首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutation of either arginase structural gene (ARGAH1 or ARGAH2 encoding arginine [Arg] amidohydrolase-1 and -2, respectively) resulted in increased formation of lateral and adventitious roots in Arabidopsis (Arabidopsis thaliana) seedlings and increased nitric oxide (NO) accumulation and efflux, detected by the fluorogenic traps 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate and diamino-rhodamine-4M, respectively. Upon seedling exposure to the synthetic auxin naphthaleneacetic acid, NO accumulation was differentially enhanced in argah1-1 and argah2-1 compared with the wild type. In all genotypes, much 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate fluorescence originated from mitochondria. The arginases are both localized to the mitochondrial matrix and closely related. However, their expression levels and patterns differ: ARGAH1 encoded the minor activity, and ARGAH1-driven beta-glucuronidase (GUS) was expressed throughout the seedling; the ARGAH2::GUS expression pattern was more localized. Naphthaleneacetic acid increased seedling lateral root numbers (total lateral roots per primary root) in the mutants to twice the number in the wild type, consistent with increased internal NO leading to enhanced auxin signaling in roots. In agreement, argah1-1 and argah2-1 showed increased expression of the auxin-responsive reporter DR5::GUS in root tips, emerging lateral roots, and hypocotyls. We propose that Arg, or an Arg derivative, is a potential NO source and that reduced arginase activity in the mutants results in greater conversion of Arg to NO, thereby potentiating auxin action in roots. This model is supported by supplemental Arg induction of adventitious roots and increased NO accumulation in argah1-1 and argah2-1 versus the wild type.  相似文献   

2.
3.
Nitrilase (NIT) and myrosinase are important enzymes for auxin biosynthesis in Brassicaceae, which is increased during clubroot disease. Therefore, NIT and myrosinase levels during club development and possible regulation mechanisms were investigated. In addition, the occurrence of different nitrilase isoforms in Chinese cabbage has been shown. Nitrilase activity was enhanced in infected roots during later stages of club development (35–42 days after inoculation). However, no differences in nitrilase mRNA levels between infected and healthy roots were found during symptom development. Myrosinase expression was increased in clubbed roots at slightly earlier time points (28 days after inoculation) and also at later time points during infection. The activities of tryptophan oxidizing enzyme (TrpOxE), which catalyzes the first step in tryptophan-dependent auxin biosynthesis in Brassicaceae, and nitrilase were enhanced after treatment with jasmonic acid (JA) and methyl jasmonate. Similarly, the amount of myrosinase mRNA was increased by JA. During clubroot disease the endogenous concentration of JA increased in infected roots 3–5 weeks after inoculation. From our results it can be concluded that: (1) de novo indole-3-acetic acid (IAA) biosynthesis plays a role for symptom development of clubroot disease in Brassicaceae during later developmental stages; and (2) JA which increased during club development, may be involved in the up-regulation of three enzymes important for IAA synthesis.  相似文献   

4.
5.
6.
7.
The mitogen-activated protein kinases (MAPK) have been shown to participate in iNOS induction following lipopolysaccharide (LPS) stimulation, while the role of MAPKs in the regulation of arginase remains unclear. We hypothesized that different MAPK family members are involved in iNOS and arginase expression following LPS stimulation. LPS-stimulated RAW 264.7 cells exhibited increased protein and mRNA levels for iNOS, arginase I, and arginase II; although the induction of arginase II was more robust than that for arginase I. A p38 inhibitor completely prevented iNOS expression while it only attenuated arginase II induction. In contrast, a MEK1/2 inhibitor (ERK pathway) completely abolished arginase II expression while actually enhancing iNOS induction in LPS-stimulated cells. Arginase II promoter activity was increased by ∼4-fold following LPS-stimulation, which was prevented by the ERK pathway inhibitor. Arginase II promoter activity was unaffected by a p38 inhibitor or JNK pathway interference. Transfection with a construct expressing a constitutively active RAS mutant increased LPS-induced arginase II promoter activity, while transfection with a vector expressing a dominant negative ERK2 mutant or a vector expressing MKP-3 inhibited the arginase II promoter activity. LPS-stimulated nitric oxide (NO) production was increased following siRNA-mediated knockdown of arginase II and decreased when arginase II was overexpressed. Our results demonstrate that while both the ERK and p38 pathways regulate arginase II induction in LPS-stimulated macrophages, iNOS induction by LPS is dependent on p38 activation. These results suggest that differential inhibition of the MAPK pathway may be a potential therapeutic strategy to regulate macrophage phenotype.  相似文献   

