首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the course of the development of N-phenyl-N'-(2-chloroethyl)ureas (CEUs) as potential antineoplastic agents, we investigated the effect of carbonylated substituting chains of the aromatic ring of CEU on their covalent binding to the colchicine-binding site (C-BS). In this study, we found that CEU, 5e, 5f, 8e, and 8f substituted by either a methyl ester or a methyl ketyl group at the omega-position exhibited a significant antiproliferative activity on HT-29, M21, and MCF-7 tumor cells. SDS-PAGE assays and cell cycle analysis confirmed that 5e, 5f, 8e, and 8f covalently bind to the C-BS and arrest the cell division in G(2)/M phase. Surprisingly, the presence of omega-carboxyl, omega-ethyl esters or omega-amides decreased significantly both the antiproliferative activity and the specificity toward beta-tubulin.  相似文献   

2.
A number of N-phenyl-N'-(2-chloroethyl)ureas (CEUs) have been shown to be potent antimitotics through their covalent binding to the colchicine-binding site on intracellular beta-tubulin. The present communication aimed to evaluate the role of the electrophilic 2-chloroethyl amino moiety of CEU on cell growth inhibition and the specificity of the drugs as irreversible antagonists of the colchicine-binding site. To that end, several N-phenyl-N'-(2-ethyl)urea (EU), N-phenyl-N'-(2-chloroethyl)urea (CEU), N-aryl amino-2-oxazoline (OXA), and N-phenyl-N'-(2-chloroacetyl)urea (CAU) derivatives were prepared and tested for their antiproliferative activity, their effect on the cell cycle, and their irreversible binding to beta-tubulin. EU derivatives were devoid of antiproliferative activity. CEUs (2h-2i, 2k, 2l, OXA 3e, 3h, 3i, 3k, 3l, tBCEU, and ICEU), OXA (3h, 3i, 3k, 3l, tBOXA, and IOXA), and CAU (4a-4m, tBCAU, and ICAU) had GI(50) between 1.7 and 10microM on three tumor cell lines. Cytotoxic CEU and OXA arrested the cell cycle in G(2)/M phase, while the corresponding CAU were not phase specific. Finally, Western blot analysis clearly showed that only CEUs 2h, 2k, 2l, tBCEU, ICEU and OXA 3h, 3i, 3k, 3l, tBOXA ,and IOXA were able to bind irreversibly to the colchicine-binding site. Our results suggest that increasing the potency of the electrophilic moiety of the aromatic ureas enhances their antiproliferative activity but decreases significantly their capacity to covalently bind to the colchicine-binding site.  相似文献   

3.
Aryl chloroethylureas (CEUs) are potent anti-neoplastic agents alkylating specific intracellular proteins such as beta(II)-tubulin. Recently we have identified a new subset of CEU derived from compound 36 that alkylates thioredoxin isoform 1 (Trx-1), inhibits the nuclear translocation of Trx-1, and favors the accumulation of cells in G(0)/G(1) phase. We have evaluated the effects of various substituents and their position on the aromatic ring of a series of derivatives of 36 on (i) the anti-proliferative activity, (ii) the cell cycle progression, (iii) the nuclear translocation of Trx-1, and (iv) their covalent binding to beta-tubulin. The same experiments were performed on representative CEU derivatives where the 2-chloroethyl amino moiety is replaced by either an ethyl, a 2-aminooxazolinyl or a 2-chloroacetyl group. On one hand, our results suggest that CEUs substituted on the phenyl ring at position 3 or 4 by cycloalkyl and substituted cycloalkyl or cycloalkoxy groups inhibit the nuclear translocation of Trx-1 and arrest the cell cycle progression in G(0)/G(1). On the other hand, CEUs substituted by a fused aromatic ring, an aliphatic chain, or a fused aliphatic ring are alkylating beta(II)-tubulin but not Trx-1. Beside the expected inactivity of the ethylurea derivatives, none of the modification to the electrophilic moiety led to cross-selectivity of the drugs toward beta-tubulin but increased the anti-proliferative activity and resulted in mitigated effects on Trx-1 translocation.  相似文献   

