially explicit model to simulate populations of herbivore hosts and their parasitoids in landscapes with different levels of variance in plant patch quality and different spatial arrangements of high‐ and low‐quality plant patches. We found that even small variation in patch quality at a fine spatial scale decreased overall herbivore populations, as parasitoid populations on low‐quality plant patches were subsidized by those from high‐quality neighbors. On landscapes with large, homogeneous regions of high‐ and low‐quality plant patches, herbivore populations increased with variation in patch quality. Overall, our results demonstrate that local variation in resource quality profoundly influences global population dynamics. In particular, fine‐scale variation in plant patch quality enhanced biological control of herbivores by parasitoids, suggesting that adding back plant genetic variation into perennial production systems may enhance the biological control of herbivores by their natural enemies.  相似文献   

6.
1. Most studies of intraspecific variation in home range size have investigated only a single or a few factors and often at one specific scale. However, considering multiple spatial and temporal scales when defining a home range is important as mechanisms that affect variation in home range size may differ depending on the scale under investigation. 2. We aim to quantify the relative effect of various individual, forage and climatic determinants of variation in home range size across multiple spatiotemporal scales in a large browsing herbivore, the moose (Alces alces), living at the southern limit of its distribution in Norway. 3. Total home range size and core home range areas were estimated for daily to monthly scales in summer and winter using both local convex hull (LoCoH) and fixed kernel home range methods. Variance in home range size was analysed using linear mixed-effects models for repeated measurements. 4. Reproductive status was the most influential individual-level factor explaining variance in moose home range size, with females accompanied by a calf having smaller summer ranges across all scales. Variation in home range size was strongly correlated with spatiotemporal changes in quantity and quality of natural food resources. Home range size decreased with increasing browse density at daily scales, but the relationship changed to positive at longer temporal scales. In contrast, browse quality was consistently negatively correlated with home range size except at the monthly scale during winter when depletion of high-quality forage occurs. Local climate affected total home range size more than core areas. Temperature, precipitation and snow depth influenced home range size directly at short temporal scales. 5. The relative effects of intrinsic and extrinsic determinants of variation in home range size differed with spatiotemporal scale, providing clear evidence that home range size is scale dependent in this large browser. Insight into the behavioural responses of populations to climatic stochasticity and forage variability is essential in view of current and future climate change, especially for populations with thermoregulatory restrictions living at the southern limit of their distribution.  相似文献   

7.
Bumblebee flight distances in relation to the forage landscape   总被引:2,自引:1,他引:1  
1. Foraging range is a key aspect of the ecology of 'central place foragers'. Estimating how far bees fly under different circumstances is essential for predicting colony success, and for estimating bee-mediated gene flow between plant populations. It is likely to be strongly influenced by forage distribution, something that is hard to quantify in all but the simplest landscapes; and theories of foraging distance tend to assume a homogeneous forage distribution. 2. We quantified the distribution of bumblebee Bombus terrestris L. foragers away from experimentally positioned colonies, in an agricultural landscape, using two methods. We mass-marked foragers as they left the colony, and analysed pollen from foragers returning to the colonies. The data were set within the context of the 'forage landscape': a map of the spatial distribution of forage as determined from remote-sensed data. To our knowledge, this is the first time that empirical data on foraging distances and forage availability, at this resolution and scale, have been collected and combined for bumblebees. 3. The bees foraged at least 1.5 km from their colonies, and the proportion of foragers flying to one field declined, approximately linearly, with radial distance. In this landscape there was great variation in forage availability within 500 m of colonies but little variation beyond 1 km, regardless of colony location. 4. The scale of B. terrestris foraging was large enough to buffer against effects of forage patch and flowering crop heterogeneity, but bee species with shorter foraging ranges may experience highly variable colony success according to location.  相似文献   

