首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental strains of Yersinia enterocolitica representing biotype 1A lack virulence plasmid (pYV) and are regarded as non-pathogenic. Though these occupy a diverse range of environmental niches, nothing is known about their resistance to heavy metals. The minimal inhibitory concentrations (MICs) of various metal ions, namely Ag+, Cu2+, Zn2+, Cd2+, As5+, and As3+, for strains of Yersinia enterocolitica (biotype 1A) and Yersinia intermedia (biotypes 1, 2, and 4), isolated from sewage effluents or pork, were determined. All isolates were resistant (MICs 2.5-5 mM) to Cd2+. The MICs of arsenic varied with bacterial strain and the chemical species of the arsenic used. For the majority of the strains, however, it was between 5-10 mM of Na2HAsO4.7H2O and NaAsO2, and 0.625-2.5 mM of As2O3. Except for one isolate, MICs of Ag+, Cu2+, and Zn2+ for these strains were in the range of 0.3-0.625 mM.  相似文献   

2.
Concentrations of Pb, Zn, Cd, Ni, Cu, Cr, and Mn were determined to assess the impact of automobiles on heavy metal contamination of roadside soil. Soil samples at four polluted sites and a control site were collected at a depth of 0, 2, 5, 10, 15, 20, 30?cm. A comparison of elemental levels between polluted and control sites exhibited exceptionally higher concentrations at the former sites. The Pb levels in polluted sites varied from 70 to 280.5?µgg?1and it rapidly decreased with depth. Similarly, mean concentrations of Zn, Cd, Ni, Cu, Cr, and Mn were significantly higher at polluted sites and followed a decreasing trend with the increase in depth. Correlation coefficients between heavy metals and traffic density were positively significant except for nickel. Profile samples showed that Pb, Zn, Cd, Cu, and Mn were largely concentrated in the top 5?cm confirming airborne contamination. The vertical movement and partitioning of metals, except Ni and Cr, exhibited predominant association with soil pH and organic carbon. The results have been presented using Heavy Metal Index.  相似文献   

3.
To advance our understanding of ectomycorrhizal fungal communities in mining areas, the diversity and composition of ectomycorrhizal fungi associated with Masson pine (Pinus massoniana Lamb.) and soil chemistry were investigated in Taolin lead–zinc (Pb–Zn) mine tailings (TLT), two fragmented forest patches in a Huayuan Pb–Zn mineland (HY1 and HY2), and a non-polluted forest in Taolin in central south China. Ectomycorrhizal fungal species were identified by morphotyping and sequence analyses of the internally transcribed spacer regions of ribosomal DNA. The two study sites in the Huayuan mineland (HY1 and HY2) were significantly different in soil Pb, Zn, and cadmium (Cd) concentrations, but no significant difference was observed in ectomycorrhizal colonization, ectomycorrhizal fungal richness, diversity, or rank–abundance. In addition, the similarity of ectomycorrhizal fungal communities between HY1 and HY2 was quite high (S?rensen similarity index?=?0.47). Thus, the concentration of heavy metals may not be determining factors in the structure of these communities. In the tailings, however, significantly lower ectomycorrhizal colonization and ectomycorrhizal fungal richness were observed. The amounts of Pb and Zn in the tailing sand were higher than the non-polluted forest but far lower than in HY1. Thus, these heavy metals did not account for the reduced colonization and ectomycorrhizal fungal richness in TLT. The ectomycorrhizal fungal community in TLT was dominated by four pioneer species (Rhizopogon buenoi, Tomentella ellisii, Inocybe curvipes, and Suillus granulatus), which collectively accounted for 93.2?% of root tip colonization. The immature soil conditions in tailing (low N and P, sand texture, and lack of organic matter) may only allow certain pioneer ectomycorrhizal fungal species to colonize the site. When soil samples from four sites were combined, we found that the occurrences of major ectomycorrhizal fungal taxa were not clearly related to the concentrations of Pb, Zn, and Cd. In conclusion, our results suggest that ectomycorrhizal fungal communities in mining areas are not necessarily affected by heavy metals themselves but could be largely determined by soil maturity.  相似文献   

