共查询到20条相似文献,搜索用时 15 毫秒
1.
Damage to DNA involving excision of the nucleobase at the N-glycosidic bond forms abasic sites. If a nucleotide becomes incorporated opposite an unrepaired abasic site during DNA synthesis, most B family polymerases obey the A-rule and preferentially incorporate dAMP without instruction from the template. In addition to being potentially mutagenic, abasic sites provide strong blocks to DNA synthesis. A previous crystal structure of an exonuclease deficient variant of the replicative B family DNA polymerase from bacteriophage RB69 (RB69 gp43 exo-) illustrated these properties, showing that the polymerase failed to translocate the DNA following insertion of dAMP opposite an abasic site. We examine four new structures depicting several steps of translesion DNA synthesis by RB69 gp43 exo-, employing a non-natural purine triphosphate analogue, 5-nitro-1-indolyl-2'-deoxyriboside-5'-triphosphate (5-NITP), that is incorporated more efficiently than dAMP opposite abasic sites. Our structures indicate that a dipole-induced dipole stacking interaction between the 5-nitro group and base 3' to the templating lesion explains the enhanced kinetics of 5-NITP. As with dAMP, the DNA fails to translocate following insertion of 5-NIMP, although distortions at the nascent primer terminus contribute less than previously thought in inducing the stall, given that 5-NIMP preserves relatively undistorted geometry at the insertion site following phosphoryl transfer. An open ternary configuration, novel in B family polymerases, reveals an initial template independent binding of 5-NITP adjacent to the active site of the open polymerase, suggesting that closure of the fingers domain shuttles the nucleotide to the active site while testing the substrate against the template. 相似文献
2.
3.
The role of Ureaplasma nucleoside monophosphate kinases in the synthesis of nucleoside triphosphates
Wang L 《The FEBS journal》2007,274(8):1983-1990
Mollicutes are wall-less bacteria and cause various diseases in humans, animals and plants. They have the smallest genomes with low G + C content and lack many genes of DNA, RNA and protein precursor biosynthesis. Nucleoside diphosphate kinase (NDK), a house-keeping enzyme that plays a critical role in the synthesis of nucleic acids precursors, i.e. NTPs and dNTPs, is absent in all the Mollicutes genomes sequenced to date. Therefore, it would be of interest to know how Mollicutes synthesize dNTPs/NTPs without NDK. To answer this question, nucleoside monophosphate kinases (NMPKs) from Ureaplasma were studied regarding their role in the synthesis of NTPs/dNTPs. In this work, Ureaplasma adenylate kinase, cytidylate kinase, uridylate kinase and thymidylate kinase were cloned and expressed in Escherichia coli. The recombinant enzymes were purified and characterized. These NMPKs are base specific, as indicated by their names, and capable of converting (d)NMPs directly to (d)NTPs. The catalytic rates of (d)NTPs and (d)NDP synthesis by these NMPKs were determined using tritium-labelled (d)NMPs, and the rates for (d)NDP synthesis, in general, were much higher (up to 100-fold) than that of (d)NTP. Equilibrium studies with adenylate kinase suggested that the rates of NTPs/dNTPs synthesis by NMPKs in vivo are probably regulated by the levels of (d)NMPs. These results strongly indicate that NMPKs could substitute the NDK function in vivo. 相似文献
4.
The nucleoside triphosphates 1, containing a photochemically cleavable group, and 2, having one that may be cleaved via palladium catalysis, were prepared as a prelude to investigating sequencing of DNA via sequencing by synthesis. 相似文献
5.
Escherichia coli nucleoside diphosphate (NDP) kinase mutants have an increased frequency of spontaneous mutation, possibly due to uracil misincorporation into DNA. Here we show that NDP kinase mutants are dependent on translesion DNA synthesis, often a mutagenic form of DNA synthesis, to prevent mutagenesis. 相似文献
6.
Translesion synthesis (TLS) appears to be required for most damage-induced mutagenesis in the yeast Saccharomyces cerevisiae, whether the damage arises from endogenous or exogenous sources. Thus, the production of such mutations seems to occur primarily as a consequence of the tolerance of DNA lesions rather than an error-prone repair mechanism. Tolerance via TLS in yeast involves proteins encoded by members of the RAD6 epistasis group for the repair of ultraviolet (UV) photoproducts, in particular two non-essential DNA polymerases that catalyse error-free or error-prone TLS. Homologues of these RAD6 group proteins have recently been discovered in rodent and/or human cells. Furthermore, the operation of error-free TLS in humans has been linked to a reduced risk of UV-induced skin cancer, whereas mutations generated by error-prone TLS may increase the risk of cancer. In this article, we review and link the evidence for translesion synthesis in yeast, and the involvement of nonreplicative DNA polymerases, to recent findings in mammalian cells. 相似文献
7.
