首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G C Machray  J Bonner 《Biochemistry》1981,20(19):5466-5470
A deoxyribonucleic acid (DNA) endonucleolytic activity has been purified from a 0.3 M KCl extract of rat liver chromatin by a combination of selective precipitation and ion-exchange and gel filtration chromatography. The purified protein has a molecular weight of 35 000 as determined by Sephadex G-200 gel filtration and sodium dodecyl sulfate-acrylamide gel electrophoresis. The nuclease activity is stimulated by the addition of Mg2+ and thus may represent the Mg2+-activated DNase endogenous to chromatin. The purified enzyme has the ability to make both single-strand nicks and double-strand cuts in DNA.  相似文献   

2.
An enzyme which specifically cleaves very-fast-sedimenting DNA of bacteriophage T4 is synthesized after infection of T4, and its synthesis is controlled by gene 49 [1,2]. This enzyme has been proved to be a DNase [2]. We have purified this DNase 3000-fold from extracts of E. coli infected with T4. The purified preparation was practically free from other DNases, and the DNase activity was not detectable in cells infected with a mutant defective in gene 49. The enzyme activity from cells infected with a temperature-sensitive mutant of gene 49 was also temperature-sensitive, suggesting strongly that gene 49 is a structural gene of the DNase. The molecular weight of the wild-type enzyme was estimated to be 50 x 10(3) by gel filtration chromatography. The purified DNase did not cleave native and denatured DNAs of T3 and T4, but cleaved renatured T3 DNA with enzymatically fragmented T3 DNA, indicating that gaps in the DNA duplex are structures susceptible to the DNase. Cleavage of the hybridized T3 DNA occurred when the fragmented DNA was phosphorylated at either the 3' or 5'-strand termini.  相似文献   

3.
1. Horse liver acid phosphatase was separated into two partially purified fractions differing in molecular weight (enzyme I about 100 00, enzyme II about 25 000). 2. Enzyme I was separated into several subfractions by DEAE-cellulose chromatography and isoelectric focusing. 3. Molecular weight, sedimentation coefficient and effective molecular radii were determined for acid phosphatases I and II by gel filtration and density-gradient centrifugation.  相似文献   

4.
An endodeoxyribonuclease from HeLa cells acting on apurinic/apyrimidinic (AP) sites has been purified to apparent homogeneity as judged by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The presence of Triton X-100 was necessary throughout the purification for stabilization and stimulation of activity. The endonuclease has an apparent native molecular weight of 32,000 determined by molecular sieving and an apparent subunit molecular weight of 41,000 as judged by its electrophoretic mobility in SDS-polyacrylamide gels. The activity has an absolute requirement for Mg2+ or Mn2+ and a broad pH optimum between 6.7 and 9.0 with maximal activity near pH 7.5. The enzyme has no detectable exonuclease activity, nor any endonuclease activity on untreated duplex or single-stranded DNA. It is inhibited by adenine, hypoxanthine, adenosine, AMP, ADP-ribose, and NAD+, but it is unaffected by caffeine, the pyrimidine bases, ADP, ATP, or NADH. The use of a variety of damaged DNA substrates provided no indication that the enzyme acts on other than AP sites. The enzyme appears to cleave AP DNA so as to leave deoxyribose-5-phosphate at the 5' terminus and a 3'-OH at the 3' terminus; it also removes deoxyribose-5-phosphate from AP DNA which has deoxyribose at the 3' terminus. Specific antibody has been produced in rabbits which interacts only with a 41,000-dalton protein present in the purified enzyme (presumably the enzyme itself), as well as with partially purified AP endonuclease fractions from human placenta and fibroblasts.  相似文献   

5.
 通过硫酸铵盐析,DEAE-纤维素柱层析,磷酸纤维素亲和层析及SephadexG-100凝胶过滤法,从噬淀粉芽孢杆菌HI(Bacillus amyloliguefaciens HI)提纯了DNA甲基化酶。用聚丙烯酰胺凝胶电泳检查,已达电泳均一,比活力提高了326倍。并用聚丙烯酰胺梯度凝胶电泳和Sephadex G-100凝胶过滤法测得其天然酶的分子量为273000,又用SDS聚丙烯酰胺凝胶电泳测得它的亚基分子量为34500,故该酶有8个分子量相同的亚基。用凝胶电聚焦法测得其pI_(22 c)=9.0。  相似文献   

