首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
THREE PREVIOUSLY STUDIED R FACTORS WERE USED: 222/R4, controlling transmissible resistance to sulfonamide, streptomycin, chloromycetin, and tetracycline (SU(r) SM(r) CM(r) TC(r)); 222/R3, a derivative of 222/R4 (now termed 222/R3W) having lost TC(r); and R15, controlling infectious resistance to SU and SM only. Two types of derivative R factors were isolated from 222/R4 by serial subculture in Salmonella species. One derivative, termed 222/R1, lost resistance to SU, SM, and CM, and the other, termed 222/R3N, lost only TC(r). Each factor was transferred to a standard Escherichia coli K-12 host. Recombinant factors of 222/R4 phenotype were isolated by selection after mixed culture of E. coli (222/R1)(+) and (222/R3N)(+) strains. Density-gradient equilibrium centrifugation of lysates of E. coli R(+) hosts in the presence of ethidium bromide separated R-factor deoxyribonucleic acid (DNA) as a heavy satellite peak which was subjected to electron microscopy or analytical density gradient centrifugation. Each DNA comprised a unimolecular species of circular DNA. The contour of R15 measured 22.3 mum [equivalent to 46 x 10(6) atomic mass units (AMU)], and that of 222/R4 measured 33.6 mum (70 x 10(6) AMU). 222/R3W appeared to be a point mutant or small deletion of 222/R4 with an almost identical size, whereas 222/R3N had lost a DNA segment of about 3 mum, and measured 30.3 mum or 63 x 10(6) AMU. The 222/R1 factors also appeared to have arisen by loss of DNA from 222/R4, 222/R1A being 22.3 mum or 46 x 10(6) AMU, whereas all other 222/R1 factors appeared to be duplicates, measuring 25.6 mum or 53 x 10(6) AMU. The DNA from six recombinant factors of R4 phenotype was indistinguishable in size and configuration from the parental 222/R4. In most cases, the number of R-factor copies (present as covalently closed circular molecules) per copy of the E. coli chromosome was less than 2, ranging from 1.2 to 3.3.  相似文献   

2.
Extraintestinal pathogenic Escherichia coli (ExPEC) are usually harmless colonizer of the intestinal microflora. However, they are capable to translocate and cause life-threatening disease. Translocation of ExPEC isolates was quantified in colonic monolayers. Transepithelial resistance (R(t)) was monitored and local changes in conductivity analysed with conductance scanning. Confocal microscopy visualized the translocation route. Corroboratory experiments were performed on native rat colon. One translocating strain E. coli O4 was identified. This translocation process was associated with an R(t) decrease (36 +/- 1% of initial resistance) beginning only 2 h after inoculation. The sites of translocation were small defects in epithelial integrity (focal leaks) exhibiting highly increased local ion permeability. Translocation was enhanced by preincubation of monolayers with tumour necrosis factor-alpha or interleukin-13. Mutant strains lacking alpha-haemolysin lost the ability to induce focal leaks, while this effect could be restored by re-introducing the haemolysin determinant. Filtrate of a laboratory strain carrying the alpha-haemolysin operon was sufficient for focal leak induction. In native rat colon, E. coli O4 decreased R(t) and immunohistology demonstrated focal leaks resembling those in cell monolayers. E. coli alpha-haemolysin is able to induce focal leaks in colonic cell cultures as well as in native colon. This process represents a novel route of bacterial translocation facilitated by pro-inflammatory cytokines.  相似文献   

3.
A mutant defective in partitioning of composite plasmid Rms201.   总被引:3,自引:2,他引:1       下载免费PDF全文
Escherichia coli harboring mutant plasmids defective in maintenance stability (from the conjugative plasmid Rms201) showed a wide distribution of ampicillin resistance levels, as well as increased frequency of plasmid loss from the cell. The amounts of covalently closed circular deoxyribonucleic acid of mutant plasmid Rms268 and parental plasmid Rms201 per chromosome were 5.3 and 6.1%, respectively. The beta-lactamase activities of strains W3630(Rms268) and W3630(Rms201) were 0.56 and 0.44 U/mg of protein, respectively. Frequency of plasmid loss from W3630(Rms268) was about 0.8 to 1.2% per cell generation, 100 times more than that of the wild-type strain. Ampicillin resistance levels of the colonies harboring the mutant plasmid showed a wide distribution, from low (100 micrograms/ml) to high (1,600 micrograms/ml). A miniplasmid (pMS268) with a mass of 7 X 10(6) daltons and encoding ampicillin resistance was isolated from Rms268. Frequency of pMS268 loss from W3630(pMS268) was about 0.8 to 1.9% per cell generation. W3630(pMS268) also showed a wide range of distribution in the levels of ampicillin resistance. These results indicated that the copies of Rms268 in E. coli did not segregate evenly between daughter cells at cell division and that the gene involved was located on the miniplasmid.  相似文献   