8.
Studies on the effects of substrates on RNA polymerase I [EC 2.7.7.6] in vitro showed that nucleolar RNA synthesis was inhibited by an excess of substrate nucleoside triphosphates in the presence of Mg2+. GTP and UTP were more inhibitory than CTP and ATP. These compounds specfically inhibited nucleolar RNA synthesis and a concentration of GTP that strongly inhibited nucleolar RNA synthesis did not inhibit RNA synthesis by partially purified RNA polymerase I. The inhibition of nucleolar RNA synthesis disappeared at pH 9.0 without any change in the apparent Km for GTP or the Vmax of RNA synthesis. 相似文献
9.
10.
11.
The effect of metal ion substitution on the dynamics of translesion DNA synthesis catalyzed by the bacteriophage T4 DNA polymerase was quantitatively evaluated through steady-state and transient kinetic techniques. Substitution of Mn(2+) for Mg(2+) enhances the steady-state rate of dNMP misinsertion opposite an abasic site by 11-34-fold. At the molecular level, the enhancement in translesion DNA synthesis reflects a substantial increase in the rate of the conformational change preceding phosphoryl transfer for all dNTPs that were tested. This is best illustrated by the biphasic pre-steady-state time course of dAMP insertion opposite an abasic site which indicates that a step after chemistry is rate-limiting for steady-state enzyme turnover. Furthermore, the k(pol) value of 40 s(-1) measured under single-turnover reaction conditions is 20-fold greater than the k(cat) value of 2 s(-1) measured for steady-state enzyme turnover. Finally, the low elemental effect ( approximately 2.4-fold reduction in k(pol)) measured by substituting the alpha-thiotriphosphate analogue for dATP further argues that chemistry is not rate-limiting. In contrast to the biphasic insertion of dAMP, pre-steady-state time courses for the insertion of dCMP, dGMP, or dTMP opposite an abasic site were linear. Nearly identical k(pol) values ( approximately 1 s(-1)) were measured for the insertion of dCMP, dGMP, and dTMP opposite the abasic site using single-turnover conditions. However, the large elemental effects of 27 and 70 measured by substituting the alpha-thiotriphosphate analogues for dCTP and dGTP, respectively, suggest that phosphoryl transfer may be the rate-limiting step for their insertion opposite the abasic site. Various models are discussed in an attempt to explain the effect of metal ion substitution on the dynamics of translesion DNA replication. 相似文献
12.
Alexandra Vaisman 《Critical reviews in biochemistry and molecular biology》2018,53(4):382-402
The well-being of all living organisms relies on the accurate duplication of their genomes. This is usually achieved by highly elaborate replicase complexes which ensure that this task is accomplished timely and efficiently. However, cells often must resort to the help of various additional “specialized” DNA polymerases that gain access to genomic DNA when replication fork progression is hindered. One such specialized polymerase family consists of the so-called “translesion synthesis” (TLS) polymerases; enzymes that have evolved to replicate damaged DNA. To fulfill their main cellular mission, TLS polymerases often must sacrifice precision when selecting nucleotide substrates. Low base-substitution fidelity is a well-documented inherent property of these enzymes. However, incorrect nucleotide substrates are not only those which do not comply with Watson–Crick base complementarity, but also those whose sugar moiety is incorrect. Does relaxed base-selectivity automatically mean that the TLS polymerases are unable to efficiently discriminate between ribonucleoside triphosphates and deoxyribonucleoside triphosphates that differ by only a single atom? Which strategies do TLS polymerases employ to select suitable nucleotide substrates? In this review, we will collate and summarize data accumulated over the past decade from biochemical and structural studies, which aim to answer these questions. 相似文献
13.
Relationship between the concentration of nucleoside triphosphates and the rate of synthesis of RNA 总被引:6,自引:0,他引:6
A shift of an Escherichia coli culture from a glucose minimal to an amino acid-enriched medium is shown to cause a transient drop in the levels of the four natural nucleoside triphosp hates and a dramatic increase in the rates of synthesis of two enzymes in the pyrimidine pathway. 相似文献
14.
The replication of damaged DNA templates by translesion synthesis (TLS) is associated with mutagenesis and carcinogenesis. This perspective discusses the different levels at which TLS may be controlled and proposes a model for TLS of severely helix-distorting DNA lesions that includes a decisive role for the Rad9-Hus1-Rad1 DNA-damage-signaling clamp. The dual involvement of this clamp in both DNA-damage signaling and TLS may have profound implications in determining cellular responses to DNA damage. 相似文献
15.