4.
A study on identification of hotspots, spatial patterns, and risk evaluation of heavy metals in urban soils of Malayer city (Iran) was carried out. Fifty-nine composite surface soil samples were collected from six different land uses (urban parks, streets, and squares, boulevards, residential and agricultural areas) in Malayer city, and the total heavy metals were measured by atomic absorption spectroscopy. Average concentrations of Cd, Pb, Cu, and Zn, As, Cd, and Pb were 0.66, 15.51, 12.25, and 96.8 mg/kg, respectively. Among the six land uses, heavy metal contamination was heavier for street, while low contamination could be found for residential and urban parks. The spatial distribution of Pb in surface soil was similar to those of Cd, and Cu was similar to those of Zn with decreasing values from the central areas to the suburb. Also, there were several hotspots for studied heavy metals that Cd and Pb were mainly occurred in locations of heavy traffic in the city center and Cu and Zn in the west and northwestern in the city. The calculated result of risk evaluation showed that much of the city suffered from moderate to severe pollution by four of these heavy metals.  相似文献   

5.
以铜锈环棱螺(Bellamya aeruginosa)为测试生物,采用28 d沉积物生物积累试验研究铜锈环棱螺对污染河流沉积物中重金属的生物积累,并探讨其与重金属赋存形态的关系.结果表明:铜锈环棱螺肝胰脏对Cd、Pb、Cu、Cr、Zn和Mn均具有较强的积累作用.不同重金属的积累量存在较大差别,Zn的积累量最多,占重金属总积累量的84.32%±4.36%,其次为Cu,占7.67%±2.84%;Pb、Cr和Mn的比例相对较少,分别为3.62%±1.84%、2.22%±1.03%和1.33%±0.15%;Cd所占比例最少,为0.83%±0.53%.肝胰脏中重金属元素之间的相关性均不显著.肝胰脏金属污染指数与沉积物污染综合指数具有显著的正相关关系,铜锈环棱螺可以作为沉积物重金属污染的监测生物.不同沉积物Cd、Cr、Zn和Mn的生物-沉积物积累因子(BSAF)具有较大的差异,Cu和Pb的BSAF比较稳定.Cd的生物积累与沉积物中Cd的可交换的与酸可溶态及可氧化态显著相关;Pb的生物积累与Pb的可还原态显著相关;Cu的生物积累与Cu的可氧化态显著相关;Mn的生物积累与Mn的可交换的与酸可溶态和可还原态显著相关;Cr和Mn的生物积累与其不同形态和总量均不相关.BSAF不宜作为衡量铜锈环棱螺对沉积物中重金属生物积累能力的指标.  相似文献   

6.
Pollution in industrial areas is a serious environmental concern, and interest in bacterial resistance to heavy metals is of practical significance. Mercury (Hg), Cadmium (Cd), and lead (Pb) are known to cause damage to living organisms, including human beings. Several marine bacteria highly resistant to mercury (BHRM) capable of growing at 25 ppm (mg L(-1)) or higher concentrations of mercury were tested during this study to evaluate their potential to detoxify Cd and Pb. Results indicate their potential of detoxification not only of Hg, but also Cd and Pb. Through biochemical and 16S rRNA gene sequence analyses, these bacteria were identified to belong to Alcaligenes faecalis (seven isolates), Bacillus pumilus (three isolates), Bacillus sp. (one isolate), Pseudomonas aeruginosa (one isolate), and Brevibacterium iodinium (one isolate). The mechanisms of heavy metal detoxification were through volatilization (for Hg), putative entrapment in the extracellular polymeric substance (for Hg, Cd and Pb) as revealed by the scanning electron microscopy and energy dispersive x-ray spectroscopy, and/or precipitation as sulfide (for Pb). These bacteria removed more than 70% of Cd and 98% of Pb within 72 and 96 h, respectively, from growth medium that had initial metal concentrations of 100 ppm. Their detoxification efficiency for Hg, Cd and Pb indicates good potential for application in bioremediation of toxic heavy metals.  相似文献   