4.
Cerebral malaria (CM) is a lethal neurological complication of malaria. We implemented a genome-wide screen in mutagenized mice to identify host proteins involved in CM pathogenesis and whose inhibition may be of therapeutic value. One pedigree (P48) segregated a resistance trait whose CM-protective effect was fully penetrant, mapped to chromosome 8, and identified by genome sequencing as homozygosity for a mis-sense mutation (W81R) in the FERM domain of Janus-associated kinase 3 (Jak3). The causative effect of Jak3(W81R) was verified by complementation testing in Jak3(W81R/-) double heterozygotes that were fully protected against CM. Jak3(W81R) homozygotes showed defects in thymic development with depletion of CD8(+) T cell, B cell, and NK cell compartments, and defective T cell-dependent production of IFN-γ. Adoptive transfer of normal splenocytes abrogates CM resistance in Jak3(W81R) homozygotes, an effect attributed to the CD8(+) T cells. Jak3(W81R) behaves as a dominant negative variant, with significant CM resistance of Jak3(W81R/+) heterozygotes, compared to CM-susceptible Jak3(+/+) and Jak3(+/-) controls. CM resistance in Jak3(W81R/+) heterozygotes occurs in presence of normal T, B and NK cell numbers. These findings highlight the pathological role of CD8(+) T cells and Jak3-dependent IFN-γ-mediated Th1 responses in CM pathogenesis.  相似文献   

5.
Both from Escherichia coli K12 W3630 carrying an R-factor, R+75, and from the parent strain at least six penicillin- and cephalosporin-binding proteins were obtained as soluble forms. The molecular weights of the binding proteins of the strain carrying an R-factor were similar to those of the parent strain and not affected by the presence of an R-factor which specified the production of a beta-lactamase. Gel filtration with [14C]benzylpenicillin suggested the equimolar binding of benzylpenicillin to each binding protein. Three binding proteins of E. coli carrying R+75 and two binding proteins of the parent strain were purified by affinity chromatography followed by gel filtration. In fluorescence titration, various penicillins and cephalosporins were shown to bind to the purified binding proteins and their association constants were in the range of 0.4 to 21-10(3) M-1. The binding proteins of both strains did not react with the antibody against the beta-lactamase specified by R+75.  相似文献   

6.
7.
Bacteria carrying temperature-sensitive mutant R factors for chloramphenicol resistance were isolated. In the presence of chloramphenicol, these bacteria grew at 34 C but not at 43 C. The mutations in the chloramphenicol resistance gene of the R factors affected neither the resistance of the bacteria to dihydrostreptomycin and tetracycline nor the stability of the R factors at 43 C. The chloramphenicol acetyltransferase obtained from Escherichia coli K-12 carrying the mutant R factors was heat-labile as compared with that from a strain carrying the wild-type R factor. We could not find chloramphenicol acetyltransferase activity in 17 chloramphenicol-sensitive and 5 -resistant strains (selected in vitro) of E. coli examined. The results strongly suggest that the chloramphenicol resistance gene of the R factors is the structural gene of the chloramphenicol acetyltransferase rather than the genome controlling the expression of a chromosomal determinant for the enzyme. Furthermore, the studies confirm that the existence of the chloramphenicol acetyltransferase is the primary cause of chloramphenicol resistance of bacteria carrying the R factor. Both the enzyme activity producing the monoacetyl derivative from chloramphenicol and the subsequent formation of the diacetate from the monoacetyl product were heat-labile to the same degree. The results suggest that only one enzyme participates in two steps of chloramphenicol acetylation.  相似文献   

