首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
New vectors for high level expression of recombinant proteins in bacteria.   总被引:26,自引:0,他引:26  
A system has been developed for synthesis and rapid purification of recombinant polypeptides expressed in frame with glutathione S-transferase (D. B. Smith and K. S. Johnson, 1988, Gene 67, 31-40). Expressed fusion proteins are purified from bacterial extracts by glutathione-agarose affinity chromatography. A thrombin protease cleavage site allowed for proteolysis of the fusion protein. We reported the construction of the vector pGEX-KG (K. Guan and J. E. Dixon, 1991, Anal. Biochem. 192, 262-267) which has a glycine-rich "kinker" immediately after the thrombin cleavage site. This kinker dramatically improved the thrombin cleavage efficiency of several fusion proteins. One potential drawback of expressing proteins in this vector is that, following proteolytic cleavage, unrelated amino acids from the vector remain at the amino terminus of the released protein. These extensions could affect enzymatic activity or protein structure. We have constructed two new vectors, pGEX-KT and pGEX-KN, which have the glycine kinker placed N-terminal to the thrombin cleavage site in order to minimize the unrelated amino acids associated with the cleaved protein. The change in location of the kinker had no effect on the increased thrombin cleavage efficiency. A strategy combining the kinker in the vector pGEX-KN with polymerase chain reaction has also been developed to express fusion proteins which when cleaved with thrombin released a protein having no amino terminal extensions of any kind.  相似文献   

2.
In the affinity purification of recombinant fusion proteins, the rate-limiting step is usually the efficient proteolytic cleavage and removal of the affinity tail and the protease from the purified recombinant protein. We have developed a rapid, convenient, and efficient method of affinity purification that can overcome this limitation. In one example of the method, the protease 3C from a picornavirus (3Cpro), which cleaves specific sequences containing a minimum of 6-7 amino acids, has been expressed as a fusion with glutathione S-transferase. The resultant recombinant "fusion protease" cleaves fusion proteins bearing (from the amino-terminus) the same affinity tail as the fusion protease, a 3Cpro cleavage recognition site, and the recombinant protein of interest. The recombinant protein is purified in a single chromatographic step, which removes both the affinity tail and the fusion protease. The advantages over existing methods include much improved specificity of proteolytic cleavage, complete removal of the protease and the affinity tail in one step, and the option of adding any desired amount of fusion protease to ensure efficient cleavage. The potential flexibility of the method is shown by the use of various affinity tails and alternative fusion proteases.  相似文献   

3.
A new protein fusion system has been developed to generate free recombinant protein in a single affinity chromatographic step. The key component in the fusion is the catalytic core of sortase A from Staphylococcus aureus (SrtAc), which recognizes and cleaves the Thr-Gly bond at an LPXTG sequence with moderate activity. The fusion here consists of an N-terminal His6 tag, SrtAc, and an LPETG linker followed by protein of interest at the C-terminus. The fusion protein is expressed in Escherichia coli and purified by immobilized metal-ion affinity chromatography (IMAC). The immobilized fusion then undergoes on-column SrtAc-mediated cleavage at the LPETG site in the presence of Ca2+ and/or triglycine. The target protein with an extra N-terminal glycine is released from the fusion while the N-terminal portion remains bound to the column. Because the cleavage enzyme SrtAc is co-expressed as a fusion with the target protein, the purification system eliminates exogenous proteolysis. This purification approach is simple, robust, inexpensive, time saving, and allows purification of free recombinant protein via one-step chromatography.  相似文献   

4.
A 167 base pair DNA cassette has been constructed to facilitate the detection and purification of recombinant proteins. This cassette, kfc, encodes three distinct peptide units: a phosphorylation site for the cAMP-dependent protein kinase (PKA), called kemptide, a factor Xa cleavage site, and a calmodulin-binding peptide. Expressed kfc fusion proteins can be purified from bacterial lysates in one step by affinity chromatography on calmodulin-agarose using EGTA as eluant. As a test of this system, we describe the expression, purification and characterization of the PKA binding domain of the microtubule associated protein (MAP 2).  相似文献   