8.
Patch use theory predicts that herbivores perceive food as patches and spend more time in high quality patches, i.e. feeding sites providing a high net rate of intake of energy and/or limiting nutrients. The herbivores should accordingly not discriminate among food items in such high quality patches, and food items should thus be eaten in proportion to availability. In contrast, classical diet theory assumes food selection to take place at the level of individual plants, and predicts that the forager should concentrate on the most profitable item until availability drops below some critical threshold.
Here we address how the spatial distribution of European aspen Populus tremula , a highly preferred browse species, affects the selectivity by moose Alces alces at the patch and the tree level. The study was performed in a managed boreal forest landscape in coastal northern Sweden, where aspen occurs highly aggregated almost exclusively in discrete patches. We compared moose' selectivity for aspen and browsing intensity on aspen ramets and other browse species in aspen patches versus at randomly located sites.
Random sites and aspen stands were utilised equally by moose in terms of overall use of forage. There was no difference in total coverage of forage species and relative moose density. Selectivity for aspen was stronger at random sites than at aspen sites, and the browsing intensity on aspen was similar. We conclude that moose did not perceive aspen stands as discrete patches, and used aspen ramets more in accordance with diet theory. These findings agree with the idea that large generalist herbivores strive to maintain a mixed and balanced diet, causing rare species to be over-utilised (negative frequency-dependent food selection). By such selective feeding, moose may reinforce the aggregated distribution of aspen in the managed boreal forest landscape.  相似文献   

9.
Roads fragment moose habitat and cause increased mortality through moose–vehicle collisions. Previous studies have found that moose avoid areas near roads. In late winter, when moose face depleting food resources elsewhere, moose may be more prone to use areas near roads for foraging. However, this presumed trade-off between foraging and keeping away from roads has not previously been investigated. We sampled positions from global positioning system-collared moose in late winter from a high-density moose population in Southern Norway that is heavily influenced by human infrastructure. We combined data on moose positions with detailed field surveys of food abundance at sites that were, respectively, intensively used or sparsely used by moose. The probability that a site was intensively used increased with increasing abundance of high-quality browse and also with increasing distance to the nearest road. This indicates that moose trade-off foraging against keeping away from roads. We also found that spatio-temporal movements in relation to roads were influenced by variation in perceived human-derived risk; moose moved closer to smaller roads (low traffic volume) than to major roads (higher traffic volume) and closer to roads at night than at day. Males moved closer to roads than females. In conclusion, moose clearly exhibited behavioural adaptations to cope with roads and traffic in the study area. Because availability of high-quality forage substantially influenced habitat use, it may be an option to establish artificial feeding sites during winter to keep moose away from the roads.  相似文献   

10.
The factors that affect resource selection by a foraging herbivore can vary according to the resources or conditions associated with particular levels of organization in the environment, and to the scales over which the herbivore perceives and responds to those resources and conditions. To investigate the role of forage in this hierarchical process, we studied resource selection by a mixed‐feeding large herbivore, the impala (Aepyceros melampus). We focussed on three spatial scales: plant species, feeding station and feeding patch. In paired sites where impala were and were not observed, we identified the plant species from which animals fed, the attributes of the plants, and the characteristics of the broader site. Across all three scales, plant species available as forage was central in determining resource selection by impala. At the species level, that effect was modified by the nutritional quality (greenness) and whether it was during a period of forage abundance or scarcity (season). At the feeding‐station level, overall greenness and biomass of the station were important, but their effects were modified by the season. At the feeding‐patch level, broader‐scale factors such as the type of vegetation cover had an important influence on resource selection. The grass Panicum maximum was a preferred forage species and a key resource determining the locations of feeding impala. Our findings support the idea that selection by a foraging herbivore at fine scales (i.e. diet selection) can have consequences for broader‐scale selection that result in observed patterns of habitat use and animal distribution.  相似文献   

11.
Low spring temperatures have been found to benefit mobile herbivores by reducing the rate of spring‐flush, whereas high rainfall increases forage availability. Cold winters prove detrimental, by increasing herbivore thermoregulatory burdens. Here we examine the effects of temperature and rainfall variability on a temperate sedentary herbivore, the Eurasian beaver, Castor fiber, in terms of inter‐annual variation in mean body weight and per territory offspring production. Data pertain to 198 individuals, over 11 years, using capture‐mark‐recapture. We use plant growth (tree cores) and fAPAR (a satellite‐derived plant productivity index) to examine potential mechanisms through which weather conditions affect the availability and the seasonal phenology of beaver forage. Juvenile body weights were lighter after colder winters, whereas warmer spring temperatures were associated with lighter adult body weights, mediated by enhanced green‐up phenology rates. Counter‐intuitively, we observed a negative association between rainfall and body weight in juveniles and adults, and also with reproductive success. Alder, Alnus incana, (n = 68) growth rings (principal beaver food in the study area) exhibited a positive relationship with rainfall for trees growing at elevations >2 m above water level, but a negative relationship for trees growing <0.5 m. We deduce that temperature influences beavers at the landscape scale via effects on spring green‐up phenology and winter thermoregulation. Rainfall influences beavers at finer spatial scales through topographical interactions with plant growth, where trees near water level, prone to water logging, producing poorer forage in wetter years. Unlike most other herbivores, beavers are an obligate aquatic species that utilize a restricted ‘central‐place’ foraging range, limiting their ability to take advantage of better forage growth further from water during wetter years. With respect to anthropogenic climate change, interactions between weather variables, plant phenology and topography on forage growth are instructive, and consequently warrant examination when developing conservation management strategies for populations of medium to large herbivores.  相似文献   