8.
Growth of Proteus mirabilis harboring R100-1 (fi(+)drd str(r)cml(r)tet(r)sul(r)) factors in Penassay broth containing sodium dodecyl sulfate (SDS) leads to the loss of all or part of the genetic elements in high frequencies. In media containing SDS at concentrations as low as 0.03%, both lysis of R(+) cells and elimination of the R factors occur at high frequencies. Appearance of drug-susceptible cells in R(+) cultures occurs during the exponential phase of growth; however, the frequencies of susceptible cells increase substantially after the culture reaches the stationary phase. Reconstruction experiments, coupled with other observations, suggest that the major factor in altering the frequency of drug-susceptible variants is the greater resistance of the variants to the lytic action of SDS. This resistance correlates in most cases with the loss of the transfer functions in the resistance transfer factor.  相似文献   

9.
Chloramphenicol-resistant Myxococcus virescens were obtained by infecting myxococci with Escherichia coli specialized transducing phage P1CM. The drug-resistant myxococci were phenotypically unstable. They contained more than one type of plasmid; these plasmids were not found in the parent strain. Chloramphenicol-resistant E. coli were obtained by transformation with either a fraction of myxococcal DNA containing the plasmids or with P1CM prophage DNA. These transformants contained plasmids. Escherichia coli transformed by DNA from the myxococci contained both P1CM and myxococcal genes. Individual transformant clones differed in the genetic make-up of their plasmids. Among the myxococcal genes expressed in these plasmid-harbouring E. coli strains were a capacity for self-transmissibility and a pattern of phage sensitivity characteristic of R factor incompatibility group W. Escherichia coli transformed with P1CM prophage contained incomplete P1CM genomes; none of the chloramphenicol-resistant transformants produced P1CM phage particles. The significance of these findings for an understanding of mechanisms for the generation of R factors is discussed.  相似文献   

10.
A synthetic peptide patterned after the sequence of the inactivating "ball" domain of the Shaker B K(+) channel restores fast (N-type) inactivation in mutant deletion channels lacking their constitutive ball domains, as well as in K(+) channels that do not normally inactivate. We now report on the effect of phosphorylation at a single tyrosine in position 8 of the inactivating peptide both on its ability to restore fast channel inactivation in deletion mutant channels and on the conformation adopted by the phosphorylated peptide when challenged by anionic lipid vesicles, a model target mimicking features of the inactivation site in the channel protein. We find that the inactivating peptide phosphorylated at Y8 behaves functionally as well as structurally as the noninactivating mutant carrying the mutation L7E. Moreover, it is observed that the inactivating peptide can be phosphorylated by the Src tyrosine kinase either as a free peptide in solution or when forming part of the membrane-bound protein channel as the constitutive inactivating domain. These findings suggest that tyrosine phosphorylation-dephosphorylation of this inactivating ball domain could be of physiological relevance to rapidly interconvert fast-inactivating channels into delayed rectifiers and vice versa.  相似文献   

11.
Much of the normal high sensitivity of wild-type Helicobacter pylori to metronidazole (Mtz) depends on rdxA (HP0954), a gene encoding a novel nitroreductase that catalyzes the conversion of Mtz from a harmless prodrug to a bactericidal agent. Here we report that levels of Mtz that partially inhibit growth stimulate forward mutation to rifampin resistance in rdxA(+) (Mtz(s)) and also in rdxA (Mtz(r)) H. pylori strains, and that expression of rdxA in Escherichia coli results in equivalent Mtz-induced mutation. A reversion test using defined lac tester strains of E. coli carrying rdxA(+) indicated that CG-to-GC transversions and AT-to-GC transitions are induced more frequently than other base substitutions. Alkaline gel electrophoretic tests showed that Mtz concentrations near or higher than the MIC for growth also caused DNA breakage in H. pylori and in E. coli carrying rdxA(+), suggesting that this damage may account for most of the bactericidal action of Mtz. Coculture of Mtz(s) H. pylori with E. coli (highly resistant to Mtz) in the presence of Mtz did not stimulate forward mutation in E. coli, indicating that the mutagenic and bactericidal products of Mtz metabolism do not diffuse significantly to neighboring (bystander) cells. Our results suggest that the widespread use of Mtz against other pathogens in people chronically infected with H. pylori may stimulate mutation and recombination in H. pylori, thereby speeding host-specific adaptation, the evolution of virulence, and the emergence of resistance against Mtz and other clinically useful antimicrobials.  相似文献   