6.
A simplified purification procedure for mung bean nuclease has been developed yielding a stable enzyme that is homogeneous in regards to shape and size. The nuclease is a glycoprotein consisting of 29% carbohydrate by weight. It has a molecular weight of 39 000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme contains 1 sulfhydryl group and 3 disulfide bonds per molecule. It has a high content (12.6 mol %) of aromatic residues. Approximately 70% of the enzyme molecules contain a peptide bond cleavage at a single region in the protein. The two polypeptides, 25 000 and 15 000 daltons, are covalently linked by a disulfide bond(s). Both the cleaved and intact forms of the enzyme are equally active in the hydrolysis of the phosphate ester linkages in either DNA, RNA, or adenosine 3'-monophophate. The enzymatic activity of mung bean nuclease can be stabilized at pH 5 in the presence of 0.1 mM zinc acetate, 1.0 mM cysteine, and 0.001% Triton X-100. The enzyme can be inactivated and reactivated by the removal and readdition of Zn2+ or sulfhydryl compounds.  相似文献   

7.
Deoxyribonucleic acid polymerase-beta (EC 2.7.7.7) FROM THE Novikoff hepatoma has been purified over 200 000-fold (based on the increase in specific activity), by ammonium sulfate fractionation and chromatography on DEAE-Sephadex, phosphocellulose, hydroxylapatite, and DNA-cellulose. The enzyme is remarkably stable through all stages of purification until DNA-cellulose chromatography when it must be kept in buffers containing 0.5 M NaCl and 1 mg/ml bovine serum albumin for stability. The enzyme appears to be homogeneous as evidenced by a single stainable band when subjected to electrophoresis in polyacrylamide gels of different porosity. The stainable band corresponds to the DNA polymerase as determined by slicing sister gels and assaying for enzyme activity. The specific activity of the homogeneous preparation is about 60 000 units/mg. The enzyme lacks detectable exonuclease or endonuclease activity. It has a molecular weight of 32 000 as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis. In sucrose gradients, the molecular weight is estimated at 31 000. The isoelectric point of the hydroxylapatite fraction enzyme is 8.5. The Novikoff beta-polymerase requires all four deoxyribonucleoside triphosphates, primer-template, and a divalent cation for maximal activity. The apparent Km for total deoxyribonucleoside triphosphate is 7-8 muM and for DNA 125 mug/ml. Activated DNA, rendered 7% acid soluble by DNase I, is the preferred primer-template, although a number of synthetic polynucleotides can by efficiently utilized, particularly in the presence of Mm2+ optimum is 7 mM; the Mn2+ optimum is 1 mM. The pH optimum is 8.4 in Tris-HCl or 9.2 in glycine buffer. The beta-polymerase is sstimulated about twofold by NaCl or KCl at an optimum of 50-100 MM, and the enzyme maintains considerable activity at high ionic strengths. The DNA polymerase is inhibited by ethanol, acetone, and a variety of known polymerase inhibitors. Glycols stimulate the enzyme as does spermine or spermidine. Unlike most beta-polymerases, the Novikoff enzyme is moderately sensitive to N-ethylmaleimide.  相似文献   