8.
Arginase is greatly elevated in asthma and is thought to play a role in the pathophysiology of this disease. As inhibitors of phosphodiesterase 4 (PDE4), the predominant PDE in macrophages, elevate cAMP levels and reduce inflammation, they have been proposed for use in treatment of asthma and chronic obstructive pulmonary disease. As cAMP is an inducer of arginase, we tested the hypothesis that a PDE4 inhibitor would enhance macrophage arginase induction by key cytokines implicated in asthma and other pulmonary diseases. RAW 264.7 cells were stimulated with IL-4 or transforming growth factor (TGF)-beta, with and without the PDE4 inhibitor rolipram. IL-4 and TGF-beta increased arginase activity 16- and 5-fold, respectively. Rolipram alone had no effect but when combined with IL-4 and TGF-beta synergistically enhanced arginase activity by an additional 15- and 5-fold, respectively. The increases in arginase I protein and mRNA levels mirrored increases in arginase activity. Induction of arginase II mRNA was also enhanced by rolipram but to a much lesser extent than arginase I. Unlike its effect in RAW 264.7 cells, IL-4 alone did not increase arginase activity in human alveolar macrophages (AM) from healthy volunteers. However, combining IL-4 with agents to induce cAMP levels induced arginase activity in human AM significantly above the level obtained with cAMP-inducing agents alone. In conclusion, agents that elevate cAMP significantly enhance induction of arginase by cytokines. Therefore, consequences of increased arginase expression should be evaluated whenever PDE inhibitors are proposed for treatment of inflammatory disorders in which IL-4 and/or TGF-beta predominate.  相似文献   

9.
10.
Insect galls are abnormal plant tissues induced by external stimuli from parasitizing insects. It has been suggested that the stimuli include phytohormones such as auxin and cytokinins produced by the insects. In our study on the role of hormones in gall induction by the aphid Tetraneura nigriabdominalis, it was found that feedback regulation related to auxin and cytokinin activity is absent in gall tissues, even though the aphids contain higher concentrations of those phytohormones than do plant tissues. Moreover, jasmonic acid signaling appears to be compromised in gall tissue, and consequently, the production of volatile organic compounds, which are a typical defense response of host plants to herbivory, is diminished. These findings suggest that these traits of the gall tissue benefit aphids, because the gall tissue is highly sensitive to auxin and cytokinin, which induce and maintain it. The induced defenses against aphid feeding are also compromised. The abnormal responsiveness to phytohormones is regarded as a new type of extended phenotype of gall-inducing insects.  相似文献   

11.
Arginase II catalyzes the conversion of arginine to urea and ornithine in many extrahepatic tissues. We investigated the protective role of arginase II on lipopolysaccharide-mediated apoptosis in the macrophage cells. Adenoviral gene transfer of full length of arginase II was performed in the murine macrophage cell line RAW264.7. The role of arginase II was investigated with cell viability, cytoplasmic histone-associated DNA fragmentation assay, arginase activity, nitric oxide production, and Western blot analysis. Arginase II is localized in mitochondria of macrophage cells, and the expression of arginase II was increased by lipopolysaccharide (LPS). LPS significantly increased cell death which was inhibited by AMT, a specific inducible nitric oxide synthase (iNOS) inhibitor. In contrast, LPS-induced cell death and nitric oxide production were increased by 2-boronoethyl-L-cysteine, a specific inhibitor of arginase. Adenoviral overexpression of arginase II significantly inhibited LPS-induced cell death and cytoplasmic histone-associated DNA fragmentation. LPS-induced iNOS expression and poly ADP-ribose polymerase cleavage were significantly suppressed by arginase II overexpression. Furthermore, arginase II overexpression resulted in a decrease in the Bax protein level and the reverse induction of Bcl-2 protein. Our data demonstrated that inhibition of NO production by arginase II may be due to arginine depletion as well as iNOS suppression though its reaction products. Moreover, arginase II plays a protective role of LPS-induced apoptosis in RAW264.7 cells.  相似文献   

