首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Viroids: unusual small pathogenic RNAs   总被引:1,自引:0,他引:1  
  相似文献   

3.
Viroids: an Ariadne's thread into the RNA labyrinth   总被引:4,自引:0,他引:4  
  相似文献   

4.
5.
6.
Viroids, small circular RNAs that replicate independently and in most cases incite diseases in plants, are classified into the families Pospiviroidae, composed of species with a central conserved region (CCR) and without hammerhead ribozymes, and Avsunviroidae, composed of three members lacking CCR but able to self-cleave in both polarity strands through hammerhead ribozymes. Here we report the biological and molecular properties of Eggplant latent viroid (ELVd). Purified circular ELVd induces symptomless infections when inoculated into eggplant seedlings. ELVd can be transmitted horizontally and through seed. Sequencing 10 complete cDNA clones showed that ELVd is a circular RNA of 332 to 335 nucleotides with high variability. This RNA can adopt a quasi-rod-like secondary structure of minimal free energy and alternative foldings that permit formation of stable hammerhead structures in plus and minus strands. The ribozymes are active in vitro and, most likely, in vivo. Considering the ELVd properties to be intermediate between those of the two genera of family Avsunviroidae, we propose ELVd as the type species of a third genus with the name ELAVIROID:  相似文献   

7.
Taxonomy:   Potato spindle tuber viroid (PSTVd) is the type species of the genus Posipiviroid , family Pospiviroidae . An absence of hammerhead ribozymes and the presence of a 'central conserved region' distinguish PSTVd and related viroids from members of a second viroid family, the Avsunviroidae .
Physical properties:   Viroids are small, unencapsidated, circular, single-stranded RNA molecules which replicate autonomously when inoculated into host plants. Because viroids are non-protein-coding RNAs, designation of the more abundant, highly infectious polarity strand as the positive strand is arbitrary. PSTVd assumes a rod-like, highly structured conformation that is resistant to nuclease degradation in vitro . Naturally occurring sequence variants of PSTVd range in size from 356 to 361 nt.
Hosts and symptoms:   The natural host range of PSTVd—cultivated potato, certain other Solanum spp., and avocado—appears to be quite limited. Foliar symptoms in potato are often obscure, and the severity of tuber symptoms (elongation with the appearance of prominent bud scales/eyebrows and growth cracks) depends on both temperature and length of infection. PSTVd has a broad experimental host range, especially among solanaceous species, and strains are classified as mild, intermediate or severe based upon the symptoms observed in sensitive tomato cultivars. These symptoms include shortening of internodes, petioles and mid-ribs, severe epinasty and wrinkling of the leaves, and necrosis of mid-ribs, petioles and stems.  相似文献   

8.
9.
Viroids replicate via a rolling circle mechanism, and cleavage/ligation requires extensive rearrangement of the highly base-paired native structure. For Potato spindle tuber viroid (PSTVd), the switch from cleavage to ligation is driven by the change from a multibranched tetraloop structure to a loop E conformation. Here we present evidence that processing of Citrus viroid III (CVd-III), a member of a related group of viroids that also replicate in the nucleus, may proceed via a distinct pathway. Chemical probing of PSTVd and CVd-III miniRNAs with DMS and CMCT revealed that the loop E motifs of these two viroids have quite different tertiary structures. As shown by temperature gradient gel electrophoresis, the presence of two likely Watson-Crick GC pairs results in a significant overall stabilization of the CVd-III loop E-like motif. Unlike PSTVd, the upper strand of the CVd-III loop E-like motif cannot fold into a GNRA tetraloop, and comparison of suboptimal structures indicates that the initial cleavage event could occur on the 5' side of the only GU wobble pair in a helix involving a nearby pair of inverted repeats. According to our model, rearrangement of 3' sequences into a hairpin stem containing an identical arrangement of GC, GU, and CG base pairs and a second cleavage event is followed by formation of loop E, which serves to align the 5' and 3' termini of the CVd-III monomer prior to ligation. Because ligation would occur within loop E itself, stabilization of this motif may be needed to hold the 5' and 3' termini of CVd-III in position for the host ligase.  相似文献   

10.
Bacteria and archaea contain a 2'-5' RNA ligase that seals in vitro 2',3'-cyclic phosphodiester and 5'-hydroxyl RNA termini, generating a 2',5'-phosphodiester bond. In our search for an RNA ligase able to circularize the monomeric linear replication intermediates of viroids belonging to the family Avsunviroidae, which replicate in the chloroplast, we have identified in spinach (Spinacea oleracea L.) chloroplasts a new RNA ligase activity whose properties resemble those of the bacterial and archaeal 2'-5' RNA ligase. The spinach chloroplastic RNA ligase recognizes the 5'-hydroxyl and 2',3'-cyclic phosphodiester termini of Avocado sunblotch viroid and Eggplant latent viroid RNAs produced by hammerhead-mediated self-cleavage, yielding circular products linked through an atypical, most likely 2',5'-phosphodiester, bond. The enzyme neither requires divalent cations as cofactors, nor NTPs as substrate. The reaction apparently reaches equilibrium at a low ratio between the final circular product and the linear initial substrate. Even if its involvement in viroid replication seems unlikely, the identification of a 2'-5' RNA ligase activity in higher plant chloroplasts, with properties very similar to an analogous enzyme widely distributed in bacterial and archaeal proteomes, is intriguing and suggests an important biological role so far unknown.  相似文献   

