首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Dynamic Monte Carlo studies have been performed on various diamond lattice models of β-proteins. Unlike previous work, no bias toward the native state is introduced; instead, the protein is allowed to freely hunt through all of phase space to find the equilibrium conformation. Thus, these systems may aid in the elucidation of the rules governing protein folding from a given primary sequence; in particular, the interplay of short- vs long-range interaction can be explored. Three distinct models (A? C) were examined. In model A, in addition to the preference for trans (t) over gauche states (g+ and g?) (thereby perhaps favoring β-sheet formation), attractive interactions are allowed between all nonbonded, nearest neighbor pairs of segments. If the molecules possess a relatively large fraction of t states in the denatured form, on cooling spontaneous collapse to a well-defined β-barrel is observed. Unfortunately, in model A the denatured state exhibits too much secondary structure to correctly model the globular protein collapse transition. Thus in models B and C, the local stiffness is reduced. In model B, in the absence of long-range interactions, t and g states are equally weighted, and cooperativity is introduced by favoring formation of adjacent pairs of nonbonded (but not necessarily parallel) t states. While the denatured state of these systems behaves like a random coil, their native globular structure is poorly defined. Model C retains the cooperativity of model B but allows for a slight preference of t over g states in the short-range interactions. Here, the denatured state is indistinguishable from a random coil, and the globular state is a well-defined β-barrel. Over a range of chain lengths, the collapse is well represented by an all-or-none model. Hence, model C possesses the essential qualitative features observed in real globular proteins. These studies strongly suggest that the uniqueness of the globular conformation requires some residual secondary structure to be present in the denatured state.  相似文献   

2.
T R Sosnick  J Trewhella 《Biochemistry》1992,31(35):8329-8335
Using small-angle X-ray scattering and Fourier transform infrared spectroscopy, we have determined that the thermally denatured state of native ribonuclease A is on average a compact structure having residual secondary structure. Under strongly reducing conditions, the protein further unfolds into a looser structure with larger dimensions but still retains a comparable amount of secondary structure. The dimensions of the thermally and chemically denatured states of the reduced protein are different but both are more compact than is predicted for a random coil of the same length. These results demonstrate that thermal denaturation in ribonuclease A is not a simple two-state transition from a native to a completely disordered random coil state.  相似文献   

3.
Unfolded proteins may contain a native or nonnative residual structure, which has important implications for the thermodynamics and kinetics of folding, as well as for misfolding and aggregation diseases. However, it has been universally accepted that residual structure should not affect the global size scaling of the denatured chain, which obeys the statistics of random coil polymers. Here we use a single-molecule optical technique—fluorescence correlation spectroscopy—to probe the denatured state of a set of repeat proteins containing an increasing number of identical domains, from 2 to 20. The availability of this set allows us to obtain the scaling law for the unfolded state of these proteins, which turns out to be unusually compact, strongly deviating from random coil statistics. The origin of this unexpected behavior is traced to the presence of an extensive nonnative polyproline II helical structure, which we localize to specific segments of the polypeptide chain. We show that the experimentally observed effects of polyproline II on the size scaling of the denatured state can be well-described by simple polymer models. Our findings suggest a hitherto unforeseen potential of nonnative structure to induce significant compaction of denatured proteins, significantly affecting folding pathways and kinetics.  相似文献   

4.
The native state can be considered as a unique conformation of the protein molecule with the lowest free energy of residue contacts. In this case, all other conformations correspond to the denatured state. The degree of their compactness varies significantly. Under folding conditions, the compact denatured state rather than the random coil is in equilibrium with native protein. The balance between the main forces of protein folding, the solvophobic interactions and conformational entropy, suggests that some properties of the compact denatured state are close to those of native protein, whereas other properties are close to those of the random coil. To investigate the molecular structure of the compact denatured state, the method of molecular dynamics simulation seems to be very useful.  相似文献   