Bridges BA 《DNA Repair》2005,4(5):618-9, 634
Dean Rupp and Paul Howard-Flanders showed that, following exposure to ultraviolet light, bacteria deficient in nucleotide excision repair synthesised DNA with minimal delay and in pieces roughly the size of the distances between pyrimidine dimmers. The discontinuities or gaps between these pieces were subsequently sealed. This led directly to the hypothesis of translesion synthesis. 相似文献
16.
Practical methods for the routine chemical synthesis of 32P-labelled nucleoside di- and triphosphates 总被引:6,自引:0,他引:6
R H Symons 《Biochimica et biophysica acta》1970,209(2):296-305
17.
In their seminal publication describing the structure of the DNA double helix , Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Half a century later, we more fully appreciate what a huge challenge it is to replicate six billion nucleotides with the accuracy needed to stably maintain the human genome over many generations. This challenge is perhaps greater than was realized 50 years ago, because subsequent studies have revealed that the genome can be destabilized not only by environmental stresses that generate a large number and variety of potentially cytotoxic and mutagenic lesions in DNA but also by various sequence motifs of normal DNA that present challenges to replication. Towards a better understanding of the many determinants of genome stability, this chapter reviews the fidelity with which undamaged and damaged DNA is copied, with a focus on the eukaryotic B- and Y-family DNA polymerases, and considers how this fidelity is achieved. 相似文献
18.
Bridges BA 《DNA Repair》2005,4(6):725-6, 739
Evelyn Witkin hypothesized in 1967 that bacterial cell division is controlled by a repressor which, like the lambda repressor, is inactivated by a complex process that starts with the presence of replication-blocking lesions in the DNA. She further suggested that this might not be the only cellular function to show induction by DNA damage. Three years later, Miroslav Radman, in a privately circulated note, proposed that one such function might be an inaccurate (mutation-prone) DNA polymerase under the control of the recA and lexA genes. Thus was born the SOS hypothesis. 相似文献
19.
Takenaka K Ogi T Okada T Sonoda E Guo C Friedberg EC Takeda S 《The Journal of biological chemistry》2006,281(4):2000-2004
DNA lesions that escape excision repair pathways can cause arrested DNA replication. This replication block can be processed by translesion DNA synthesis (TLS), which is carried out by a number of specialized DNA polymerases. A sequential lesion bypass model has been proposed; one of the lesion-specific polymerases inserts nucleotide(s) opposite the damaged template, followed by extension from the inserted nucleotide by the same or another polymerase. Polzeta and Polkappa have been proposed as candidates for executing the extension step in eukaryotic cells. We previously disrupted separately Rev3, the catalytic subunit of Polzeta, and Polkappa in chicken B lymphocyte DT40 cells. We found that each cell line showed significant UV sensitivity, implying that both contribute to UV radiation damage repair. In the present studies we generated REV3(-/-)POLK(/-) double knock-out cells to determine whether they participate in the same or different pathways. The double mutant was viable and proliferated with the same kinetics as parental REV3(-/-) cells. The cells showed the same sensitivity as REV3(-/-) cells to UV, ionizing radiation, and chemical cross-linking agents. In contrast, they were more sensitive than REV3(-/-) cells to monofunctional alkylating agents, even though POLK(/-) cells barely exhibited increased sensitivity to those. Moreover Polk-deficient mouse embryonic stem and fibroblast cells, both of which have previously been shown to be sensitive to UV radiation, also showed moderate sensitivity to methyl methanesulfonate, a monofunctional alkylating agent. These data imply that Polkappa has a function in TLS past alkylated base adducts as well as UV radiation DNA damage in vertebrates. 相似文献
20.
Seela F Feiling E Gross J Hillenkamp F Ramzaeva N Rosemeyer H Zulauf M 《Journal of biotechnology》2001,86(3):269-279
7-Deaza-2'-deoxyadenosine and -guanosine phosphoramidite building blocks as well as corresponding 5'-triphosphate derivatives are described carrying in position 7 substituents such as iodo, hexyn-1-yl or 5-aminopentyn-1-yl residues. The phosphoramidites were used to synthesize a series of modified oligodeoxynucleotides. A systematic study of the thermal stabilities of these oligonucleotide duplexes demonstrated that the 7-substituents are well accommodated in the major groove of B-DNA. The 7-(aminoalkyn-1-yl)-7-deazapurine 2'-deoxynucleoside triphosphates were labeled with bulky fluorophores such as Rhodamine Green(R) or tetramethylrhodamine. 相似文献