11.
12.
Viroids: the minimal non-coding RNAs with autonomous replication   总被引:6,自引:0,他引:6  
Viroids are small (246-401 nucleotides), non-coding, circular RNAs able to replicate autonomously in certain plants. Viroids are classified into the families Pospiviroidae and Avsunviroidae, whose members replicate in the nucleus and chloroplast, respectively. Replication occurs by an RNA-based rolling-circle mechanism in three steps: (1). synthesis of longer-than-unit strands catalyzed by host DNA-dependent RNA polymerases forced to transcribe RNA templates, (2). processing to unit-length, which in family Avsunviroidae is mediated by hammerhead ribozymes, and (3). circularization either through an RNA ligase or autocatalytically. Disease induction might result from the accumulation of viroid-specific small interfering RNAs that, via RNA silencing, could interfere with normal developmental pathways.  相似文献   

13.
The FLP recombinase of the 2 microns plasmid of Saccharomyces cerevisiae is a member of the integrase family of site-specific recombinases. Recombination catalyzed by members of this family proceeds via the ordered cleavage and religation of four strands of DNA. Although the amino acid sequences of integrase family members are quite different, each recombinase maintains an absolutely conserved tetrad of amino acids (R-191, H-305, R-308, Y-343; numbers are those of the FLP protein). This tetrad is presumed to reflect a common chemical mechanism for cleavage and ligation that has evolved among all family members. The tyrosine is the nucleophile that causes phosphodiester bond cleavage and covalently attaches to the 3'-PO4 terminus, whereas the other three residues have been implicated in ligation of strands. It has recently been shown that cleavage by FLP takes place in trans; that is, a FLP molecule binds adjacent to the site of cleavage but receives the nucleophilic tyrosine from a molecule of FLP that is bound to another FLP-binding element (J.-W. Chen, J. Lee, and M. Jayaram, Cell 69:647-658, 1992). These studies led us to examine whether the ligation step of the FLP reaction is performed by the FLP molecule bound adjacent to the cleavage site (ligation in cis). We have found that FLP promotes ligation in cis. Furthermore, using in vitro complementation analysis, we have classified several mutant FLP proteins into one of two groups: those proteins that are cleavage competent but ligation deficient (group I) and those that are ligation competent but cleavage defective (group II). This observation suggests that the active site of FLP is composed of several amino acid residues from each of two FLP molecules.  相似文献   

14.
15.
16.
Viroids belonging to the family Avsunviroidae are the only functional RNAs known to traffic selectively into chloroplasts. Subcellular targeting is a critical step in guaranteeing their access to the machineries involved in their replication. However, the host mechanisms exploited by these non coding pathogenic RNAs to be selectively imported into chloroplasts are poorly understood. Recently, we provide evidence supporting the idea that the Avsunviroidae have evolved to subvert a signaling mechanism between the nucleus and chloroplasts to regulate their differential compartmentalization into the chloroplast of infected cells. Here, we discuss our model and previous observations that provide biological relevance to our hypothesis.  相似文献   

17.
18.
A Lycopersicon esculentum cDNA clone encoding an acidic-type pathogenesis-related protein (PR-lal) was isolated, sequenced and characterized. It contains an open reading frame of 175 amino acids and the mature protein, after cleavage of the 21 amino acid signals peptide, has a pl of 5.24. The protein shows highest homology (75% identity) with the basic pathogenesis-related prb-lb protein from tobacco. The PR-lal gene shows constitutive expression in roots from tomato plants. It is expressed in leaves and stems upon viroid infection, and appears to be induced by ethylene. Comparative studies of this gene and a related basic isoform of PR-1 indicate that the expression of these two members of the PR-1 gene family in tomato may be differentially regulated upon viroid infection.The nucleotide sequence data reported in this paper will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession number X71592.  相似文献   

19.
Chrysanthemum stunt viroid: primary sequence and secondary structure.   总被引:28,自引:21,他引:7       下载免费PDF全文
The sequence of the 356 nucleotide residues of chrysanthemum stunt viroid (CSV) has been determined. Overlapping linear viroid fragments were obtained by partial ribonuclease digestion, radiolabelled in vitro at their 5'-ends, and sequenced using partial enzymic cleavage methods. Of the CSV sequence, 69% is contained in the published sequence of potato spindle tuber viroid (PSTV). Differences in the primary sequence of CSV and PSTV suggest that neither the positive nor putative negative strands of these two viroids code for functional polypeptide products. However, the two viroids can form similar secondary structures, implicating a role for viroid structure in replication.  相似文献   

20.
Viroids are small single‐stranded RNA pathogens which cause significant damage to plants. As their nucleic acids do not encode for any proteins, they are dependant solely on their structure for their propagation. The elucidation of the secondary structures of viroids has been limited because of the exhaustive and time‐consuming nature of classic approaches. Here, the method of high‐throughput selective 2′‐hydroxyl acylation analysed by primer extension (hSHAPE) has been adapted to probe the viroid structure. The data obtained using this method were then used as input for computer‐assisted structure prediction using RNAstructure software in order to determine the secondary structures of the RNA strands of both (+) and (–) polarities of all Avsunviroidae members, one of the two families of viroids. The resolution of the structures of all of the members of the family provides a global view of the complexity of these RNAs. The structural differences between the two polarities, and any plausible tertiary interactions, were also analysed. Interestingly, the structures of the (+) and (–) strands were found to be different for each viroid species. The structures of the recently isolated grapevine hammerhead viroid‐like RNA strands were also solved. This species shares several structural features with the Avsunviroidae family, although its infectious potential remains to be determined. To our knowledge, this article represents the first report of the structural elucidation of a complete family of viroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号