5.
6.
7.
The denatured states of alpha-lactalbumin, which have features of a molten globule state, have been studied to elucidate the energetics of the molten globule state and its contribution to the stability of the native conformation. Analysis of calorimetric and CD data shows that the heat capacity increment of alpha-lactalbumin denaturation highly correlates with the degree of disorder of the residual structure of the state. As a result, the denaturational transition of alpha-lactalbumin from the native to a highly ordered compact denatured state, and from the native to the disordered unfolded state are described by different thermodynamic functions. The enthalpy and entropy of the denaturation of alpha-lactalbumin to compact denatured state are always greater than the enthalpy and entropy of its unfolding. This difference represents the unfolding of the molten globule state. Calorimetric measurements of the heat effect associated with the unfolding of the molten globule state reveal that it is negative in sign over the temperature range of molten globule stability. This observation demonstrates the energetic specificity of the molten globule state, which, in contrast to a protein with unique tertiary structure, is stabilized by the dominance of negative entropy and enthalpy of hydration over the positive conformational entropy and enthalpy of internal interactions. It is concluded that at physiological temperatures the entropy of dehydration is the dominant factor providing stability for the compact intermediate state on the folding pathway, while for the stability of the native state, the conformational enthalpy is the dominant factor.  相似文献   

8.
Wang Z  Plaxco KW  Makarov DE 《Biopolymers》2007,86(4):321-328
Although recent spectroscopic studies of chemically denatured proteins hint at significant nonrandom residual structure, the results of extensive small angle X-ray scattering studies suggest random coil behavior, calling for a coherent understanding of these seemingly contradicting observations. Here, we report the results of a Monte Carlo study of the effects of two types of local structures, alpha helix and Polyproline II (PPII) helix, on the dimensions of random coil polyalanine chains viewed as a model of highly denatured proteins. We find that although Flory's power law scaling, long regarded as a signature of random coil behavior, holds for chains containing up to 90% alpha or PPII helix, the absolute magnitude of the chain dimensions is sensitive to helix content. As residual alpha helix content increases, the chain contracts until it reaches a minimum radius at approximately 70% helix, after which the chain dimensions expand rapidly. With an alpha helix content of approximately 20%, corresponding to the Ramachandran probability of being in the helical basin, experimentally observed radii of gyration are recovered. Experimental radii are similarly recovered at an alpha helix content of approximately 87%, providing an explanation for the previously puzzling experimental finding that the dimensions of the highly helical methanol-induced unfolded state are experimentally indistinguishable from those of the helix-poor urea-unfolded state. In contrast, the radius of gyration increases monotonically with increasing PPII content, and is always more expanded than the dimensions observed experimentally. These results suggest that PPII is unlikely the sole, dominant preferred conformation for unfolded proteins.  相似文献   

9.
The Raman spectra of β-lactoglobulin in the crystalline, freeze-dried, and solution states are compared. The spectra of the freeze-dried and crystalline proteins were practically identical. The conformationally sensitive amide III line appearing at 1242 cm?1 increased in intensity 30% upon dissolution of the protein in water which is interpreted as a conformational change in the disordered chains of the protein. This result appears to be a phenomenon for globular proteins containing a large disordered chain fraction. The alkaline denaturation of β-lactoglobulin was studied. When the pH was increased from 6.0 to 11.0, the amide III line shifted from 1242 to 1246 cm?1, broadened, and decreased in intensity. This is consistent with the conversion of β-sheet regions in β-lactoglobulin to the disordered conformation, as has been proposed by other investigators. At pH 13.5 the amide III shifts to 1257 cm?1 characteristic of a completely disordered protein, indicating that any remaining “core” of β-sheet has been randomized. Several changes in the intensities of the tyrosine and tryptophan vibrations accompany the denaturation. As the pH is increased from 6.0 (native state) to 11.0 (denatured state) the intensity ratio of two tyrosine ring vibrations, I855 cm?1/I830 cm?1, decreases from 1.0:0.9 to 1.0:1.3. The same ratio for a copolymer consisting of 95% glutamic acid and 5% tyrosine at pH 7.0, where the polymer forms a random coil exposing the tyrosine to the aqueous environment, is 1.0:0.62. This ratio more closely resembles that corresponding to β-lactoglobulin at pH 6.0 (native state) than pH 11.0 (denatured state) suggesting that the average tyrosine in the denatured state may be in a more hydrophobic environment than in the native state. A time-dependent polymerization of the denatured protein reported by other investigators and observed by us may account for the change in the tyrosine environment. A tryptophan vibration appearing at 833 cm?1 in the spectrum of the native state becomes weak as the pH is increased to 11.0. The intensity of this line may also reflect the local environment of the tryptophan residue.  相似文献   