4.
In our ongoing research program aimed at the optimization of microtubule-self-assembly disrupting agents, we have prepared three series of phenylurea analogues (CEU), derived from N-(3-ω-hydroxyalkyl or 4-ω-hydroxyalkyl or 3-ω-hydroxyalkynyl)-phenyl-N′-(2-chloroethyl)ureas. Most compounds exhibit potent growth inhibitory activity on human colon carcinoma HT-29, human skin melanoma M21, and human breast carcinoma MCF-7 tumor cell lines, with a GI50 ranging from 250 nM to 8 μM. Among these new molecules, three CEUs exhibit GI50 in the nanomolar range. They are more potent by approximately an order of magnitude than previously described CEU analogues. As such, they are attractive hit compounds for the development of potent new alkylating antitubulin drugs.  相似文献   

5.
1-(2-Chloroethyl)-3-(4-cyclohexylphenyl)urea (cHCEU) has been shown to abrogate the presence of thioredoxin-1 into the nucleus through its selective covalent alkylation. In the present letter we have evaluated the structure-activity relationships of the substituents at positions 3 and 4 of the phenyl ring of cHCEU derivatives on cell cycle progression and thioredoxin-1 nuclear translocation. Active CEU derivatives exhibited GI(50) ranging from 1.9 to 49muM on breast carcinoma MCF-7, skin melanoma M21, and colon carcinoma HT-29 cells. On one hand, compounds 1, 2, 9c, 10c, 13, and 14 arrested the cell cycle in G(2)/M phase while CEUs 3, 4, 5c, 6c, 11c, and 12c blocked the cell division in G(0)/G(1) phase. On the other hand, CEUs 2-4, 5c, 7c, 8c, 11c, and 12c abrogated the translocation of thioredoxin-1 while the other CEU derivatives were inactive in that respect. Our results suggest that CEU substituted on the phenyl ring at position 3 or 4 by lower cycloalkyl or cycloalkoxy groups arrest cell progression in G(0)/G(1) phase through mechanism of action different from their antimicrotubule counterparts, presumably via thioredoxin-1 alkylation and modulation of its activity. The mechanism of action of these new molecules is still undetermined. However, the significant accumulation of cells in G(0)/G(1) phase suggests that these molecules may act similarly to known chemopreventive agents against cancers. In addition, the inhibition of Trx-1 nuclear localization also suggests the abrogation of an important chemoresistance mechanism towards a variety of chemotherapeutic agents.  相似文献   

6.
To decipher the mechanism underlying the covalent binding of N-phenyl-N'-(2-chloroethyl)ureas (CEU) to the colchicine-binding site on beta(II)-tubulin and to design new and selective antimitotic drugs, we developed 3D quantitative structure-activity relationships (3D-QSAR) models using CoMFA and CoMSIA analyses. The present study correlates the cell growth inhibition activities of 56 structurally related CEU derivatives to several physicochemical parameters representing steric, electrostatic, and hydrophobic fields. Both CoMFA and CoMSIA models using two different optimum numbers of components (ONC) 10 and 4, respectively, gave good internal predictions and their cross-validated r2 values were between 0.639 and 0.743. These comprehensive CoMFA and CoMSIA models are useful in understanding the structure-activity relationships of CEU. The two models were compared to the X-ray crystal structure of the complex of tubulin-colchicine and analyzed for similarities between the two modes of analysis. These models will inspire the design of new CEU derivatives with enhanced inhibition of tumor cell growth and targeting specificity of beta(II)-tubulin and the cytoskeleton.  相似文献   

7.
A series of novel N-phenyl-N'-(2-chloroethyl)urea derivatives potentially mimicking the structure of combretastatin A-4 were synthesized and tested for their cell growth inhibition and their binding to the colchicine-binding site of beta-tubulin. Compounds 2a, 3a, and 3b were found to inhibit cell growth at the micromolar level on four human tumor cell lines. Flow cytometric analysis indicates that the new compounds act as antimitotics and arrest the cell cycle in G(2)/M phase. Covalent binding of 2a, 3a, and 3b to the colchicine-binding site of beta-tubulin was confirmed also using SDS-PAGE and competition assays.  相似文献   