12.
Escherichia coli K-12 varkappa971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv(+) hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his(+) (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F' factor (FS400) carrying the rfb-his region of S. typhimurium to the same two ilv(+) hybrids gave similar results. LPS extracted from two ilv(+),his(+), factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his(+) hybrids obtained from varkappa971 itself by similar HfrK9 and F'FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli varkappa971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli varkappa971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli varkappa971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his(+) recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Omega8. This suggests that, although the parental E. coli K-12 strain varkappa971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units.  相似文献   

13.
Taylor, M. W. (Stanford University, Stanford, Calif.), and C. Yanofsky. Chromosomal relocation of prophage-associated bacterial genes. J. Bacteriol. 91:1469-1476. 1966.-Two distinguishable colony types, rough-edged and smooth-edged, were observed when tryptophan auxotrophs of Escherichia coli were transformed to tryptophan independence with DNA from the hybrid nondefective transducing phage i(lambda)h(phi80)T(1) (S)tryp A(+)B(+), and with the helper phage lambdai(434). P1kc transduction experiments with cells of the two types of colonies as genetic donors showed that the i(lambda)h(phi80)T(1) (S)tryp A(+)B(+) prophage was located at different regions of the E. coli chromosome. In cells of rough-edged colonies, the prophage was linked to the tryp-cys region, its normal location, whereas in cells of smooth-edged colonies the prophage was associated with the gal region. When transformation experiments were performed with a T(1) (R)tryp(-) deletion mutant as recipient, and phage lambdai(434) as helper, prophage localization was only detected at the gal region. Localization of (lambda)h(phi80)T(1) (S)tryp A(+)B(+) prophage near gal does not appear to be due to the formation of a recombinant phage carrying tryp A(+)B(+), but is due to some type of interaction between the genomes of i(lambda)h(phi80)T(1) (S)tryp A(+)B(+) and the helper phage. When conditions comparable to those used in transformation studies were employed in transduction experiments, including the use of helper phage, two classes of transductants with either cys or gal linkage were also observed. To examine whether the location of the prophage on the E. coli chromosome had any effect on the ability of the prophage-associated tryp A(+) and tryp B(+) genes to function or respond to different repression conditions, specific activities of the A and B subunits of tryptophan synthetase specified by the phage genome were measured. Similar values were obtained regardless of the location of the prophage-associated tryp genes. Furthermore, the prophage-associated tryp genes, free from their normal operator region, permitted enzyme formation which was unaffected by repression or derepression conditions.  相似文献   

14.
Thymineless Death in Escherichia coli: Inactivation and Recovery   总被引:4,自引:3,他引:1       下载免费PDF全文
The effects of chloramphenicol (CAP) on the progress of thymineless death (TLD), nalidixic acid (NA) inactivation, ultraviolet (UV) irradiation, and mitomycin C (MC) inactivation were studied in Escherichia coli B, B(s-1), B(s-3), B(s-12), and B/r. This was done before, during, and after inactivation. During the progress of inactivation, it was found that at 10 to 20 mug of CAP per ml, up to 50% of the UV-sensitive bacteria survived TLD and about 10% survived NA. In E. coli B/r, at these concentrations of CAP, about 10 to 15% of the cells survived TLD and about 20 to 25% survived NA. Concentrations of CAP greater than 25 mug/ml actually increased the sensitivity of E. coli B, B(s-1), B(s-3), and B(s-12) to inactivation by either TLD or NA; at 150 mug of CAP per ml, the sensitivity of E. coli B/r to inactivation also increased. When E. coli B cells were incubated in CAP prior to inactivation, the longer the preincubation the longer onset of TLD was delayed; NA inactivation was also affected in that the rate of inactivation after CAP incubation was greatly decreased. Preincubation of E. coli B/r with CAP had much less effect on the progress of inactivation. After thymineless death, incubation in CAP plus thymine led to a rapid and almost complete recovery of E. coli B and B(s-12). Lesser recoveries were observed after inactivation due to UV, NA, or MC inactivation. E. coli B(s-1) and B/r did not recover viability after any mode of inactivation, and E. coli B(s-3) and B(s-12) recovered from UV to about 20% of the initial titer. It was suggested that protein synthesis, in particular proteins involved in deoxyribonucleic synthesis, was a determining factor in these inactivating and recovery events.  相似文献   

