首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hexavalent chromium in industrial wastewater is a major concern due to its extreme toxicity. This study investigates the removal of Cr(VI) using viable anaerobic granular biomass as a biosorbent. The effect of Cr(VI) concentration on biogas content and COD removal using batch studies indicated that the phase II (methanogenic-rich) culture was more sensitive than the phase I (acidogenic-rich) culture. Toxicity indices for both cultures using COD removal were developed based on linear-log interpolation. The median inhibition Cr(VI) concentration (IC(50)), for phase II cultures was found to be 263mg/L, while that for phase I cultures was 309mg/L. A sorption study was conducted on viable and non-viable (dried) phase I-rich biomass: both followed the Langmuir model. In addition, the biosorption capacity for metabolically inhibited biomass was 25% less indicating some level of cellular uptake associated with Cr(VI) removal. This study demonstrated the potential for a two-phase anaerobic treatment system for a Cr(VI)-contaminated effluent.  相似文献   

2.
Plasmid DNA has been efficiently photocleaved by a series of xanthene dyes in the absence of molecular oxygen. The cleavage by fluorescein proceeds mostly via its singlet excited state.  相似文献   

3.
Microbial decolorization of azo dyes by Proteus mirabilis   总被引:5,自引:0,他引:5  
A bacterium identified as Proteus mirabilis was isolated from acclimated sludge from a dyeing wastewater treatment plant. This strain rapidly decolorized a deep red azo dye solution (RED RBN). Features of the decolorizing process related to biodegradation and biosorption were also studied. Although P. mirabilis displayed good growth in shake culture, color removal was best in anoxic static cultures. For color removal, the optimal pH and temperature were 6.5–7.5 and 30–35°C, respectively. The organism exhibited a remarkable color removal capability, even at a high concentration of azo dye. More than 95% of azo dye was reduced within 20 h at a dye concentration of 1.0 g L−1. Decolorization appears to proceed primarily by enzymatic reduction associated with a minor portion, 13–17%, of biosorption to inactivated microbial cells. Received 06 January 1999/ Accepted in revised form 22 April 1999  相似文献   

4.
Redox-mediated decolorization of synthetic dyes by fungal laccases   总被引:1,自引:0,他引:1  
Laccases from the lignin-degrading basidiomycetes Trametes versicolor, Polyporus pinisitus and the ascomycete Myceliophthora thermophila were found to decolorize synthetic dyes to different extents. Differences were attributed to the specific catalytic properties of the individual enzymes and to the structure of the dyes. Due to their higher oxidative capacities, the laccases from the two basidiomycetes decolorized dyes more efficiently than that of the ascomycete. The azo dye Direct Red 28, the indigoid Acid Blue 74 and anthraquinonic dyes were directly enzymatically decolorized within 16 h. The addition of 2 mM of the redox-mediator 1-hydroxybenzotriazole further improved and facilitated the decolorization of all nine dyes investigated. Laccases decolorized dyes both individually and in complex mixtures in the presence of bentonite or immobilized in alginate beads. Our data suggest that laccase/mediator systems are effective biocatalysts for the treatment of effluents from textile, dye or printing industries.  相似文献   

5.
贝壳状革耳菌染料脱色作用的研究   总被引:1,自引:0,他引:1  
利用比色法研究了贝壳状革耳菌产漆酶体系在不同情况下对两种不同类型合成染料的降解脱色,结果表明,染料在较低浓度(10mg/L)时,漆酶对其降解迅速而彻底,pH值,培养方式(静态培养,摇瓶培养)对降解作用都有较大的影响;通过在不同时间(0d,6d,18d)向产酶体系中加入染料证实了漆酶活性与染料脱色率呈正相关。  相似文献   