5.
R S Haun  J Moss 《Gene》1992,112(1):37-43
A plasmid vector has been constructed that allows the ligation-independent cloning of cDNAs in any reading frame and directs their synthesis in Escherichia coli as glutathione S-transferase-linked fusion proteins. The cloning procedure does not require restriction enzyme digestion of the target sequence and does not introduce any additional sequences between the thrombin cleavage site and the foreign protein. Extended single-stranded tails complementary between the vector and insert, generated by the (3'----5') exonuclease activity of T4 DNA polymerase, obviate the need for in vitro ligation prior to bacterial transformation. This cloning procedure is rapid and highly efficient, and has been used successfully to construct a series of fusion proteins to investigate the sequence requirements for efficient thrombin cleavage.  相似文献   

6.
Kwon SY  Choi YJ  Kang TH  Lee KH  Cha SS  Kim GH  Lee HS  Kim KT  Kim KJ 《Plasmid》2005,53(3):274-282
Recently developed bacterial hemoglobin (VHb) fusion expression vector has been widely used for the production of many target proteins due to its distinctive properties of expressing fusion protein with red color which facilitates visualization of the steps in purification, and increasing solubility of the target proteins. However, after intensive use of the vector, several defects have been found. In this report, we present a modified VHb fusion vector (pPosKJ) with higher efficiency, in which most of the defects were eliminated. First, it was found that thrombin protease often digests target protein as well as inserted thrombin cleavage site, so it was replaced by a TEV cleavage site for more specific cleavage of VHb from target protein. Second, a glycine-rich linker sequence was inserted between 6x his-tag and VHb to improve the affinity of 6x his-tag to Ni-NTA resin, resulting in higher purity of eluted fusion protein. Third, EcoRI and XhoI restriction sites located elsewhere in the vector were removed to make these restriction sites available for the cloning of target protein coding genes. A pPosKJ vector was fully examined with an anti-apoptotic BCL-2 family member of Caenorhabditis elegans, CED-9. A C-terminal VHb fusion expression vector (pPosKJC) was also constructed for stable expression of target proteins that may be difficult to express with an N-terminal fusion. Vaccinia-related kinase 1 (VRK1) was also successfully expressed and purified using the vector with high yield. Taken together, we suggest that the VHb fusion vector may be well suited for high-throughput protein expression and purification.  相似文献   

7.
Summary A novel expression vector pGEX-5T was constructed which directs the synthesis of a fusion protein with a histidine-hexapeptide and glutathione-S-transferase at its N-terminus and the recombinant protein at its C-terminus inEscherichia coli. The designed fusion gene strategy allows the purification of soluble and insoluble recombinant proteins to homogeneity with single-step affinity chromatography using immobilized glutathione and metal chelating matrix, respectively. The principle and availability of this new expression system was respectively tested with the purification of a soluble and insoluble recombinant fusion protein containing 24 and 75 amino acids of the human thrombomodulin.  相似文献   

8.
A family of plasmid cloning vectors have been constructed, allowing both the sequencing and mutagenesis of foreign genes and the easy isolation of their expression products via fusion proteins in Escherichia coli. Fusion proteins can be inducibly expressed and isolated by affinity chromatography on APTG-Sepharose. The fusion protein consists of beta-galactosidase at the N-terminus, linked by a collagen 'hinge' region containing blood coagulation factor Xa cleavage site to the foreign protein at the C terminus. The factor Xa cleavage site at the N-terminal side of the foreign protein allows the release of the desired amino acid sequence under mild conditions. A multiple cloning site in all three reading frames and stop codons followed by the strong lambda t0 terminator facilitate simple gene insertions and manipulations. The intergenic region of the phage f1 inserted in both orientations allows the isolation of single-stranded DNA from either plasmid-strand for sequencing and mutagenesis. This vector family has been successfully used for the expression and purification of the isoleucyl-tRNA synthetase from Saccharomyces cerevisiae and the histidyl-tRNA synthetase from E. coli.  相似文献   

9.
Glutathione-S-transferase (GST) fusion protein expression vectors are often employed for the expression and purification of proteins in Escherichia coli. GST is then removed by site-specific proteolysis using thrombin. However, the presence of internal thrombin cleavage sites in expressed proteins can severely affect the purification of intact proteins. Cysteine-dependent aspartate-specific proteases (caspases) are efficient enzymes with defined substrate specificity. Unlike most of the proteases used for the removal of affinity tags, caspases do not leave any amino acids at the amino-terminus of cleaved proteins. We have engineered the caspase-6 site VEMD in a pGEX vector to give the pC6-2 vector. The caspase-6 can be easily removed after cleavage. Here, we describe the detailed protocol for purifying proteins using our pC6-2/caspase-6 expression and purification system. The cleavage by caspase-6 occurs in <30 min and the entire procedure can be completed in 2 d.  相似文献   