10.
Sulfhydryl groups at Cys-36 on the beta chain and at Cys-190 on the gamma chain of chicken gizzard tropomyosin were reacted with the pyrene-containing sulfhydryl-specific reagents N-(1-pyrenyl)iodoacetamide and N-(1-pyrenyl)maleimide. Tropomyosin prepared and labeled under nondenaturing conditions displayed significant pyrene monomer emission but low levels of pyrene excimer fluorescence. In contrast, tropomyosin subjected to denaturation and renaturation prior to labeling, or labeled in the denatured state prior to renaturation, displayed considerable excimer emission. Furthermore, labeling of isolated beta or gamma chains in denaturant, followed by reconstitution, gave separate samples of beta beta- and gamma gamma-tropomyosin that exhibited even greater pyrene excimer to monomer emission ratios. As pyrene excimers can form only when an excited pyrene is immediately adjacent to a ground state pyrene, i.e., when the labeled Cys residues on the two chains in a tropomyosin coiled coil share the same cross section, these results support conclusions based upon chemical crosslinking studies [C. Sanders, L. D. Burtnick, and L. B. Smillie (1986) J. Biol. Chem. 261, 12774-12778] that native gizzard tropomyosin exists predominantly as a beta gamma-heterodimer. In addition, the low degree of labeling of native gizzard tropomyosin and the differences in degrees of labeling of beta beta- and gamma gamma-tropomyosins in the absence of denaturants reflect on the accessibilities of the sulfhydryl groups in these tropomyosin isoforms. Circular dichroism measurements indicate that the labeled proteins form stable coiled coil structures that have thermal stabilities comparable to that of the native protein.  相似文献   

11.
Using differential scanning calorimetry, the thermal denaturation of calf thymus DNA with different content of water (from 12 to 92%) was investigated. Dependences of melting temperature and enthalpy on the biopolymer hydration degree were established. Within the range of water concentrations from 92 to 50% the values of thermodynamic parameters of denaturation were obtained being in good agreement with the published data. Besides, a calorimetric manifestation of renaturation process at different cooling conditions after denaturation was studied. Special attention was paid to thermal properties of denatured and native DNA in the samples containing only the bound water. The temperature dependence of heat capacity in the denatured samples, which have completely lost their renaturation ability due to the proper thermal treatment, demonstrated a characteristic jump of thermal capacity. The value of this jump has been determined to be equal to 1.0 cal/g. degree C, related to dry weight, and almost not dependent on humidity. Temperature position of the jump (Tg) depends on the content of water which serves as a plasticizer. It is shown that the observed anomaly demonstrates all the properties characteristic of vitrification process in synthetic polymers and proteins. General similarity of thermal properties of the samples of native DNA, containing only the bound water, with those of denatured DNA also indicates a transition from the glassy into the rabber-like state. A possibility of existence of both native and denatured DNA in the glassy state at room temperature for the samples with low humidity (about 25%) has been demonstrated experimentally. It can be suggested that the formation of glassy state at dehydration of native DNA ensures its thermostability and the ability of restoration of its functional properties at a subsequent dehydration.  相似文献   

12.
Lavery DN  McEwan IJ 《Biochemistry》2008,47(11):3360-3369
The androgen receptor (AR) mediates the action of the steroid hormones testosterone and dihydrotestosterone. The protein contains two globular alpha-helical domains responsible for binding hormone and DNA. In contrast, the N-terminal domain is less well structurally defined and contains the main determinants for receptor-dependent transactivation, termed AF1. Previously, we have shown this region has the propensity to form alpha-helix structure. Significantly, the binding of specific protein targets or a natural osmolyte resulted in a more protease resistant conformation for the AF1 domain, consistent with an increase in conformational stability. Computational and experimental analyses were used to investigate the conformational properties of the native AF1 domain. This region of the receptor is predicted to contain significant regions of natural disordered structure, when analyzed by amino acid composition, PONDR (Predictor of Natural Disordered Regions), RONN (Regional Order Neural Network), and GlobPlot, but is grouped with ordered proteins on a charge-hydropathy plot. The binding of a hydrophobic fluorescence probe, 8-anilinonaphthalene-1-sulfonic acid (ANS), together with size-exclusion chromatography suggests that native AR-AF1 exists in a collapsed disordered conformation, distinct from extended disordered (random coil) and a stable globular fold. This state has also been described as premolten or molten globule-like. These findings are discussed in terms of the functional importance of the intrinsic plasticity of the AF1 domain.  相似文献   