8.
Computational tools such as CoMSIA and CoMFA models reported in a recent study revealed the structure–activity relationships ruling the interactions occurring between hydrophobic N-phenyl-N′-(2-chloroethyl)ureas (CEU) and the colchicine-binding site (C-BS) on βΙΙ-tubulin. Here, we describe the mechanisms involved in the covalent binding of three subsets of CEU derivatives to the C-BS. The FlexiDock experiments confirmed that the interaction of non-covalent portions of the CEU auxophore moiety of CEU is involved in the binding of the drug to the C-BS facilitate the nucleophilic attack of Glu-β198 rather than Cys-β239. In addition, these studies suggest that Cys-β239 together with Asn-α99, Ser-α176, Thr-α177, Leu-β246, Asn-β247, Ala-β248, Lys-β252 and Asn-β256 are implicated in the stabilization of a C-BS–CEU complex prior to the acylation of Glu-β198 by CEU. Our molecular models propose the formation of a stabilized C-BS–CEU complex before the completion of the Glu-β198 acylation; acylation triggering conformational changes of β-tubulin, microtubule depolymerization and anoikis. The computational models presented here might be useful to the design of selective and more potent C-BS inhibitors. Of interest, in vivo acylation of acidic amino acid residues by xenobiotics is an unusual reaction and may open new approaches for the design of irreversible protein inhibitors such as tubulin.  相似文献   

9.
Aryl chloroethyl ureas (CEUs) are new protein alkylating agents exhibiting anticancer activity both in vitro and in vivo. We report herein that 14C-labeled CEU derivatives, designated CEU-025 and CEU-027, covalently bind to thioredoxin-1 (TRX1). Covalent binding of these molecules slightly decreases the disulfide-reducing activity of recombinant TRX1, when compared with the effect of strong thioalkylating agents such as N-ethylmaleimide. Moreover, site-directed mutagenesis and diamide competition assays demonstrated that TRX1 cysteinyl residues are not the prime targets of CEUs. CEU-025 abrogates the nuclear translocation of TRX1 in human cancer cells. In addition, we show that CEU-025 can block TRX1 nuclear translocation induced by cisplatin. Unexpectedly, pretreatment with sublethal CEU-025 concentrations that block TRX1 nuclear translocation protected the cells against cisplatin cytotoxicity. Overexpression of TRX1 in HT1080 fibrosarcoma cells attenuated CEU-025 cytotoxicity, while its suppression using TRX1-specific siRNA increased the effects of CEU-025, suggesting that loss of function of TRX1 is involved, at least in part, in the cytotoxic activity of CEU-025. These results suggest that CEU-025 and CEU-027 exhibit anticancer activity through a novel, unique mechanism of action. The importance of TRX1 and the dependence of the cytotoxicity of CEU-025 and CEU-027 on TRX1 intracellular localization are also discussed.  相似文献   

10.
The effect of modified steroids, containing alkylating agents, on SCE rates and on cell kinetics in cultured human lymphocytes was studied. The homo-aza-steroidal ester of p-bis(2-chloroethyl)aminophenylacetic acid (ASE) was found to be the most effective in causing markedly increased SCE rates and cell division delays. The androsterone ester of p-bis(2-chloroethyl)aminophenylacetic acid (AE-CAPA) was found to be next in order of effectiveness with the lactone ester (LE-CAPA), chlorambucil ester 3 beta-hydroxy-13a-amino-13,17-seco-5a-androstan-17-oic-13,17-lactam (CBC-HAAL) and chlorambucil (CBC) following. p-Bis(2-chloroethyl)aminophenylacetic acid (CAPA) had only a small effect and 3 beta-hydroxy-13a-amino-13,17-seco-5a-androstan-17-oic-13,17-lactam (HAAL) had no effect at all. A correlation between potency for SCE induction, effectiveness in cell division delay and previously established antitumor activity of these drugs was observed.  相似文献   

11.
We have investigated the interaction between a new class of antineoplastic agents derived from arylchloroethylurea (CEU) and different lipids such as dimyristoylphosphatidylcholine (DMPC) in the absence and presence of 30 mol% of cholesterol, dimyristoylphosphatidylglycerol (DMPG) and a mixture made of 1-palmitoyl-2-oleylphosphatidylcholine (POPC) and DMPC by Fourier transform infrared (FTIR) spectroscopy. The results indicate that the drugs incorporate in the bilayer and cause a decrease of the phase transition temperature and an increase of the conformational disorder of the lipid acyl chains. These effects are dependent on the nature (degree of branching, length of the alkyl chain and presence of a sulfur atom), as well as on the position of the R substituent and are related to the cytotoxicity of the drugs. More specifically, the more cytotoxic drugs, such as 4-sec-butyl CEU, are those having a bulky branched substituent and those for which the disordering effect on the lipid bilayer is the greatest. On the other hand, the disordering effect is small for the long chain CEUs, such as 4-n-hexadecyl CEU, which have been shown to have weak cytotoxic activity.  相似文献   