12.
Summary The biomass of forage, herbivores (caribou and moose) and predators (wolf) were estimated for four assemblages of large mammals along a latitudinal gradient in the Québec-Labrador peninsula and related to predictions made by two types of multitrophic level models. Wolves were present in three study areas, but they had been extirpated in the last one. Annual production of preferred forage exhibited a clear north-south increase for moose, but not for caribou. Neither the herbivore nor predator biomass increased along the latitudinal gradient: the highest herbivore biomass occurred in the wolf-free area and in the northernmost site, while the greatest predator density was observed in the southernmost site. Consequently, the ratio of the herbivore to forage biomass was the highest in the area devoid of wolves and in the northernmost site occupied by migratory caribou. Availability of forage per herbivore was the greatest in the moose-wolf and the caribou-moose-wolf assemblages. The observed data supported the multitrophic level model incorporating classical predator-prey relationships and producing stepwise accrual of trophic level biomass with increasing food chain length. In the northernmost site, the system was limited to two functional trophic levels and caribou were regulated by summer forage. Three functional trophic levels appeared to exist in the central study area where caribou and moose were preyed upon by wolves. Both herbivores were at very low density, the first one due probably to its poor adaptation to predation and the second because of an unproductive range. In the southernmost site, moose were clearly regulated by predation and kept much below the carrying capacity. With the extirpation of wolves in the last study area, moose were regulated by forage and the density exceeded that in the moose-wolf system by seven times even in a less productive range. Caribou, having primarily evolved under resource limitation, is replaced by a cervid better adapted to predation, the moose, in more productive three-link ecosystems.  相似文献   

13.
Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.  相似文献   

14.
We examined the foraging behavior of woodland caribou (Rangifer tarandus caribou) relative to the spatial and temporal heterogeneity of their environment. We assessed (1) whether caribou altered their behavior over time while making trade-offs between forage abundance and accessibility; and (2) whether foraging decisions were consistent across spatial scales (i.e., as scale increased, similar decision criteria were used at each scale). We discuss whether caribou adjusted their behavior to take advantage of changing forage availability through time and space. At the scale of the feeding site (as revealed by discriminant function analyses), caribou in both forested and alpine (above tree-line) environments selected sites where the biomass of particular lichen species was greatest and snow the least deep. Caribou did not select those species with the highest nutritional value (i.e., digestible protein and energy) in either area. Where snow depth, density, and hardness limited access to terrestrial lichens in the forest, caribou foraged instead at those trees with the greatest amount of arboreal lichen. Selection of lichen species and the influence of snow differed across time, indicating that in this system the abundance or accessibility of forage temporally influenced foraging behavior. A path analysis of forest data and multiple regression analysis of alpine data were used to test the hypothesis that variables important at the scale of the feeding site explained foraging effort at the scale of the patch. For forest patches, our hypothesized model reliably explained foraging effort, but not all variables that were statistically important at the scale of the feeding site were significant predictors at the scale of the patch. For alpine patches, our hypothesized model did not explain a statistically significant portion of the variation in the number of feeding sites within the patch, and none of the individual variables from the feeding site remained statistically significant at the patch scale. The incongruity between those variables important at the scale of the feeding site and those important at the patch showed that spatial scale affects the foraging decisions of woodland caribou. At the scale of the landscape, there was a trade-off between forage abundance and accessibility. Relative to the alpine environment, caribou in the forest foraged at feeding sites and patches with greater amounts of less variably distributed lichen, but deeper less variable snow depths. Considering the behavioral plasticity of woodland caribou, there may be no distinct advantage to foraging in one landscape over the other.  相似文献   