15.
We collected Escherichia coli strains from 59 Nepalese porters in 1971 and surveyed for their drug resistance. Drug-resistant E. coli strains were isolated from four porters. (TC. CM. SM. SA. APC.)-resistant strains were isolated from two porters and SA- or APC-resistant strains were isolated from each of the others. The R factors were demonstrated from the multiple-resistant E. coli strains.  相似文献   

16.
The mrp operon from Vibrio cholerae encoding a putative multisubunit Na(+)/H(+) antiporter was cloned and functionally expressed in the antiporter-deficient strain of Escherichia coli EP432. Cells of EP432 expressing Vc-Mrp exhibited resistance to Na(+) and Li(+) as well as to natural bile salts such as sodium cholate and taurocholate. When assayed in everted membrane vesicles of the E. coli EP432 host, Vc-Mrp had sufficiently high antiport activity to facilitate the first extensive analysis of Mrp system from a Gram-negative bacterium encoded by a group 2 mrp operon. Vc-Mrp was found to exchange protons for Li(+), Na(+), and K(+) ions in pH-dependent manner with maximal activity at pH 9.0-9.5. Exchange was electrogenic (more than one H(+) translocated per cation moved in opposite direction). The apparent K(m) at pH 9.0 was 1.08, 1.30, and 68.5 mM for Li(+), Na(+), and K(+), respectively. Kinetic analyses suggested that Vc-Mrp operates in a binding exchange mode with all cations and protons competing for binding to the antiporter. The robust ion antiport activity of Vc-Mrp in sub-bacterial vesicles and its effect on bile resistance of the heterologous host make Vc-Mrp an attractive experimental model for the further studies of biochemistry and physiology of Mrp systems.  相似文献   

17.
Drug resistance of 3,000 Shigella strains isolated in 1965 were investigated. These strains originated from 10 City Hospitals and 4 Prefectural Health Centers, which are located in different parts of Japan. One hundred and seventy strains which were resistant to 4 drugs, chloramphenicol (CM), tetracycline (TC), dihydrostreptomycin (SM), and sulfanilamide (SA), were selected at random from these stock cultures in this laboratory and the distribution of R factors in these isolates was examined. It was found that the strains all harbored R factors which were capable of transferring drug resistance by usual conjugal process. Among the strains carrying R factors, 85 per cent harbored a single type of R factor and 15 per cent carried two types of R factor in a cell. The latter is called the hetero-R state. Among the strains in the hetero-R state, isolation of strains harboring both R (SM.SA) and R (TC.CM.SM.SA) factors was most frequent. It was found that 25 R (SM.SA) factors isolated from strains in hetero-R had the genetic determinant iR?, while most of the R (TC.CM.SM.SA) factors isolated from natural sources were iR+. When two types of R factor, R (SM.SA) and R (TC.CM.SM.SA) derived from the same host cells, were brought together in a host cell by superinfection with both factors, they were found to exist stably in a host bacterium. These results confirmed the stable existence of both factors in Shigella strains isolated from dysenteric patients.  相似文献   

18.
An Escherichia coli Hfr strain in which three negative chromosomal alleles (leu(-), arg(-), and mtl(-)) were closely linked to three positive alleles (ara(+), rha(+), and xyl(+), respectively) was employed in matings with a Salmonella typhosa recipient. The detected expression of the negative E. coli alleles in S. typhosa hybrids selected for receipt of an associated positive E. coli marker was used to determine the occurrence of haploid S. typhosa recombinants, as distinguished from stable partial diploid hybrids. At the same time, the inheritance patterns and segregation behavior of the positive alleles provided indicators of the occurrence of partial diploid hybrids. Examination of both positive and negative markers inherited by ara(+), rha(+), and xyl(-) selected S. typhosa hybrid classes indicated that relatively short E. coli chromosomal segments (generally about 4 min or less in length) were involved in recombination (haploidy), whereas rather extensive E. coli genetic segments were conserved in the diploid state. S. typhosa hybrids selected for receipt of the ara(+) marker showed a 52% incidence of leu(-) haploidy, which is probably close to being an accurate measure of recombination at the site of the ara(+) allele. S. typhosa hybrids selected for receipt of the rha(+) or xyl(+) markers showed only a 20% incidence of arg(-) or mtl(-) haploidy, respectively, but both of these hybrid classes exhibited a higher incidence of conservation of extensive E. coli diploid segments than did the ara(+) selected class. Remating of haploid S. typhosa hybrids with recombinant xyl(+)mtl(-) or rha(+)arg(-) regions resulted in higher frequencies of hybrid recovery than were observed in the initial matings. However, there was a higher incidence of partial diploidy and a lower incidence of haploidy among the hybrids obtained from these rematings.  相似文献   