10.
A major problem in assessing the vaccine and diagnostic potential of various proteins encoded by Mycobacterium tuberculosis genome is the inability to produce large quantities of these proteins, even when Escherichia coli or other heterologous systems are employed for recombinant protein production. To overcome these barriers, we have constructed a modified expression vector, using pGEX-4T-1 vector as the backbone. In addition to the features offered by the pGEX-4T vectors, the new vector allowed easy purification of recombinant proteins on the highly versatile Ni-NTA-agarose affinity matrix. The utility of the new vector was demonstrated by expressing and purifying, to near homogeneity, two M. tuberculosis proteins, i.e., Rv3872 (a member of the multi-gene PE subfamily) and Rv3873 (a member of the multi-gene PPE subfamily), which are encoded by the RD1 region of M. tuberculosis. The proteins encoded by rv3872 and rv3873 were expressed at high levels as fusion proteins with glutathione-S-transferase in E. coli. The recombinant Rv3872 and Rv3873 proteins were purified and isolated free of the fusion partner (GST) by affinity purification on glutathione-Sepharose and/or Ni-NTA-agarose affinity matrix and cleavage of the purified fusion proteins by thrombin protease. The recombinant Rv3872 protein was nearly homogeneous (more than 95% pure) while Rv3873 preparation was more than 90% pure. The recombinant Rv3872 and Rv3873 proteins were immunologically active and reacted with antibodies in sera from TB patients. Our results demonstrate the utility of the newly constructed expression vector with two affinity tags for efficient expression and purification of recombinant M. tuberculosis proteins expressed in E. coli, which could be used for further diagnostic and immunological studies.  相似文献   

11.
A new strategy to prevent degradation of recombinant proteins caused by non-specific cleavage by thrombin is described. We demonstrate that degradation due to non-specific cleavage of recombinant protein mediated by thrombin can be completely prevented by separation of thrombin from the recombinant protein on spin columns packed with heparin-sepharose. This method is generally applicable to all recombinant proteins that require the thrombin for the cleavage of affinity tags for purification. To our knowledge, this is the first report of an efficient and reliable method for the separation of residual thrombin from purified recombinant proteins.  相似文献   

12.
A mammalian expression vector with features optimized for simple expression and purification of secreted proteins has been developed. This vector was constructed to facilitate X-ray crystallographic studies of cysteine-rich glycoproteins that are difficult to express by other means. Proteins expressed with this vector possess an N-terminal human growth hormone domain and an octahistidine tag separated from the desired polypeptide sequences by a tobacco etch virus protease recognition site. Advantages of this vector are high levels of expression, simple detection and purification of expressed proteins, and reliable cleavage of the fusion protein. Cotransfection of this vector with a dihydrofolate reductase gene allows amplification of expression levels with methotrexate. Over one dozen cysteine-rich secreted proteins have been expressed in sufficient quantity for structural studies using this vector; the structure of at least one of these proteins has been determined.  相似文献   

13.
Many recombinant proteins are synthesized as fusion proteins containing affinity tags to aid in the downstream processing. After purification, the affinity tag is often removed by using a site-specific protease such as factor Xa (FXa). However, the use of FXa is limited by its expense and availability from plasma. To develop a recombinant source of FXa, we have expressed two novel forms of FXa using baby hamster kidney (BHK) cells as host and the expression vector pNUT. The chimeric protein FIIFX consisted of the prepropeptide and the Gla domain of prothrombin linked to the activation peptide and protease region of FXa, together with a cellulose-binding domain (CBD(Cex)) as an affinity tag. A second variant consisted of the transferrin signal peptide linked to the second epidermal growth factor-like domain and the catalytic domain of FX and a polyhistidine tag. Both FX variants were secreted into the medium, their affinity tags were functional, and following activation, both retained FXa-specific proteolytic activity. However, the yield of the FIIFX-CBD(Cex) fusion protein was 10-fold higher than that of FX-CBD(Cex) and other forms of recombinant FX reported to date. The FXa derivatives were used to cleave two different fusion proteins, including a biologically inactive alpha-factor-hirudin fusion protein secreted by Saccharomyces cerevisiae. After cleavage, the released hirudin demonstrated biological activity in a thrombin inhibition assay, suggesting that this method may be applicable to the production of toxic or unstable proteins. The availability of novel FX derivatives linked to different affinity tags allows the development of a versatile system for processing fusion proteins in vitro.  相似文献   