12.
Novel urea derivatives of alkynes have been designed, synthesized, and evaluated as potential cancer therapeutics leads. The most active 1-((3-chloromethyl)phenyl)-3-prop-2-ynylurea (1) exhibited cytotoxic effect against HELA and MCF-7 cell lines with IC(50) values of 1.55 μM and 1.48 μM, respectively. Further investigation on tube formation assay in human vein umbilical cells (HUVEC) demonstrated that 1 and methyl 4-(3-(3-ethynylureido)benzyloxy) benzoate (6) possess antiangiogenic activity, with minimum effective dose of 25 nM (for 1) and 6.25 μM (for 6). The ED(50) of 1 and 6 were found to be 0.26 μM and 17.52 μM, respectively. The results from in vitro tyrosine kinase assay indicated the EGFR inhibition of 1 over other kinases (VEGFR2, FGFR1 and PDGFRβ). The cytotoxicity of 1 against EGFR overexpressing cell line A431 (IC(50) 36 nM) was comparable to that of erlotinib. The binding mode of 1 from docking simulation in the EGFR active site revealed that the urea motif formed hydrogen bonding with Lys745, Thr854 and Asp855 in hydrophobic pocket of EGFR. Compound 1 is considered as a potential lead for further optimization.  相似文献   

13.
A series of 1,1'-polymethylenebis-3-(2-chloroethyl)-3-nitrosoureas, 1-(omega-hydroxyalkyl)-3-(2-chloroethyl)-3-nitrosoureas, 1,1'(4-methyl-m-phenylenebis)-3-(2-chloroethyl)-3-nitrosourea, 2-[3-(2-chloroethyl)]-3-nitrosoureido-2-deoxy-D-glycopyranose (chlorozotocin and 1-(2-methanesulfonyloxyethyl)-3-(2-chloroethyl)-3-nitrosurea were examined for their genetic activities. BCNU was simultaneously tested as an established, clinically used reference compound. A diploid strain of Saccharomyces cerevisiae, heteroallelic at the gene loci ade2 and trp5, was used as a test system for the induction of mitotic gene conversion (intragenic recombination). All compounds showed strong genetic effects. In the series of aliphatic bifunctional nitrosoureas, 1,1'-ethylenebis-3-(2-chloroethyl)-3-nitrosourea (1) was the most active compound. The water-soluble derivatives, including chlorozotocin, displayed all genetic effects of the same order of magnitude. There was no correlation between genetic activity and chemotherapeutic potential of the test compounds.  相似文献   

14.
In this study we initially examined the interaction between CD44v3 (a hyaluronan (HA) receptor) and Vav2 (a guanine nucleotide exchange factor) in human ovarian tumor cells (SK-OV-3.ipl cell line). Immunological data indicate that both CD44v3 and Vav2 are expressed in SK-OV-3.ipl cells and that these two proteins are physically linked as a complex in vivo. By using recombinant fragments of Vav2 and in vitro binding assays, we have detected a specific binding interaction between the SH3-SH2-SH3 domain of Vav2 and the cytoplasmic domain of CD44. In addition, we have observed that the binding of HA to CD44v3 activates Vav2-mediated Rac1 signaling leading to ovarian tumor cell migration. Further analyses indicate that the adaptor molecule, growth factor receptor-bound protein 2 (Grb2) that is bound to p185(HER2) (an oncogene product), is also associated with the CD44v3-Vav2 complex. HA binding to SK-OV-3.ipl cells promotes recruitment of both Grb2 and p185(HER2) to the CD44v3-Vav2 complex leading to Ras activation and ovarian tumor cell growth. In order to determine the role of Grb2 in CD44v3 signaling, we have transfected SK-OV-3.ipl cells with Grb2 mutant cDNAs (e.g. Delta N-Grb2 that has a deletion in the amino-terminal SH3 domain or Delta C-Grb2 that has a deletion in the carboxyl-terminal SH3 domain). Our results clearly indicate that the SH3 domain deletion mutants of Grb2 (i.e. the Delta N-Grb2 (and to a lesser extent the Delta C-Grb2) mutant) not only block their association with p185(HER2) but also significantly impair their binding to the CD44v3-Vav2 complex and inhibit HA/CD44v3-induced ovarian tumor cell behaviors. Taken together, these findings strongly suggest that the interaction of CD44v3-Vav2 with Grb2-p185(HER2) plays an important role in the co-activation of both Rac1 and Ras signaling that is required for HA-mediated human ovarian tumor progression.  相似文献   