15.
Linking moose habitat selection to limiting factors   总被引:7,自引:0,他引:7  
It has been suggested that patterns of habitat selection of animals across spatial scales should reflect the factors limiting individual fitness in a hierarchical fashion. Animals should thus select habitats that permit avoidance of the most important limiting factor at large spatial scales while the influence of less important factors should only be evident at fine scales. We tested this hypothesis by investigating moose Alces alces habitat selection using GPS telemetry in an area where the main factors limiting moose numbers were likely (in order of decreasing importance) predation risk, food availability and snow. At the landscape scale, we predicted that moose would prefer areas where the likelihood of encountering wolves was low or areas where habitats providing protection from predation were dominant. At the home‐range scale, we predicted that moose selection would be driven by food availability and snow depth. Wolf territories were delineated using telemetry locations and the study area was divided into 3 sectors that differed in terms of annual snowfall. Vegetation surveys yielded 6 habitat categories that differed with respect to food availability, and shelter from predation or snow. Our results broadly supported the hypothesis because moose reacted to several factors at each scale. At the landscape scale, moose were spatially segregated from wolves by avoiding areas receiving the lowest snowfall, but they also preferentially established their home range in areas where shelter from snow bordered habitat types providing abundant food. At the home‐range scale, moose also traded off food availability with avoidance of deep snow and predation risk. During winter, moose increased use of stands providing shelter from snow along edges with stands providing abundant food. Habitat selection patterns of females with calves differed from that of solitary moose, the former being associated primarily with habitats providing protection from predation. Animals should attempt to minimize detrimental effects of the main limiting factors when possible at the large scale. However, when the risk associated with several potential limiting factors varies with scale, we should expect animals to make trade‐offs among these.  相似文献   

16.
The moose (Alces alces cameloides) population in northeastern China is on the southernmost edge of its distribution in Asia. A survey was conducted to determine moose resource selection and the effects of human disturbance on moose in a study area of 20,661 ha located on the northwestern slope of the Lesser Khingan Mountains, located in northeastern China. Predictive models of resource selection were developed using logistic and autologistic regression. All models considered resource variable selection at two spatial scales, patch and landscape. At the patch scale, moose preferred larger birch (Betula platyphylla) patches, but avoided larger tamarack (Larix gmelinii) patches. At the landscape scale, moose preferred higher densities of tamarack patches, i.e., heterogeneity of tamarack stands, selected areas with more abundant annual shoots, terrain conducive to better concealment, higher altitudes and areas saturated with soil moisture. Roads and forest harvest intervals were identified as important human disturbance factors. This is the first time that moose have been reported to avoid roads, and the avoidance distance was nearly 3 km. We believe that in this region moose under the influence of roads are behaviorally plastic, compared with the indifference of moose to the presence of roads in other regions. Moose avoided forest areas logged more than 3 years previously and preferred areas logged 1–2 years previously. In addition, it may be necessary to monitor the effect of the dynamic of density of roe deer on the spatial distribution of the moose population.  相似文献   

17.
The plant stress hypothesis states that plant stress factors other than herbivory improve herbivore performance due to changes in the content of nutritive or defensive compounds in the plants. In Norway, the bilberry (Vaccinium myrtillus) is important forage for the bank vole (Myodes glareolus) in winter and for the moose (Alces alces) in summer and autumn. The observed peaks in bank vole numbers after years with high production of bilberries are suggested to be caused by increased winter survival of bank voles due to improved forage quality. High production of bilberries should also lead to higher recruitment rates in moose in the following year. We predict, however, that there is an increasing tendency for a 1-year delay of moose indices relative to vole indices with decreasing summer temperatures, because low temperatures prolong the period needed by plants to recover in the vole peak year, and thus positively affect moose reproduction also in the succeeding year. In eight out of nine counties in south-eastern Norway, there was a positive relationship between the number of calves observed per female moose during hunting and a bilberry seed production index or an autumn bank vole population index. When dividing the study area into regions, there was a negative relationship between a moose-vole time-lag index and the mean summer temperature of the region. These patterns suggest that annual fluctuations in the production of bilberries affect forage quality, but that the effect on moose reproduction also depends on summer temperatures.  相似文献   