6.
The white rot fungus (WRF) Pleurotus ostreatus produced manganese peroxidase (MnP) and manganese-independent peroxidase (MIP) activities during solid state fermentation of wheat straw, a natural lignocellulosic substrate. Most of the sulfonphthalein (SP) dyes were decolorized by MnP at pH 4.0. The higher Km for meta-cresol purple (40 μM) and lower Km for ortho-cresol red (26 μM) for MnP activities explained the preference for the position of methyl group at ortho than at meta on chromophore. Bromophenol blue decolorizing activity was higher at pH 3.5 and decreased as the concentration of MnII was increased. SP-decolorizing activity was associated not only with MnP but also with MIP. Additional bromine group along with the methyl group on SP chromophores decreases the rate of decolorization. Bromination of sulfonphthalein chromophore makes them the poorer substrate for MnP. This is evident from the higher Km for bromocresol green (117 μM) when compared to bromocresol purple (36 μM) and bromophenol blue (78 μM). The order of preference for the SP dyes as substrate for the MnP-catalyzed decolorizing activity is phenol red > ortho-cresol red > meta-cresol purple > bromophenol red > bromocresol purple > bromophenol blue > bromocresol green and the order of preference for the SP dyes as substrate for the MIP-catalyzed decolorizing activity is bromocresol green > bromophenol blue > bromocresol purple > bromophenol red > meta-cresol purple > ortho-cresol red > phenol red. Inhibition of PR decolorizing activity by NaN3 provided the evidence of decolorizing activity as an oxidative process.  相似文献   

7.
  • 1.1. Photo-stimulation of larval adductor activity of Anodonta cygnea L. was investigated. Photosensitization takes place in the presence of different xanthene dyes such as eosin, erythrosin, rose bengal and phloxine.
  • 2.2. The sensitor-effect and energy-efficiency of the stain-fluorescence are correlated. The more effective stain is that which emits the lesser part of the absorbed light. This determines an activity arrangement: rose bengal >erythrosin⪢eosin.
  • 3.3. The reaction can be influenced by the temperature of dark-incubation and has a latency time. This suggests a dark-complex formation with biopolymers.
  • 4.4. It is probable that the photoreaction can take place without involving nervous elements.
  相似文献   

8.
The xanthene dyes, erythrosine, phloxine, and rose bengal, were adsorbed to charred cellulose granules. The charred cellulose granules were preliminarily steeped in ionic (NaOH, NaCl, KOH, KCl, and sodium dodecyl sulfate (SDS)), nonionic (glucose, sucrose, and ethanol), and amphipathic sucrose fatty acid ester (SFAE) solutions, and adsorption tests on the dye to the steeped and charred cellulose granules were conducted. Almost none of the dye was adsorbed when the solutions of ionic and amphipathic molecules were used, but were adsorbed in the case of steeping in the nonionic molecule solutions. Thin-layer chromatography (TLC) and the Fourier transform infra-red (FT-IR) profiles of SFAE which was adsorbed to the charred cellulose granules and extracted by ethyl ether suggested the presence of hydrophobic sites on the surface of the charred cellulose granules. We confirmed that the xanthene dyes could bind to the charred cellulose granules by ionic and hydrophobic bonds.  相似文献   

9.
Adsorption and decolorization kinetics of methyl orange by anaerobic sludge   总被引:1,自引:0,他引:1  
Adsorption and decolorization kinetics of methyl orange (MO) by anaerobic sludge in anaerobic sequencing batch reactors were investigated. The anaerobic sludge was found to have a saturated adsorption capacity of 36 ± 1 mg g MLSS−1 to MO. UV/visible spectrophotometer and high-performance liquid chromatography analytical results indicated that the MO adsorption and decolorization occurred simultaneously in this system. This process at various substrate concentrations could be well simulated using a modified two-stage model with apparent pseudo first-order kinetics. Furthermore, a noncompetitive inhibition kinetic model was also developed to describe the MO decolorization process at high NaCl concentrations, and an inhibition constant of 3.67 g NaCl l−1 was estimated. This study offers an insight into the adsorption and decolorization processes of azo dyes by anaerobic sludge and provides a better understanding of the anaerobic dye decolorization mechanisms.  相似文献   