7.
Improving the sensitivity of bacterial bioreporters for heavy metals   总被引:2,自引:0,他引:2  
Whole-cell bacterial bioreporters represent a convenient testing method for quantifying the bioavailability of contaminants in environmental samples. Despite the fact that several bioreporters have been constructed for measuring heavy metals, their application to environmental samples has remained minimal. The major drawbacks of the available bioreporters include a lack of sensitivity and specificity. Here, we report an improvement in the limit of detection of bacterial bioreporters by interfering with the natural metal homeostasis system of the host bacterium. The limit of detection of a Pseudomonas putida KT2440-based Zn/Cd/Pb-biosensor was improved by a factor of up to 45 by disrupting four main efflux transporters for Zn/Cd/Pb and thereby causing the metals to accumulate in the cell. The specificity of the bioreporter could be modified by changing the sensor element. A Zn-specific bioreporter was achieved by using the promoter of the cadA1 gene from P. putida as a sensor element. The constructed transporter-deficient P. putida reporter strain detected Zn(2+) concentrations about 50 times lower than that possible with other available Zn-bioreporters. The achieved detection limits were significantly below the permitted limit values for Zn and Pb in water and in soil, allowing for reliable detection of heavy metals in the environment.  相似文献   

8.
Abstract

A detailed investigation was conducted to understand the contamination characteristics of a selected set of heavy metals (HMs) in 34 campus dust samples from Huaxi University Town. The HMs spatial distribution analysis based on ArcGIS software, the geo-accumulation index (Igeo) and health risk model were employed for evaluation, and multivariate statistical methods were used to identify possible sources. Results showed that the mean concentrations of Cu, Zn, Pb, Cr, Ni, and Cd were 68.18, 123.81, 45.26, 140.36, 47.26, and 0.47?mg/kg, respectively. The spatial distribution characteristics displayed that the relatively large concentrations for the analyzed HMs were mainly located at both teaching areas and students’ dormitory areas. The average values of Igeo indicated that HMs contamination level followed the decreasing trend of Cd?>?Cu?>?Cr?>?Pb?>?Ni?>?Zn. The health risk assessment results indicated that HMs in campus dust generally do not pose any immediate health risk for both adult males and adult females but the cumulative effect is a matter of concern. The sources analyses demonstrated that Cu, Zn, Cr, and Cd, primarily from motor vehicle emission and waste incineration, Pb predominantly originated from construction source, while Ni had the mixed sources of nature and traffic.  相似文献   

9.
A pot culture experiment and a field experiment were carried out separately to study heavy metal (HM) uptake from soil contaminated with Cu, Zn, Pb and Cd by Elsholtzia splendens Nakai ex F. Maekawa inoculated with arbuscular mycorrhizal (AM) fungi and the potential for phytoremediation. The HM-contaminated soil in the pot experiment was collected from the field experiment site. Two AM fungal inocula, MI containing only one AM fungal strain, Glomus caledonium 90036, and M II consisting of Gigaspora margarita ZJ37, Gigaspora decipens ZJ38, Scutellospora gilmori ZJ39, Acaulospora spp. andGlomus spp., were applied to the soil under unsterilized conditions. In the pot experiment, the plants were harvested after 24 weeks of growth. Mycorrhizal colonization rate, plant dry weight (DW) and P, Cu, Zn, Pb, Cd concentrations were determined. MI-treated plants had higher mycorrhizal colonization rates than MII-treated plants. Both MI and MII increased shoot and root DW, and MII was more effective than MI. In shoots, the highest P, Cu, Zn and Pb concentrations were all observed in the plants treated with MII, while MI decreased Zn and Pb concentrations and increased P but did not alter Cu, and Cd concentrations were not affected by either of two inocula. In roots, MII increased P, Zn, Pb concentrations but did not alter Cu and Cd, and MI did not affect P, Cu, Zn, Pb, Cd concentrations. Cu, Zn, Pb, Cd uptake into shoots and roots all increased in MII-treated plants, while in MI-treated plants, Cu and Zn uptake into shoots and Cu, Zn, Pb, Cd into roots increased but Pb and Cd uptake into shoots decreased. In general, MII was more effective than MI in promoting plant growth and HM uptake. The field experiment following the pot experiment was carried out to investigate the effects of MII under field conditions. The 45-day-old nonmycorrhizal and MII-colonized seedlings of E. splendens were transplanted to HM-contaminated plots and harvested after 5 months. MII-inoculation increased shoot DW and shoot P, Cu, Zn, Pb concentrations significantly but did not alter shoot Cd concentrations, which led to higher uptake of Cu, Zn, Pb, Cd by E. splendens shoots. These results indicate that the AM fungal consortium represented by MII can benefit phytoextraction of HMs and therefore play a role in phytoremediation of HM-contaminated soils.  相似文献   