14.
《Gene》1997,193(2):229-237
Because of the complexities involved in the regulation of gene expression in Escherichia coli and mammalian cells, it is considered general practice to use different vectors for heterologous expression of recombinant proteins in these host systems. However, we have developed and report a shuttle vector system, pGFLEX, that provides high-level expression of recombinant glutathione S-transferase (GST) fusion proteins in E. coli and mammalian cells. pGFLEX contains the cytomegaloma virus (CMV) immediate-early promoter in tandem with the E. coli lacZpo system. The sequences involved in gene expression have been appropriately modified to enable high-level production of fusion proteins in either cell type. The pGFLEX expression system allows production of target proteins fused to either the N or C terminus of the GST π protein and provides rapid purification of target proteins as either GST fusions or native proteins after cleavage with thrombin. The utility of this vector in identifying and purifying a component of a multi-protein complex is demonstrated with cyclin A. The pGFLEX expression system provides a singular and widely applicable tool for laboratory or industrial production of biologically active recombinant proteins in E. coli and mammalian cells.  相似文献   

15.
We developed a protocol for the fast purification of small proteins and peptides using heat incubation as the first purification step. The proteins are expressed from a new bacterial expression vector (pETM-90) fused to the C-terminus of thermostable Ftr from Methanopyrus kandleri. The vector further contains a 6xHis-tag to allow immobilised metal ion affinity purification and a TEV protease cleavage site to enable the removal of the His-tag and fusion partner. Heat incubation induces the specific denaturation and precipitation of the Escherichia coli proteins but not of the thermostable fusion protein. Using the fusion construct and the heat incubation protocol a number of fusion proteins were purified to near homogeneity. The thermostability was ensured when Ftr had a molecular weight higher than twice the target protein. The obtained purification yields were similar and, in some cases, even higher than the ones obtained by affinity purification with the same Ftr-fusion proteins or the same target proteins fused to other often used partners such as NusA, GST, or DsbA. The protocol does not depend on a specific thermostable protein as was shown by the exchange of Ftr for M. kandleri Mtd. Purification by heat incubation is a fast and inexpensive alternative to chromatographic techniques, particularly suitable for the production of antigenic sequences for which the loss of native structure is not detrimental. We proved that it can be easily automated.  相似文献   

16.
The intein-mediated purification system has the potential to significantly reduce the recovery costs of industrial recombinant proteins. The ability of inteins to catalyze a controllable peptide bond cleavage reaction can be used to separate a recombinant protein from its affinity tag during affinity purification. Inteins have been combined with a chitin-binding domain to serve as a self-cleaving affinity tag, facilitating highly selective capture of the fusion protein on an inexpensive substrate--chitin (IMPACT) system, New England Biolabs, Beverly, MA). This purification system has been used successfully at a lab scale in low cell density cultures, but has not been examined comprehensively under high-cell density conditions in defined medium. In this study, the intein-mediated purification of three commercially relevant proteins expressed under high-cell density conditions in E. coli was studied. Additionally, losses during the purification process were quantified. The data indicate that the intein fusion proteins expressed under high cell density fermentations were stable in vivo after induction for a significant duration, and the intein fusion proteins could undergo thiol or pH and temperature initiated cleavage reaction in vitro. Thus, the intein-mediated protein purification system potentially could be employed for the production of recombinant proteins at the industrial-scale.  相似文献   

17.
Prokaryotic expression of polypeptides as fusion proteins with glutathione-S-transferase has recently been reported as a one-step means of purifying recombinant protein. The usefulness of the glutathione-S-transferase/glutathioneagarose system, however, is significantly limited by the frequent synthesis of recombinant proteins in insuluble form by Escherichia coli. We have found that for 5 separate fusion proteins containing glutathione-S-transferase and different domains of the large cystic fibrosis transmembrane conductance regulator, all were packaged in insoluble form by E. coli. Insolubility of these products made them inaccessible to one-step purification utilizing this scheme requires proper folding of recombinant glutathione-S-transferase to allow recognition on glutathione affinity agarose, we investigated the suitability of several alternative approaches for converting insoluble recombinant fusion proteins to a soluble form amenable to glutathione-agarose affinity purification. Low-temperature induction of fusion protein synthesis, but not incubation with anion-exchange resins, led to improved one-step purification of glutathione-S-transferase fusion proteins from E. coli cell lysate using mild, nondenaturing conditions. Solubilization in 8 mol/L urea, but not with other chaotropic agents or detergents, also allowed preparative yields of affinity-purified fusion protein. These techniques increase the usefulness of this recombinant protein purification scheme, and should be broadly applicable to diverse polypeptides synthesized as fusions with glutathione-S-transferase.  相似文献   