10.
Azo compounds constitute the largest and the most diverse group of synthetic dyes and are widely used in a number of industries such as textile, food, cosmetics and paper printing. They are generally recalcitrant to biodegradation due to their xenobiotic nature. However microorganisms, being highly versatile, have developed enzyme systems for the decolorization and mineralization of azo dyes under certain environmental conditions. Several genera of Basidomycetes have been shown to mineralize azo dyes. Reductive cleavage of azo bond, leading to the formation of aromatic amines, is the initial reaction during the bacterial metabolism of azo dyes. Anaerobic/anoxic azo dye decolorization by several mixed and pure bacterial cultures have been reported. Under these conditions, this reaction is non-specific with respect to organisms as well as dyes. Various mechanisms, which include enzymatic as well as low molecular weight redox mediators, have been proposed for this non-specific reductive cleavage. Only few aerobic bacterial strains that can utilize azo dyes as growth substrates have been isolated. These organisms generally have a narrow substrate range. Degradation of aromatic amines depends on their chemical structure and the conditions. It is now known that simple aromatic amines can be mineralized under methanogenic conditions. Sulfonated aromatic amines, on the other hand, are resistant and require specialized aerobic microbial consortia for their mineralization. This review is focused on the bacterial decolorization of azo dyes and mineralization of aromatic amines, as well as the application of these processes for the treatment of azo-dye-containing wastewaters.  相似文献   

11.
Ten xanthene dyes (XAN) are evaluated for their ability to potentiate the antiviral activity of poly r(A-U) using a human foreskin fibroblast-vesicular stomatitis virus bioassay in which the XAN is combined with 0.2 mM poly r(A-U) to produce a XAN/ribonucleotide ratio of 1/4. Four of the ten XANs tested in this study, rhodamine 123, rhodamine B, rhodamine 6G and sulforhodamine B, enhance the antiviral activity of poly r(A-U) 8- to 15-fold. The interferon-inducing activity of the four active XAN/poly r(A-U) combinations is equal to the sum of the activities of their constituents. These four XANs appear to potentiate the antiviral activity of the poly r(A-U) without superinduction of interferon. The direct viral inactivation study demonstrates that the XANs, poly r(A-U) and the XAN/poly r(A-U) combinations do not inactivate the VSV at concentrations near the 50% effective dose.  相似文献   

12.
The effects of dipole modifiers, thyroid hormones (thyroxine and triiodothyronine) and xanthene dyes (Rose Bengal, phloxineB, erythrosin, eosinY and fluorescein) on the pore-forming activity of the lipopeptide syringomycin E (SRE) produced by Pseudomonas syringae were studied in a model bilayer. Thyroxine does not noticeably influence the steady-state number of open SRE channels (Nop), whereas triiodothyronine decreases it 10-fold at − 50 mV. Rose Bengal, phloxine B and erythrosin significantly increase Nop by 350, 100 and 70 times, respectively. Eosin Y and fluorescein do not practically affect the pore-forming activity of SRE. Recently, we showed that hormones decrease the dipole potential of lipid bilayers by approximately 60 mV at 50 μM, while Rose Bengal, phloxine B and erythrosin at 2.5 μM reduce the membrane dipole potential by 120, 80 and 50 mV, respectively. In the present study using differential scanning microcalorimetry, confocal fluorescence microscopy, the calcein release technique and measurements of membrane curvature elasticity, we show that triiodothyronine strongly affects the fluidity of model membranes: its addition leads to a significant decrease in the temperature and cooperativity of the main phase transition of DPPC, calcein leakage from DOPC vesicles, fluidization of solid domains in DOPC/DPPC liposomes, and promotion of lipid curvature stress. Thyroxine exerts a weaker effect. Xanthene dyes do not influence the phase transition of DPPC. Despite the decrease in the dipole potential, thyroid hormones modulate SRE channels predominantly via the elastic properties of the membrane, whereas the xanthene dyes Rose Bengal, phloxine B and erythrosine affect SRE channels via bilayer electrostatics.  相似文献   

13.
White Rot Fungi (WRF) are able to decolorize dyes through the use of relatively non-specific extracellular oxidative enzymes. Nevertheless, decolorization does not imply that the resulting metabolites are less toxic than the parent molecules. The aim of the present study was to evaluate the detoxification potential of six strains (Pycnoporus sanguineus, Perenniporia tephropora, Perenniporia ochroleuca, Trametes versicolor, Coriolopsis polyzona and Clitocybula dusenii) during decolorization of dyes. Cytotoxicity assays were carried out on human Caco-2 cells, which are considered as a validated model for the human intestinal epithelium, and the results were compared with those obtained on classical bacterial cells. Genotoxic character was monitored through VITOTOX® assays. The biotransformation of an anthraquinonic dye (CI Acid Blue 62, ABu62) was studied. All tested strains were able to decolorize extensively ABu62 (between 83 and 95% decolorization), however, different cytotoxicity reduction levels were reached (from 44 to 99%). Best results were achieved with P. sanguineus strain and the major role of laccases in cytotoxicity reduction was underlined. Based on this result, efficiency of P. sanguineus strain was further studied. Four azo and two anthraquinonic dyes were treated by this strain. After WRF treatment, two dyes were found to be more toxic in one or both toxicity assays. Genotoxic character appeared during biotransformation of one dye, however, it was removed by the addition of hepatic rat extract to mimic liver transformation. These results stress the importance of monitoring several parameters, such as colour, toxicity and mutagenicity, to ensure the efficiency of the bioremediation process.  相似文献   