13.
Heat capacity and conformation of proteins in the denatured state   总被引:30,自引:0,他引:30  
Heat capacity, intrinsic viscosity and ellipticity of a number of globular proteins (pancreatic ribonuclease A, staphylococcal nuclease, hen egg-white lysozyme, myoglobin and cytochrome c) and a fibrillar protein (collagen) in various states (native, denatured, with and without disulfide crosslinks or a heme) have been studied experimentally over a broad range of temperatures. It is shown that the partial heat capacity of denatured protein significantly exceeds the heat capacity of native protein, especially in the case of globular proteins, and is close to the value calculated for an extended polypeptide chain from the known heat capacities of individual amino acid residues. The significant residual structure that appears at room temperature in the denatured states of some globular proteins (e.g. myoglobin and lysozyme) at neutral pH results in a slight decrease of the heat capacity, probably due to partial screening of the protein non-polar groups from water. The heat capacity of the unfolded state increases asymptotically, approaching a constant value at about 100 degrees C. The temperature dependence of the heat capacity of the native state, which can be determined over a much shorter range of temperature than that of the denatured state and, correspondingly, is less certain, appears to be linear up to 80 degrees C. Therefore, the denaturational heat capacity increment seems to be temperature-dependent and is likely to decrease to zero at about 140 degrees C.  相似文献   

14.
Apolipoprotein B was isolated from human plasma low-density-lipoprotein without precipitation by diethyl ether/ethanol extraction of the protein in 6 M guanidine hydrochloride. The physical properties of this protein, which contained a residuum of approximately 7% phospholipid, were examined in 6 M guanidine solution under reducing conditions. The circular dichroism spectrum was indistinguishable from that of a random coil protein. Sedimentation equilibrium analyses of apolipoprotein B by the meniscus depletion method of Yphantis (1984, Biochemistry 3, 297-317) were complicated by heterogeneity and nonideality despite the low concentrations employed. 63 analyses of the weight average (Mw) and z average (Mz) molecular weight were made on the apolipoprotein B from 12 subjects. The Mw observed was a function of initial concentration, rotor speed, and a heterogeneity index (Mz/Mw). Multiple linear regression of apolipoprotein B molecular mass against these parameters suggested that an Mw of 540,000 +/- 110,000 would be observed under apparently ideal and homogeneous conditions. The sedimentation coefficient and intrinsic viscosity of the reduced protein at 25 degrees C in 6 M guanidine were 2.13 S and 116 ml/g, respectively; these values predict molecular weights of 640,000 and 250,000, respectively, if apolipoprotein B was fully denatured into a random coil. Lack of agreement between these estimates and with the sedimentation equilibrium analysis can best be explained by compactness of structure and incomplete denaturation to a random coil state. Furthermore, an irreversible temperature dependence of apolipoprotein B reduced viscosity indicated that residual structure remained in solutions of 6 M guanidine hydrochloride/20 mM dithiothreitol. Taken together, the physical data demonstrate that apolipoprotein is a single polypeptide of approximately 540 kDa, whose structure resists denaturation under conditions where most proteins exist as random coils.  相似文献   

15.
J L Koenig  B G Frushour 《Biopolymers》1972,11(12):2505-2520
The Raman spectra of three globular proteins, beef pancreas chymotrypsinogen A, beef pancreas ribonuclease, and hen egg white ovalbumin have been obtained in the solid state and aqueous solution. X-ray diffraction and circular dichroism evidence have indicated that these proteins have a low α-helical content and a large fraction of the residues in the unordered and β-sheet conformation. The frequencies and intensities of the amide I and amide III lines are consistent with assignments based on the Raman spectra of polypeptides. The intense amide III lines observed in all the spectra would be expected for proteins with a low fraction of the residues in the α-helical conformation. Several spectra changes occur upon dissolution of the proteins in water and may be associated with further hydration of the proteins. The spectrum of thermally denatured chymotrypsinogen is presented. A 3 cm–1 decrease in the frequency of the amide I line of the protein dissolved in D2O upon heating was observed. This observation is consistent with a denaturation mechanism allowing only slight changes in the secondary structure but an increase in solvent penetration upon going from the native to the reversibly denatured state.  相似文献   

16.
There has been renewed interest in determining the physicochemical properties of denatured states of proteins. In many denatured states there is evidence for the existence of nonrandom configurational distributions. Here we examine the small-angle neutron scattering profile of yeast phosphoglycerate kinase in the native state and in highly denaturing conditions. We show that the denatured protein scattering profile can be interpreted using a model developed for synthetic polymers in which the chain behaves as a random coil in a good solvent, i.e. with excluded volume interactions. The implications of this result for our appreciation of the protein folding process are discussed.  相似文献   