18.
Studies on dietary functional responses in large herbivores are traditionally conducted by following individual animals. The method is very time-consuming, and hence, typically provides only a narrow array of forage species compositions. Here we use a range level approach to look at moose (Alces alces) selectivity for and utilization of forage species in relation to availability in both summer and winter. We compare 12 Norwegian ranges representing a large scale gradient in plant communities. The most important forage species in the diet were birches (Betula spp., comprising 43% of all trees browsed in summer and 27% in winter), rowan (Sorbus aucuparia, 25% of trees browsed in summer, 37% in winter), and bilberry (Vaccinum myrtillus, 42% of herbaceous epidermal fragments in summer feces). Selectivity for birches was positively related to its availability and negatively related to availability of rowan, Salix spp., and aspen (Populus tremula) together (all more selected for than birches). Multiple regression models including availability of several forage species were thus superior to single-species models in explaining the diet content of main forage plants. Selectivity for birches was also stronger in summer than in winter, while the opposite pattern was found for rowan. The finding is relevant for our evaluation of the quality of summer and winter ranges, and hence, their relative influence on population productivity. Our study underlines the need to incorporate species composition of available forage when quantifying dietary functional responses in selective herbivores such as moose. Furthermore, care should be taken when extrapolating data on moose diet across ranges or seasons.  相似文献   

19.
Many herbivore species prefer to forage on patches of intermediate biomass. Plant quality and forage efficiency are predicted to decrease with increasing plant standing crop which explains the lower preference of the herbivore. However, often is ignored that on the long-term, plant species composition is predicted to change with increasing plant standing crop. The amount of low-quality, unpreferred food plants increases with increasing plant standing crop. In the present study the effects of unpreferred plants on patch choice and distribution of European brown hare in a salt-marsh system were studied. In one experiment, unpreferred plants were removed from plots. In the second experiment, plots were planted with different densities of an unpreferred artificial plant. Removal of unpreferred plants increased hare-grazing pressure more than fivefold compared to unmanipulated plots. Planting of unpreferred plants reduced hare-grazing pressure, with a significant reduction of grazing already occurring at low unpreferred plant density. Spatial distribution of hares within this salt-marsh system was related to spatial arrangement of unpreferred plants. Hare-grazing intensity decreased strongly with increasing abundance of unpreferred plants despite a high abundance of principal food plants. The results of this study indicate that plant species replacement is an important factor determining patch choice and spatial distribution of hares next to changing plant quality. Increasing abundance of unpreferred plant species can strengthen the decreasing patch quality with increasing standing crop and can decrease grazing intensity when preferred food plants are still abundantly present.  相似文献   

20.
Since 2010, several moose (Alces alces) populations have declined across North America. These declines are believed to be broadly related to climate and landscape change. At the western reaches of moose continental range, in the interior of British Columbia, Canada, wildlife managers have reported widespread declines of moose populations. Disturbances to forests from a mountain pine beetle (Dendroctonum ponderosae) outbreak and associated salvage logging infrastructure in British Columbia are suspected as a mechanism manifested in moose behavior and habitat selection. We examined seasonal differences in moose habitat selection in response to landscape change from mountain pine beetle salvage logging infrastructure: dense road networks and large intensive forest harvest cutblocks. We used 157,447 global positioning system locations from 83 adult female moose from 2012 to 2016 on the Bonaparte Plateau at the southern edge of the Interior Plateau of central British Columbia to test whether increased forage availability, landscape features associated with increased mortality risk, or the cumulative effects of salvage logging best explain female moose distribution using resource selection functions in an information-theoretic framework. We tested these hypotheses across biological seasons, defined using a cluster analysis framework. The cumulative effects of forage availability and risk best predicted resource selection of female moose in all seasons; however, the covariates included in the cumulative models varied between seasons. The top forage availability model better explained moose habitat use than the top risk model in all seasons, except for the calving and fall seasons where the top risk model (distance to road) better predicted moose space use. Selection of habitat that provides forage in winter, spring, and summer suggests that moose seasonally trade predation risk for the benefits of foraging in early seral vegetation communities in highly disturbed landscapes. Our results identified the need for intensive landscape-scale management to stem moose population declines. Additional research is needed on predator densities, space use, and calf survival in relation to salvage logging infrastructure. © 2020 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号