12.
We previously reported that macrophage arginase inhibits NO-dependent trypanosome killing in vitro and in vivo. BALB/c and C57BL/6 mice are known to be susceptible and resistant to trypanosome infection, respectively. Hence, we assessed the expression and the role of inducible NO synthase (iNOS) and arginase in these two mouse strains infected with Trypanosoma brucei brucei. Arginase I and arginase II mRNA expression was higher in macrophages from infected BALB/c compared with those from C57BL/6 mice, whereas iNOS mRNA was up-regulated at the same level in both phenotypes. Similarly, arginase activity was more important in macrophages from infected BALB/c vs infected C57BL/6 mice. Moreover, increase of arginase I and arginase II mRNA levels and of macrophage arginase activity was directly induced by trypanosomes, with a higher level in BALB/c compared with C57BL/6 mice. Neither iNOS expression nor NO production was stimulated by trypanosomes in vitro. The high level of arginase activity in T. brucei brucei-infected BALB/c macrophages strongly inhibited macrophage NO production, which in turn resulted in less trypanosome killing compared with C57BL/6 macrophages. NO generation and parasite killing were restored to the same level in BALB/c and C57BL/6 macrophages when arginase was specifically inhibited with N(omega)-hydroxy-nor-L-arginine. In conclusion, host arginase represents a marker of resistance/susceptibility to trypanosome infections.  相似文献   

13.
14.
Arginase, which hydrolyzes arginine to urea and ornithine, is a precursor for the synthesis of polyamines and proline, which is abundant in collagen. The supply of proline can be a crucial factor in the process of lung fibrosis. We investigated the induction of arginine metabolic enzymes in bleomycin-induced mouse lung fibrosis. Histological studies and quantification of lung hydroxyproline showed that lung fibrosis develops in up to 14 days after bleomycin treatment. Under these conditions, collagen I mRNA was induced gradually in up to 15 days, and the content of hydroxyproline reached a maximum at 10 days. Arginase I mRNA was undetectable before bleomycin treatment but was induced 5-10 days after this treatment. Arginase I protein was induced at 7 days and remained little changed for up to 10 days and decreased at 14 days. On the other hand, arginase II mRNA that was detectable before treatment was increased gradually for up to 10 days and decreased at 14 days. Arginase II protein began to increase at day 5, increased for up to 10 days, and was decreased at day 14. mRNAs for cationic amino acid transporter-2 and ornithine decarboxylase were induced in a manner similar to that seen with collagen I mRNA. Immunohistochemical analysis showed that arginase I is induced in macrophages, whereas arginase II is induced in various cell types, including macrophages and myofibroblasts, and roughly colocalizes with the collagen-specific chaperone heat shock protein 47. Our findings suggest that arginine metabolic enzymes play an important role in the development of lung fibrosis, at least in mice.  相似文献   

15.
Various microorganisms produce the disaccharide trehalose during their symbiotic and pathogenic interactions with plants. Trehalose has strong effects on plant metabolism and growth; therefore, we became interested to study its possible role in the interaction of Arabidopsis thaliana with Plasmodiophora brassicae, the causal agent of clubroot disease. We found that trehalose accumulated strongly in the infected organs (i.e., the roots and hypocotyls) and, to a lesser extent, in the leaves and stems of infected plants. This accumulation pattern of trehalose correlated with the expression of a putative trehalose-6-phosphate synthase (EC 2.4.1.15) gene from P. brassicae, PbTPS1. Clubroot formation also resulted in an induction of the Arabidopsis trehalase gene, ATTRE1, and in a concomitant increase in trehalase (EC 3.2.1.28) activity in the roots and hypocotyls, but not in the leaves and stems of infected plants. Thus, induction of ATTRE1 expression was probably responsible for the increased trehalase activity. Trehalase activity increased before trehalose accumulated; therefore, it is unlikely that trehalase was induced by its substrate. The induction of trehalase may be part of the plant's defense response and may prevent excess accumulation of trehalose in the plant cells, where it could interfere with the regulation of carbon metabolism.  相似文献   

16.
17.
When cultured on media containing the plant growth regulator auxin, hypocotyl explants of Arabidopsis thaliana generate adventitious roots. As a first step to investigate the genetic basis of adventitious organogenesis in plants, we isolated nine temperature-sensitive mutants defective in various stages in the formation of adventitious roots: five root initiation defective (rid1 to rid5) mutants failed to initiate the formation of root primordia; in one root primordium defective (rpd1) mutant, the development of root primordia was arrested; three root growth defective (rgd1, rgd2, and rgd3) mutants were defective in root growth after the establishment of the root apical meristem. The temperature sensitivity of callus formation and lateral root formation revealed further distinctions between the isolated mutants. The rid1 mutant was specifically defective in the reinitiation of cell proliferation from hypocotyl explants, while the rid2 mutant was also defective in the reinitiation of cell proliferation from root explants. These two mutants also exhibited abnormalities in the formation of the root apical meristem when lateral roots were induced at the restrictive temperature. The rgd1 and rgd2 mutants were deficient in root and callus growth, whereas the rgd3 mutation specifically affected root growth. The rid5 mutant required higher auxin concentrations for rooting at the restrictive temperature, implying a deficiency in auxin signaling. The rid5 phenotype was found to result from a mutation in the MOR1/GEM1 gene encoding a microtubule-associated protein. These findings about the rid5 mutant suggest a possible function of the microtubule system in auxin response.  相似文献   