10.
Abstract

The contamination of toxic heavy metals was a major issue of concern in the last century. A fast-growing metal-accumulating woody plant is a promising approach for the remediation of toxic heavy metal. In this study, the transportation of heavy metals (Pb, Zn, Cu, and Cd) in Paulownia fortunei cultivated in lead-zinc slag amended with different mass ratios of peat (CK: 0; T1: 10%; T2: 20%; T3: 30%) was investigated, as well as the subcellular distribution of Pb, Zn, Cu, and Cd in Paulownia fortunei. The results showed that the accumulation content of Pb, Zn, Cu, and Cd in Paulownia fortunei were increased with peat amendment, which was in the range of 4.216?~?6.853, 20.905?~?23.017, 1.898?~?2.572, and 0.530?~?0.616?mg/pot, respectivly. The experimental group with 30% dose of peat showed the best performance on the accumulation content of Pb, Zn, Cu, and Cd, with increase rates (compared to control) of 4.088, 10.573, 1.360, and 0.294?mg/pot, respectively. The bioconcentration, translocation and transfer quantity factor of Pb, Zn, Cu, and Cd were less than 1. Fixation of cell wall and compartmentalization of vacuolar appeared to play an important role in reducing the toxicity of Pb, Zn, Cu, and Cd.  相似文献   

11.
The Qingshan district of Wuhan City is a typical Chinese industrial area. An increase in heavy metal pollution in the region's soil, due to industrialization and urbanization, has become a serious environmental problem. Surface soil samples from 155 sites were collected and analyzed. The median concentrations of cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) in soil were 2.3, 46.2, 24.3, 28.2, and 86.8 mg/kg, respectively. Principal component analysis coupled with hierarchical cluster analysis showed that (1) in residential and industrial areas, Pb, Cu, and Zn concentrations were mainly affected by industrial emissions and traffic emissions, whereas in agricultural areas Cu and Zn were less affected by industrial emission and traffic emission, whereas Pb was affected by agricultural activities; and (2) Cd originated from a combination of sources, including industrial activities, traffic emission, and hypergene geochemical characteristics. The integrated pollution index varied from 1.1 to 16.6 with a mean of 3.9, and 70.6% of the area is extremely contaminated, 28.1% is heavily contaminated, and the remainder is moderately contaminated.  相似文献   