14.
Wastewater effluents from the textile and other dye-stuff industries contain significant amounts of synthetic dyes that require treatment to prevent groundwater contamination. In research aimed at biotechnology for treatment of azo dyes, this study examined 288 strains of azo-dye degrading bacteria to identify efficient strains and determine incubation times required for decolorization. Initial enrichment cultures were carried out using a mixture of four structurally different dyes (Acid Red 88, Reactive Black 5, Direct Red 81, and Disperse Orange 3) as the sole source of C and N to isolate the bacteria from soil, activated sludge, and natural asphalt. Six strains were selected for further study based on their prolific growth and ability to rapidly decolorize the dyes individually or in mixtures. Treatment times required by the most efficient strain, AS96 (Shewanella putrefaciens) were as short as 4 h for complete decolorization of 100 mg l−1 of AR-88 and DR-81 dyes under static conditions, and 6 and 8 h, respectively, for complete decolorization of RB-5 and DO-3. To our knowledge, these bacterial strains are the most efficient azo-dye degrading bacteria that have been described and may have practical application for biological treatment of dye-polluted wastewater streams.  相似文献   

15.
The white rot fungus, Fomes lividus, was isolated from the logs of Shorea robusta in the Western Ghats region of Tamil Nadu, India. The fungus was tested for decolorization of azo dyes such as orange G (50 M) congo red (50 M) amido black 10B (25 M) and also for colour removal from dye industry effluents. The results revealed that the fungus could remove only 30.8% of orange G in the synthetic solution, whereas congo red and amido black 10B were removed by 74.0 and 98.9% respectively. A dye industry effluent was treated by the fungus in batch and continuous mode. In batch mode treatment, a maximum decolorization of 84.4% was achieved on day 4, and in continuous mode a maximum decolorization of 37.5% was obtained on day 5. The colour removal by the basidiomycete fungus might be due to adsorption of the dyes to the mycelial surface and metabolic breakdown. These results suggested that the batch mode treatment of Fomes lividus is one of the most efficient ways for colour removal in dye industry effluents.  相似文献   

16.
假单胞菌S—42对偶氮染料的脱色和降解代谢   总被引:34,自引:1,他引:34  
Pseudomonas S-42 was capable of decolorizing azo dyes such as Diamira Brilliant Orange RR(DBO-RR), Direct Brown M (DBM), Eriochrome Brown R(EBR) and so on. The cell suspension, cell-free extract and purified enzyme of Pseud. S-42 could decolorize azo dyes under similar conditions: the optimum pH and temperature laid 7.0 and 37 degrees C respectively. The efficiencies of decolorizing of DBO-RR, DBM, EBR by intact cells stood more than 90%. When the cell concentration was 15 mg(wet)/ml and the reaction time was 5 hours, the decolorizing activity for above three azo dyes by intact cells were 1.75, 2.4, 0.95 micrograms dye/mg cell, respectively. Cell-free extract and purified enzyme could well express the decolorizing activity only under the anaerobic condition and added NADH. Purified enzyme belongs to azoreductase, its molecular weight is about 34,000-2000 daltons, and its Vmax and Km for DBO-RR are 13 mumol.mg protein-1.min-1 and 54 mumol/L. The results of the detection of the biodegrading products of DBO-RR by spectrophotometric and NaNO2 reactional methods showed that the biodegradation of azo dyes was initiated by the reduction cleavage of azo bonds. It was hypothesized that biodegrading metabolism pathway of DBO-RR by Pseudomonas S-42.  相似文献   