19.
Plasmid DNA from Escherichia coli strains harboring drug resistance either of the infectious or noninfectious kind has been separated by CsCl centrifugation of crude cell lysates in the presence of ethidium bromide and examined by electron microscopy. Plasmid deoxyribonucleic acid (DNA) from an S(+) strain (which has the property of noninfectious streptomycin-sulfonamide resistance) consists of a monomolecular covalently closed circular species of 2.7 mum in contour length (5.6 x 10(6) atomic mass units; amu). DNA from a strain carrying a transfer factor, termed Delta, but no determinant for drug resistance, is a monomolecular covalently closed circular species of 29.3 mum in contour length (61 x 10(6) amu). DNA from either Delta(+)A(+) or Delta(+)S(+) strains, (which are respectively ampicillin or streptomycin-sulfonamide resistant, and can transfer this drug resistance), shows a bimodal distribution of molecules of contour lengths 2.7 mum and 29.3 mum, whereas DNA from a (Delta-T)(+) strain (showing infectious tetracycline resistance) contains only one species of molecule measuring 32.3 mum (67 x 10(6) amu). We conclude that ampicillin resistance is carried by a DNA molecule (the A determinant) of 2.7 mum, and streptomycin-sulfonamide resistance is carried by an independent molecule (the S determinant) of similar size. These molecules are not able to effect their own transfer, but can be transmitted to other cells due to the simultaneous presence of the transfer factor, Delta, which also constitutes an independent molecule, of size 29.3 mum. In general, there appears to be little recombination or integration of the A or S molecules into that of Delta, although a small proportion (5-10%) of recombinant molecules cannot be excluded. In contrast, the third drug-resistance determinant, that for tetracycline resistance (denoted as T), is integrated in the Delta molecule to form the composite structure Delta-T of size 32.3 mum, which determines infectious tetracycline resistance. The Delta(+)A(+) and Delta(+)S(+) strains are defined as harboring plasmid aggregates, and the (Delta-T)(+) strain is defined as carrying a plasmid cointegrate; the properties of all three strains are characteristic of strains harboring R factors. These results are compatible with the previously published genetic data. The number of Delta molecules per cell appears to be equal to the chromosomal number irrespective of growth phase, and this plasmid can thus be defined as stringently regulated in DNA replication. In contrast, S and A exist as multiple copies, probably in at least a 10-fold excess of chromosomal copy number. S and A can thus be defined as relaxed in the regulation of their DNA replication.  相似文献   

20.
Escherichia coli K-12 suffers acetic acid stress during prolonged incubation in glucose minimal medium containing a limiting concentration of inorganic phosphate (0.1 mM P(i)), which decreases the number of viable cells from 6 × 10(8) to ≤10 CFU/ml between days 6 and 14 of incubation. Here we show that following two serial transfers into P(i)-limiting medium, evolved mutants survived prolonged incubation (≈10(7) CFU/ml on day 14 of incubation). The evolved strains that overtook the populations were generally PhnE(+), whereas the ancestral K-12 strain carries an inactive phnE allele, which prevents the transport of phosphonates. The switching in phnE occurred with a high frequency as a result of the deletion of an 8-bp repeated sequence. In a mixed culture starved for P(i) that contained the K-12 ancestral strain in majority, evolved strains grew through PhnE-dependent scavenging of probably organic phosphate esters (not phosphonates or P(i)) released by E. coli K-12 between days 1 and 3, before acetic acid excreted by E. coli K-12 reached toxic levels. The growth yield of phnE(+) strains in mixed culture was dramatically enhanced by mutations that affect glucose metabolism, such as an rpoS mutation inactivating the alternative sigma factor RpoS. The long-term viability of evolved populations was generally higher when the ancestral strain carried an inactive rather than an active phnE allele, which indicates that cross-feeding of phosphorylated products as a result of the phnE polymorphism may be essential for the spread of mutants which eventually help populations to survive under P(i) starvation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号