12.
Eleven bacterial strains were isolated from soil samples collected from mine tailings. Bacterial strains were checked for tolerance against heavy metals (Cr, Cd, Ni), using the agar dilution method. All the strains showed multiple tolerances against heavy metals, but the most promising results appeared in strains BCr3, BCd33, and BNi11: they were tolerant to 15 mM of Cr6+, 7.5 mM of Cd2+, and 10 mM of Ni2+, respectively. The effect of heavy metals on bacterial growth was tested together with their ability to grow in different pH, NaCl, and temperature values. Bacterial isolates grew well between pH 7.5 and 8.5. The optimum temperature for maximum growth was between 35 and 37°C, and no significant change in bacterial growth was observed in the presence of 2% NaCl. In addition, the bioaccumulation potential of bacterial strains was investigated. Bacterial strains BCr3, BCd33, and BNi11 showed high bioaccumulation ability of Cr (68.7%), Cd (72.4%), and Ni (69.8%), respectively. All bacterial isolates were identified by 16S rRNA gene sequencing. Analysis of plasmid content revealed that all bacterial isolates contained a single plasmid. Further, polymerase chain reaction together with DNA sequence analysis was used to screen all bacterial strains for the presence metal tolerance genes (czcD, chrA, chrB, czcB, czcC, nccA, and cadA) on both plasmid and chromosomal genomes.  相似文献   

13.
The present investigation was carried out to isolate bacterial strains from soil/mud samples of metal-polluted environment to check whether the natural adaptation of microbes has equipped them for bioremediation of toxic heavy metals. The primary and secondary screening resulted in 50 mesophilic autotrophic isolates of microbial consortium adapted for metal tolerance and bioadsorption potentiality. The multimetal tolerance in bacterial strain was developed by sequential transfer to higher concentrations of Cd, Cr, Cu, Pb, Ni, and Zn. The isolates were checked for their biosolubilization potential with copper-containing metal sulfide ores, viz. chalcopyrite exhibited 64% and covellite 54% solubilization in the presence of 10?3 M multiple heavy metals on the fifth day at 35°C and pH 6.0. Metal adsorption of highly potential isolate, i.e., Paenibacillus validus MP5, studied by inductively coupled plasma optical emission spectroscopy (ICP-OES), showed maximum adsorption of Zn 27%, followed by Ni and Cd 16%, Cr 15%, Co 9%, and Pb 7.5% in chalcopyrite, which suggested its possible role in decontamination of metal-polluted sites.  相似文献   

14.
【背景】矿区废渣堆重金属污染严重,废渣堆分布着一些耐重金属的微生物。【目标】探究重金属胁迫对真菌生长及发酵液pH的影响。【方法】从金川矿区废渣堆采集土样,分离培养具有产酸能力的真菌,采用形态学与分子生物学技术鉴定这些菌株,并测定其产酸能力及其对Pb~(2+)、Cd~(2+)和Zn~(2+)的耐受性。【结果】形态学及18S rRNA基因序列分析获得黑曲霉ZJ-I (Aspergillus niger ZJ-I)和产黄青霉ZJ-V (Penicilium chrysogenum ZJ-V)两个产酸菌株。未加重金属培养时,与不接种真菌对照相比,上述2个菌株的发酵液pH分别下降0.58和0.69;添加重金属处理后,随着重金属浓度的增加,pH变化幅度变小,不同浓度Pb~(2+)使A.nigerZJ-I发酵液pH值分别下降0.53、0.39、0.34和0.39,使P. chrysogenum ZJ-V发酵液pH值分别下降0.21、0.23、0.14和0.09;不同浓度Cd~(2+)使A. niger ZJ-I发酵液pH值分别下降0.75、0.43、0.39和0.32,使P. chrysogenum ZJ-V发酵液pH值分别下降0.62、0.46、0.38和0.49;不同浓度Zn~(2+)可使A.nigerZJ-I发酵液pH分别下降0.87、0.61、0.57和0.43,使P. chrysogenum ZJ-V发酵液pH分别下降1.1、0.34、0.44和0.49;低浓度的Zn~(2+)对菌株A.niger ZJ-I和P. chrysogenum ZJ-V产酸都有促进作用,低浓度的Cd~(2+)对A. niger ZJ-I产酸有促进作用。当Cd~(2+)、Zn~(2+)与Pb~(2+)的浓度分别超过200、400、2 000 mg/L时,3种不同浓度的重金属对菌株A. niger ZJ-I的抑制率达到80%以上,抑制效果显著;当Cd~(2+)、Zn~(2+)与Pb~(2+)浓度分别超过200、1 000、2 000 mg/L时,3种不同浓度的重金属对菌株P.chrysogenumZJ-V抑制率达到80%以上,抑制效果显著。【结论】两株真菌均具有产酸能力和一定的重金属耐受性,菌株P. chrysogenum ZJ-V发酵液产酸性能与重金属耐受能力都要优于ZJ-I,菌株ZJ-V具备潜在的淋洗重金属污染土壤的能力。  相似文献   