17.
The thermal transition of RNase T1 was studied by two different methods; tryptophan residue fluorescence and circular dichroism. The fluorescence measurements provide information about the environment of the indole group and CD measurements on the gross conformation of the polypeptide chain. Both measurements at pH 5 gave the same transition temperature of 56 degrees C and the same thermodynamic quantities, delta Htr (= 120 kcal/mol) and delta Str (= 360 eu/mol), for the transition from the native state to the thermally denatured state, indicating simultaneous melting of the whole molecule including the hydrophobic region where the tryptophan residue is buried. Stabilization by salts was observed in the pH range from 2 to 10, since the presence of 0.5 m NaCL caused an increase of about 5 degrees C to 10 degrees C in the transition temperature, depending on the pH. The fluorescence measurements on the RNase T1 complexed with 2'-GMP showed a transition with delta Htr =167 kcal/mol and delta Str =497 eu/mol at a transition temperature about 6 degrees C higher than that for the free enzyme. The large value of delta Htr for RNase T1 indicates the highly cooperative nature of the thermal transition; this value is much higher than those of other globular proteins. Analysis of the CD spectrum of thermally denatured RNase T1 suggests that the denatured state is not completely random but retains some ordered structures.  相似文献   

18.
The multiphasic kinetics of the protein folding and unfolding processes are examined for a “cluster model” with only two thermodynamically stable macroscopic states, native (N) and denatured (D), which are essentially distributions of microscopic states. The simplest kinetic schemes consistent with the model are: N-(fast) → I-(slow) → D for unfolding and N ← (fast)-D2 ← (slow)-D1 for refolding. The fast phase during the unfolding process can be visualized as the redistribution of the native population N to I within its free energy valley. Then, this population crosses over the free energy barrier to the denatured state D in the slow phase. Therefore, the macrostate I is a kinetic intermediate which is not stable at equilibrium. For the refolding process, the initial equilibrium distribution of the denatured state D appears to be separated into D1 and D2 in the final condition because of the change in position of the free energy barrier. The fast refolding species D2 is due to the “leak” from the broadly distributed D state, while the rest is the slow refolding species D1, which must overpass the free energy barrier to reach N. At an early stage of the folding process the amino acid chain is considered to be composed of several locally ordered regions, which we call clusters, connected by random coil chain parts. Thus, the denatured state contains different sizes and distributions of clusters depending on the external condition. A later stage of the folding process is the association of smaller clusters. The native state is expressed by a maximum-size cluster with possible fluctuation sites reflecting this association. A general discussion is given of the correlation between the kinetics and thermodynamics of proteins from the overall shape of the free energy function. The cluster model provides a conceptual link between the folding kinetics and the structural patterns of globular proteins derived from the X-ray crystallographic data.  相似文献   

19.
There is an apparent contradiction between the long lifetime of the metastable structure of native proteins and the high rate of structural fluctuations, which result from the small activation energy required to change the native conformation.In this paper we point out that the observed stability of proteins is not a consequence of large potential barriers, but a result of the continuous reconstitution of the degraded structure by chain propagation. Polypeptide chains of proteins having naturally selected amino-acid sequences have regenerative ability which ensures the long lifetime of the native structure by making most of the fluctuations reversible.A simple calculation shows that in a certain fluctuation of an average protein molecule the probability of denaturation is less than 10−25, therefore even the most rapid, picosecond time scale fluctuations cause spontaneous denaturation only in million year time scale. Hence, the generally observed spontaneous denaturation in vitro is rather a consequence of covalent structure modification or intermolecular interactions than a result of an intramolecular interconversion from the native conformation to another conformation.  相似文献   

20.
Protein folding starts from the elusive form of the denatured state that is present under conditions that favour the native state. We have studied the denatured state of Engrailed Homeodomain (En-HD) under mildly and strongly denaturing conditions at the level of individual residues by NMR and more globally by conventional spectroscopy and solution X-ray scattering. We have compared these states with a destabilized mutant, L16A, which is predominantly denatured under conditions where the wild-type is native. This engineered denatured state, which could be directly studied under native conditions, was in genuine equilibrium with the native state, which could be observably populated by changing the conditions or introducing a stabilizing mutation. The denatured state had extensive native secondary structure and was significantly compact and globular. But, the side-chains and backbone were highly mobile. Non-cooperative melting of the residual structure on the denatured state of En-HD was observed, both at the residue and the molecular level, with increasingly denaturing conditions. The absence of a co-operative transition could result from the denatured state ensemble progressing through a series of intermediates or from a more general slide (second-order transition) from the compact form under native conditions to the more extended at highly denaturing conditions. In either case, the starting point for folding under native conditions is highly structured and already poised to adopt the native structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号