18.
Recombinant proteins are commonly expressed in fusion with an affinity tag to facilitate purification. We have in the present study evaluated the possible use of the human glutaredoxin 2 (Grx2) as an affinity tag for purification of heterologous proteins. Grx2 is a glutathione binding protein and we have shown in the present study that the protein can be purified from crude bacterial extracts by a one-step affinity chromatography on glutathione-Sepharose. We further showed that short peptides could be fused to either the N- or C-terminus of Grx2 without affecting its ability to bind to the glutathione column. However, when Grx2 was fused to either the 27 kDa green fluorescent protein or the 116 kDa beta-galactosidase, the fusion proteins lost their ability to bind glutathione-Sepharose. Insertion of linker sequences between the Grx2 and the fusion protein did not restore binding to the column. In summary, our findings suggest that Grx2 may be used as an affinity tag for purification of short peptides and possibly also certain proteins that do not interfere with the binding to glutathione-Sepharose. However, the failure of purifying either green fluorescent protein or beta-galactosidase fused to Grx2 suggests that the use of Grx2 as an affinity tag for recombinant protein purification is limited.  相似文献   

19.
Fusion tails for the recovery and purification of recombinant proteins.   总被引:7,自引:1,他引:6  
Several fusion tail systems have been developed to promote efficient recovery and purification of recombinant proteins from crude cell extracts or culture media. In these systems, a target protein is genetically engineered to contain a C- or N-terminal polypeptide tail, which provides the biochemical basis for specificity in recovery and purification. Tails with a variety of characteristics have been used: (1) entire enzymes with affinity for immobilized substrates or inhibitors; (2) peptide-binding proteins with affinity to immunoglobulin G or albumin; (3) carbohydrate-binding proteins or domains; (4) a biotin-binding domain for in vivo biotination promoting affinity of the fusion protein to avidin or streptavidin; (5) antigenic epitopes with affinity to immobilized monoclonal antibodies; (6) charged amino acids for use in charge-based recovery methods; (7) poly(His) residues for recovery by immobilized metal affinity chromatography; and (8) other poly(amino acid)s, with binding specificities based on properties of the amino acid side chain. Fusion tails are useful at the lab scale and have potential for enhancing recovery using economical recovery methods that are easily scaled up for industrial downstream processing. Fusion tails can be used to promote secretion of target proteins and can also provide useful assay tags based on enzymatic activity or antibody binding. Many fusion tails do not interfere with the biological activity of the target protein and in some cases have been shown to stabilize it. Nevertheless, for the purification of authentic proteins a site for specific cleavage is often included, allowing removal of the tail after recovery.  相似文献   

20.
A gram-positive bacterial expression vector using Streptococcus gordonii has been developed for expression and secretion, or surface anchoring of heterologous proteins. This system, termed Surface Protein Expression system or SPEX, has been used to express a variety of surface anchored and secreted proteins. In this study, the Mycobacterium xenopi (Mxe) GyrA intein and chitin binding domain from Bacillus circulans chitinase Al were used in conjunction with SPEX to express a fusion protein to facilitate secretion, cleavage, and purification. Streptococcus gordonii was transformed to express a secreted fusion protein consisting of a target protein with a C-terminal intein and chitin-binding domain. Two target proteins, the C-repeat region of the Streptococcus pyogenes M6 protein (M6) and the nuclease A (NucA) enzyme of Staphylococcus aureus, were expressed and tested for intein cleavage. The secreted fusion proteins were purified from culture medium by binding to chitin beads and subjected to reaction conditions to induce intein self-cleavage to release the target protein. The M6 and NucA fusion proteins were shown to bind chitin beads and elute under cleavage reaction conditions. In addition, NucA demonstrated enzyme activity both before and after intein cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号