15.
Abstract

The purpose of the study was to acquire the source and evaluate the risk posed by heavy metals in road dust of steel industrial city (Anshan), Liaoning, Northeast China. Potential ecological risk index (RI), pollution index (PI) and geo-accumulation index (Igeo) were applied to evaluate the heavy metal pollution level, and the carcinogenic risk (RI) and hazard index (HI) were calculated to estimate the human health risk. The geographic information system maps clearly reveal the hot spots of heavy metal spatial distribution. Principle component analysis (PCA) and cluster analysis (CA) classified heavy metals into three groups. The metal Zn and Pb originate from the traffic emission, while Cd, Cr, Fe, Mn, Ni and Sb primarily come from industrial activities. These two pathways were the major source of heavy metals pollution by positive matrix factorization (PMF). The Igeo and PI values of heavy metals were decreased in the following order: Cd?>?Sb?>?Zn?>?Fe?>?Pb?>?Cu?>?Cr?>?Sn?>?Mn?>?Ni. The RI index showed the heavy metals were moderate to very high potential ecological risk. The HI values for children and adults presented a decreasing order of Cr?>?Pb?>?Ni?>?Cu?>?Cd?>?Zn. The HI also predicted a possibility of non-carcinogenic risk for children living in urban areas in comparison with adults.  相似文献   

16.
A total of 57 (36 and 21) Azotobacter chroococcum were isolated from wheat (Triticum aestivum) rhizospheric soil irrigated with industrial wastewater (about a decade) and ground water (uncontaminated) and characterized on the basis of morphological, cultural and biochemical characteristics. Rhizospheric soils were analyzed for metal concentrations by atomic absorption spectrophotometery and the test soil samples were contaminated with Fe, Zn, Cu, Cr, Ni and Pb. All the isolates of A. chroococcum were tested for their resistance against Hg2+, Cd2+, Cu2+, Cr3+, Cr6+, Zn2+, Ni2+ and Pb2+. Among 36 isolates of Azotobacter from soil irrigated with industrial wastewater, 94.4% were resistant to Pb2+ and Hg2+ and 86.1%, 77.5% and 63.8% were resistant to Zn2+, Cr6+ and Cr3+ respectively. The highest minimum inhibitory concentration of 200 microg/ml for Hg2+ and 1600 microg/ml for other metals were observed against these bacteria from soil. The incidences of metal resistance and MICs of metals for A. chroococcum from wastewater irrigated soil were significantly different to those of uncontaminated soil. All A. chroococcum isolates were tested for their resistance against 11 commonly used antibiotics/drugs. 91.6% were found to be resistant against nitrofurantoin while 86.4% and 80.5% were found to be resistant against polymyxin-B and co-trimoxazole respectively. Agarose gel electrophoresis using the miniprep method for plasmid isolation revealed that these isolates harboured plasmids of molecular weights 58.8 and 64.5 kb using EcoRI and HindIII digests of X DNA and undigested X DNA as standard markers.  相似文献   