15.
Microtubules form a cytoskeletal framework that influences cell shape and provides structural support for the cell. Microtubules in the nervous system undergo a unique post-translational modification, polyglutamylation of the C termini of their tubulin subunits. The mammalian enzymes that perform beta-tubulin polyglutamylation as well as their physiological functions in the neuronal tissue remain elusive. We report identification of a mammalian polyglutamylase with specificity for beta-tubulin as well as its distribution and function in neurite growth. To identify putative tubulin polyglutamylases, we searched tubulin tyrosine ligase-like (TTLL) proteins for those predominantly expressed in the nervous system. Of 13 TTLL proteins, TTLL7 was transcribed at the highest level in the nervous system. Recombinant TTLL7 catalyzed tubulin polyglutamylation with high preference to beta-tubulin in vitro. When expressed in HEK293T cells, TTLL7 demonstrated specificity for beta-tubulin and not for alpha-tubulin or nucleosome assembly protein 1. Consistent with these findings, knockdown of TTLL7 in a primary culture of superior cervical ganglion neurons caused a loss of polyglutamylated beta-tubulin. Following stimulation of PC12 cells with nerve growth factor to differentiate, the level of TTLL7 increased concomitantly with polyglutamylation of beta-tubulin. Short interference RNA-mediated knockdown of TTLL7 repressed nerve growth factor-stimulated MAP (microtubule-associated protein) 2-positive neurite growth in PC12 cells. Consistent with having a role in the growth of MAP2-positive neurites, TTLL7 accumulated within a MAP2-enriched somatodendritic portion of superior cervical ganglion, as did polyglutamylated beta-tubulin. Anti-TTLL7 antibody revealed that TTLL7 was distributed in a somatodendritic compartment in the mouse brain. These findings indicate that TTLL7 is a beta-tubulin polyglutamylase and is required for the growth of MAP2-positive neurites in PC12 cells.  相似文献   

16.
The human formyl peptide receptor (FPR) is a prototypical G(i) protein-coupled receptor, but little is known about quantitative aspects of FPR-G(i) protein coupling. To address this issue, we fused the FPR to G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) and expressed the fusion proteins in Sf9 insect cells. Fusion of a receptor to Galpha ensures a defined 1:1 stoichiometry of the signaling partners. By analyzing high affinity agonist binding, the kinetics of agonist- and inverse agonist-regulated guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding and GTP hydrolysis and photolabeling of Galpha, we demonstrate highly efficient coupling of the FPR to fused G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) without cross-talk of the receptor to insect cell G proteins. The FPR displayed high constitutive activity when coupled to all three G(i)alpha isoforms. The K(d) values of high affinity agonist binding were approximately 100-fold lower than the EC(50) (concentration that gives half-maximal stimulation) values of agonist for GTPase activation. Based on the B(max) values of agonist saturation binding and ligand-regulated GTPgammaS binding, it was previously proposed that the FPR activates G proteins catalytically, i.e. one FPR activates several G(i) proteins. Analysis of agonist saturation binding, ligand-regulated GTPgammaS saturation binding and quantitative immunoblotting with membranes expressing FPR-G(i)alpha fusion proteins and nonfused FPR now reveals that FPR agonist binding greatly underestimates the actual FPR expression level. Our data show the following: (i) the FPR couples to G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) with similar efficiency; (ii) the FPR can exist in a state of low agonist affinity that couples efficiently to G proteins; and (iii) in contrast to the previously held view, the FPR appears to activate G(i) proteins linearly and not catalytically.  相似文献   