18.
Auxin conjugates play a role in the regulation of free indole-3-acetic acid (IAA) content in plants. Not much is known about the enzymes involved in either conjugate synthesis or hydrolysis. In this study we have isolated and characterized an auxin conjugate hydrolase from Chinese cabbage seedlings and investigated it during the development of both the Chinese cabbage plants and the clubroot disease. The hydrolase isolated from light- and dark-grown seedlings accepted the amide conjugates indole-3-acetic acid-alanine (IAAla), IAA-phenylalanine (IAPhe), but not IAA-aspartate (IAAsp) as substrates. We also found a substantial amount of hydrolysis of an ester conjugate (IAA-glucose, IAGlu) in our enzyme preparation. The tentative reaction product IAA was identified by HPLC and subsequent GC-MS analysis. The pH optima for the different substrates were not identical, suggesting several hydrolase isoforms. After gel filtration chromatography we found at least two peaks containing different hydrolase isoforms. The isoform, which converted IAGlu to IAA, exhibited a molecular mass of ca 63 kDa, and an isoform of ca 21 kDa converted IAAla and IAPhe. The increased free IAA content in clubroot-diseased roots of Brassicaceae can be due to either de novo synthesis or release of IAA from conjugates. To answer this question free, ester- and amide-bound IAA was measured in 24- and 30-day-old leaves and roots of healthy and Plasmodiophora brassicae-infected Chinese cabbage, and the hydrolase activity with different substrates measured in the same tissues. The amide conjugates were dramatically enhanced in infected roots, whereas free IAA was only slightly enhanced compared to the control tissue. Hydrolase activity was also enhanced in clubbed roots, but the substrate specificity differed from that found in the seedlings. Especially, IAAsp hydrolysis was induced after inoculation with P. brassicae. We conclude that different auxin conjugates can be hydrolyzed at different developmental stages or under stress.  相似文献   

19.
We analyzed the impact of ethylene and auxin disturbances on callus, shoots and Agrobacterium rhizogenes-induced hairy root formation in tomato (Solanum lycopersicum L.). The auxin low-sensitivity dgt mutation showed little hairy root initiation, whereas the ethylene low-sensitivity Nr mutation did not differ from the control Micro-Tom cultivar. Micro-Tom and dgt hairy roots containing auxin sensitivity/biosynthesis rol and aux genes formed prominent callus onto media supplemented with cytokinin. Under the same conditions, Nr hairy roots did not form callus. Double mutants combining Rg1, a mutation conferring elevated shoot formation capacity, with either dgt or Nr produced explants that formed shoots with little callus proliferation. The presence of rol + aux genes in Rg1 hairy roots prevented shoot formation. Taken together, the results suggest that although ethylene does not affect hairy root induction, as auxin does, it may be necessary for auxin-induced callus formation in tomato. Moreover, excess auxin prevents shoot formation in Rg1.  相似文献   

20.
The importance of plant hormones in clubroot infection has long been recognized. The morphological changes, such as cell division and cell elongation leading to gall formation are triggered in the early stages of infection. We analysed cell expansion by localizing Xyloglucan endoTransglucosylase/Hydrolase (XTH)-action and screened the endogenous concentrations of several classes of phytohormones by mass spectrometry in the early stages of Plasmodiophora brassicae infection in Chinese cabbage (Brassica rapa spp. pekinensis). Infected plants showed a general transient growth promotion early in infection. Furthermore a clear XTH action was visible in the epidermal layer of infected roots. Complex changes in the endogenous phytohormone profile were observed. Initially infection resulted in an increased total auxin pool. The auxin increase, together with an increased XTH action, results in wall loosening and consequently cell expansion. When the first secondary plasmodia are formed, thirteen days after infection (DAI), can be considered a switch point in phytohormone metabolism. Twenty-one DAI the plasmodia might act as a plant hormone sink resulting in a reduction in the active cytokinin pool and a lower indole-3-acetic acid content in the infected plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号