17.
The diversity and heavy metal (HM) tolerance of endophytic fungi (EF) associated with Dysphania ambrosioides, a hyperaccumulator from two Pb–Zn contaminated sites were investigated. A total of 237 culturable EF were isolated and identified to 43 taxa based on morphological characteristics and rDNA internal transcribed spacer analysis, of which 13 occurred as endophytes of both sites, while other taxa were only found in either site. The colonization rate, dominant genera, community structure of EF as well as the HM content in the plant from two sites were significantly different. We suggest that these differences may result from the difference in the soil HM content: lower HM content in the soil, more EF in the plant, which may enhance the plant HM accumulation and thus result higher HM in it. HM tolerance tests indicated that 50% of the isolates exhibited HM tolerance. Among them, two isolates exhibited better HM tolerance, of which FT2G59 could tolerate Pb, Zn, and Cd, and the minimum inhibitory concentration (MIC) of them were 30–50, >?680, 20–30?mmol/l, respectively. While, the isolate FT2G7 could tolerate Cd, and the MIC was 30–50?mmol/l. These isolates may have potential application in phytoremediation.  相似文献   

18.
Summary A total of 107 bacterial strains were isolated from rhizosphere soil of Diplachne fusca naturally grown in industrial metal-contaminated soils. All the isolates were examined for their ability to tolerate Cd2+, Cr3+, Co2+, Cu2+, Pb2+, Ni2+ and Zn2+ in their growth medium, in addition, three related phenotypic characters, the ability to produce acids and siderophores and/or calcium phosphate solubilization, were tested. The resistance patterns, expressed as MICs, for all bacterial isolates to seven different metal ions were surveyed by using the agar dilution method. A great proportion of the isolates were resistant to Cr (99%), Pb (93%), Cu (87%) and Zn (86%). On the other hand, 77, 49 and 45% were sensitive to Co, Ni and Cd, respectively. The majority of the strains tested (98%) were multiple metal-resistant, with hexametal resistance as the major pattern (24.2%). The increase in metal ion uptake (especially Cr, Pb, Zn and Ni) by D. fusca was correlated with higher numbers of siderophore-producing, phosphate-solubilizing and acid-producing bacteria 95, 81 and 64%, respectively.  相似文献   

19.
Five heavy metals (Cd, Cu, Ni, Pb, and Zn) in river sediments from Abshineh River, Hamedan, western Iran, were fractionated by a sequential extraction procedure. Cu, Ni, Pb, and Zn existed in sediments mainly in residual fraction (mean 92%, 86%, 77%, and 65%, respectively), whereas Cd occurred mostly as organic matter (mean 41%) and exchangeable (mean 25%) fractions. The mean percent of mobile fraction of Cd, Cu, Ni, Pb, and Zn in contaminated sediments was 25, 13, 4, 24, and 10, respectively, which suggests that the mobility and bioavailability of the five metals in sediments probably decline in the following order: Cd = Pb > Cu > Zn > Ni. The metal levels were also evaluated according to the contamination factor, which revealed significant anthropogenic pollution of Cd and Pb.  相似文献   

20.
The incidence of rheumatoid arthritis (RA) has been associated with cigarette smoking. The aim of our study was to assess the trace essential and toxic metals, cadmium (Cd), lead (Pb), and zinc (Zn), in scalp hair samples of 32 Irish and 46 Pakistani smokers and non-smokers RA male patients with age range 42-56 years. For comparison purpose, the scalp hair samples of 27 Irish and 55 Pakistani non-RA male subjects of the same age group were collected. The concentrations of trace and toxic elements were measured by inductive coupled plasma atomic emission spectrophotometer and atomic absorption spectrophotometer prior to microwave-assisted acid digestion. The validity and accuracy of the methodology was checked using certified reference materials and using conventional wet acid digestion method on the same certified reference materials (CRMs). The recovery of all studied elements was found to be in the range of 97.5-99.7% of certified reference values of CRMs. The results of this study showed that the mean values of Cd and Pb were significantly higher in scalp hair samples of both smoker and non-smoker RA patients than in referents (P < 0.001), whereas the concentration of Zn was lower in the scalp hair samples of smokers and non-smokers rheumatoid arthritis patients. The deficiency of Zn and the high exposure of Cd and Pb as a result of cigarette smoking may be synergistic risk factors associated with rheumatoid arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号