17.
Grb2-associated regulator of Erk/MAPK1 (GAREM) is an adaptor molecule in the EGF-mediated signaling pathway. GAREM is expressed ubiquitously in human organs and cultured cells. Two GAREM homologues are encoded by the human genome. Therefore, previously identified GAREM is named GAREM1. Here we characterized a new subtype of GAREM, GAREM2, that is specifically expressed in the mouse, rat, and human brain. Three GAREM2 tyrosines (Tyr-102, Tyr-429, and Tyr-551) are phosphorylated upon EGF stimulation and are necessary for binding to Grb2. Furthermore, GAREM2 and Shp2 regulate Erk activity in EGF-stimulated cells. These characteristics are similar to those of GAREM1. GAREM2 is expressed in some neuroblastoma cell lines and is also tyrosine-phosphorylated and bound to Grb2 after treatment with EGF. Eventually, GAREM2 regulates Erk activation in the presence of EGF or insulin like growth factor 1. GAREM2 also regulates insulin-like growth factor 1-induced neuronal differentiation of the SH-SY5Y neuroblastoma cell line. Although the structure and function of both GAREM subtypes are similar, GAREM1 is recruited into the nucleus and GAREM2 is not. Nuclear localization of GAREM1 might be controlled by a GAREM1-specific nuclear localization sequence and 14-3-3ϵ binding. The N-terminal 20 amino acids of GAREM1 make up its nuclear localization sequence that is also a 14-3-3ϵ binding site. The GAREM family is a new class of adaptor molecules with subtype-specific biological functions.  相似文献   

18.
Computational assessment of the binding interactions of drugs is an important component of computer-aided drug design paradigms. In this perspective, a set of 30 1-(substituted phenyl)-3-(naphtha[1, 2-d] thiazol-2-yl) urea/thiourea derivatives showing antiparkinsonian activity were docked into inhibitor binding cavity of human adenosine A(2A) receptor (AA2AR) to understand their mode of binding interactions in silico. Lamarckian genetic algorithm methodology was employed for docking simulations using AutoDock 4.2 program. The results signify that the molecular docking approach is reliable and produces a good correlation coefficient (r(2) = 0.483) between docking score and antiparkinsonian activity (in terms of % reduction in catalepsy score). Potent antiparkinsonian agents carried methoxy group in the phenyl ring, exhibited both hydrophilic and lipophilic interactions with lower energy of binding at the AA(2A)R. These molecular docking analyses should, in our view, contribute for further development of selective AA(2A)R antagonists for the treatment of Parkinson's disease.  相似文献   

19.
Recently, a subset of N-phenyl-N'-(2-chloroethyl)ureas (CEU) was found abrogating the nuclear translocation of thioredoxin-1 and arresting the cell cycle in G(0)/G(1) phase. Several derivatives were prepared to assess their effect on cell cycle progression and on the intracellular location of Trx-1. Compounds 1-20, 21-40, and 41-60 exhibited GI(50) between 1 and 80 microM. Immunocytochemistry analysis showed compounds 4, 6, 8, 10, 11, 23, 24, 26-31, 34, 37, 41, 44, 46-51, 53, 56, and 57 inhibiting the nuclear translocation of Trx-1. Our results suggest that increasing the electrophilic character of these molecules might enhance the antiproliferative activity at the expense of the selectivity toward thioredoxin-1 and the G(0)/G(1) phase arrest.  相似文献   

20.
A group of diverse proteins reversibly binds to growing microtubule plus ends through interactions with end-binding proteins (EBs). These +TIPs control microtubule dynamics and microtubule interactions with other intracellular structures. Here, we use cytoplasmic linker-associated protein 2 (CLASP2) binding to EB1 to determine how multisite phosphorylation regulates interactions with EB1. The central, intrinsically disordered region of vertebrate CLASP proteins contains two SXIP EB1 binding motifs that are required for EB1-mediated plus-end-tracking in vitro. In cells, both EB1 binding motifs can be functional, but most of the binding free energy results from nearby electrostatic interactions. By employing molecular dynamics simulations of the EB1 interaction with a minimal CLASP2 plus-end-tracking module, we find that conserved arginine residues in CLASP2 form extensive hydrogen-bond networks with glutamate residues predominantly in the unstructured, acidic C-terminal tail of EB1. Multisite phosphorylation of glycogen synthase kinase 3 (GSK3) sites near the EB1 binding motifs disrupts this electrostatic "molecular Velcro." Molecular dynamics simulations and (31)P NMR spectroscopy indicate that phosphorylated serines participate in intramolecular interactions with and sequester arginine residues required for EB1 binding. Multisite phosphorylation of these GSK3 motifs requires priming phosphorylation by interphase or mitotic cyclin-dependent kinases (CDKs), and we find that CDK- and GSK3-dependent phosphorylation completely disrupts CLASP2 microtubule plus-end-tracking in mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号