17.
A prerequisite for the mineralization (complete biodegradation) of many azo dyes is a combination of reductive and oxidative steps. In this study, the biodegradation of two azo dyes, 4-phenylazophenol (4-PAP) and Mordant Yellow 10 (4-sulfophenylazo-salicylic acid; MY10), was evaluated in batch experiments where anaerobic and aerobic conditions were integrated by exposing anaerobic granular sludge to oxygen. Under these conditions, the azo dyes were reduced, resulting in a temporal accumulation of aromatic amines. 4-Aminophenol (4-AP) and aniline were detected from the reduction of 4-PAP. 5-Aminosalicylic acid (5-ASA) and sulfanilic acid (SA) were detected from the reduction of MY10. Subsequently, aniline was degraded further in the presence of oxygen by the facultative aerobic bacteria present in the anaerobic granular sludge. 5-ASA and SA were also degraded, if inocula from aerobic enrichment cultures were added to the batch experiments. Due to rapid autoxidation of 4-AP, no enrichment culture could be established for this compound. The results of this study indicate that aerobic enrichment cultures developed on aromatic amines combined with oxygen-tolerant anaerobic granular sludge can potentially be used to completely biodegrade azo dyes under integrated anaerobic/aerobic conditions. Received: 16 September 1998 / Received revision: 14 December 1998 / Accepted: 21 December 1998  相似文献   

18.
氧气对混合菌群脱色降解偶氮染料效果的影响   总被引:1,自引:1,他引:0  
【背景】偶氮染料及其中间产物具有一定的环境毒性,利用混合菌群降解偶氮染料是一种环境友好型方法,但降解过程中氧气的存在起到至关重要的作用,可以促进或抑制偶氮染料的微生物降解作用。【目的】探讨氧气对偶氮染料微生物脱色液的影响,分析氧气对混合菌群脱色降解偶氮染料效果的影响。【方法】利用混合菌群DDMY1在3种培养条件(好氧、厌氧、兼氧)下,对7种偶氮染料进行脱色降解,探讨偶氮染料脱色液对氧气的响应情况,利用紫外可见分光光度法(ultraviolet visible spectrophotometry,UV-vis)和傅里叶变换红外光谱法(Fourier transform infrared spectroscopy,FTIR)对脱色产物进行分析。【结果】在兼氧和厌氧条件下反应48 h后的染料脱色液,与氧气充分接触后,部分偶氮染料微生物脱色液发生较为明显的复色现象,如活性黑5、直接黑38;UV-vis分析结果表明,这种复色现象是由于脱色液与氧气接触之后产生新物质所致;FTIR分析结果表明,混合菌群对发生复色反应的偶氮染料仍然具有一定脱色降解效果,但是脱色尚不够完全。【结论】兼氧和厌氧条件下,氧气对部分偶氮染料微生物脱色液具有较为明显的影响,从而影响混合菌群对偶氮染料的整体脱色效果,这可为今后研究偶氮染料彻底生物降解提供理论基础。  相似文献   

19.
脱色细菌的分离和对偶氮染料的脱色研究   总被引:1,自引:0,他引:1  
从印染废水中分离到8株对多种染料具有较好脱色效果的细菌,在所试验的10种染料中对其中大部分都有较好的脱色作用,尤其对三种酸性黑10B、酸性黑NG、直接湖蓝的脱色率最高;在各菌株最适条件下对这三种染料脱色率都能达到80%以上,其中有些菌株对直接湖蓝的脱色率达到100%。本实验研究了这8个菌株在不同的pH值、温度、需氧量条件下对这三种染料的脱色情况,并对有代表性的菌株脱色前后的化学需氧量(COD)值进行测定来判断染料的降解情况。  相似文献   

20.
Summary Kodam et al. reported a 100% decolorization of the sulfonated azo dyes Reactive Red 2, Reactive Red 141, Reactive Orange 4, Reactive Orange 7 and Reactive Violet 5 by an unidentified bacterium, KMK 48. High effectiveness was attained within 36 h of incubation at room temperature and neutral pH. Optimum decolorization took place strictly under aerobic conditions, which is contrary to other well-documented reports. Thus, this microorganism seems to be potentially effective for bioremediation of textile-dyeing industry effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号