8.
An acid DNase (DNase II) from porcine spleen was purified by sequential chromatography over carboxymethyl-cellulose, blue dextran-Sepharose, hydroxylapatite, and sulfoxyethyl-cellulose. The purified enzyme shows two polypeptide bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis at Mr 35,000 (alpha chain) and 10,000 (beta chain). The sum of the two molecular weights is that of the native enzyme (45,000). Thus, the DNase II molecule is an alpha,beta dimer. The two polypeptides are not joined by disulfide bonds, but can be cross-linked chemically with dimethyl suberimidate. They are dissociable in 8 M urea, after which they can be isolated by gel filtration on Sephadex G-100, eluting with 1 M acetic acid. Once dissociated, the two polypeptides cannot be reassociated to regenerate DNase II activity. The sum of the amino acid compositions of the two polypeptides is that of the native enzyme, and both contain carbohydrate. The beta chain is devoid of histidine, half-cystine, valine, and methionine. The NH2-terminal amino acid of the alpha chain is leucine, while that of the beta chain cannot be identified by either dansylation or Edman degradation. Alkylation of an essential histidine residue of DNase II occurs on incubation of the enzyme with [2-14C] ICH2COOH (Oshima, R. G., and Price, P. A. (1973) J. Biol. Chem. 248, 7522-7526). Radioactivity is found only in the alpha chain. After hydrolysis of the alpha chain with trypsin, chymotrypsin, and thermolysin, radioactive peptides were isolated by gel filtration on Sephadex G-25 and reversed-phase high performance liquid chromatography. Sequence analyses of the radioactive peptides show alkylation of 1 of 9 histidines in the entire amino acid sequence of DNase II. The sequence around this histidine, determined by manual microsequencing and by the release of amino acids with carboxypeptidases A and B, is Ala-Thr-Glu-Asp-His-Ser-Lys-Trp.  相似文献   

9.
DNA polymerase was extracted from HeLa cell mitochondria with high salt concentrations (1M) and Nonidet-P 40 (0.2%). Subsequently the enzyme was purified stepwise by DEAE-cellulose-, phosphocellulose-, hydroxyapatite-Ultrogel-, DNA-cellulose chromatography and preparative polyacrylamide gel electrophoresis. The purified enzyme exhibited a molecular weight between 100 000 – 110 000 and was devoid of endonuclease activity. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of this enzyme preparation revealed two protein bands suggesting that the mitochondrial DNA polymerase might consist of two subunits with the molecular weights of 45 000 and 60 000.  相似文献   

10.
The tRNA modifying enzyme, S-adenosylmethionine:tRNA(guanine-7-)-methyltransferase, has been extensively purified from Salmonella typhimurium. A rapid and efficient purification method using phosphocellulose chromatography followed by ammonium sulfate precipitation and Sephadex G-100 gel filtration is described. The enzyme appears to be a single polypeptide chain with a molecular weight of approximately 25 000--30 000 daltons. The Km for S-adenosylmethionine and for undermethylated tRNA is 53 microM and 3.4 microM, respectively. The methylation reaction is dependent on added monovalent or divalent cations; 5 mM spermidine, 3 mM MgCl2 and 1 mM spermine are the most effective. The enzyme, though not homogeneous, is free from contaminating ribonucleases and other tRNA methyltransferases.  相似文献   

11.
Human pancreatic DNase I was purified extensively from duodenal juice of healthy subjects by a procedure including ammonium sulfate fractionation, ethanol fractionation, phosphocellulose fractionation, isoelectric focusing, and gel filtration. The final preparation was free of DNase II, pancreatic RNase, alkaline phosphatase, and protease. The enzyme had a molecular weight of approximately 30,000, as determined by gel filtration on Sephadex G-100, and showed maximum activity at pH 7.2-7.6. It required divalent cations for activity, and caused single-strand breaks by endonucleolytic attack on double- as well as single-stranded DNA molecules. The enzyme was inhibited by actin and bovine pancreatic DNase I antibody.  相似文献   

12.
A novel phosphodiesterase from cultured tobacco cells.   总被引:8,自引:0,他引:8  
A novel phosphodiesterase was purified from cultured tobacco cells to a state which appeared homogeneous on polyacrylamide gel electrophoresis. The enzyme hydrolyzed various phosphodiester and pyrophosphate bonds, including p-nitrophenyl thymidine 5'-phosphate, p-nitrophenyl thymidine 3'-phosphate, cyclic nucleotides, ATP, NAD+, inorganic pyrophosphate, dinucleotides, and poly(adenosine diphosphate ribose), which is a polymer synthesized from NAD+. However, it did not hydrolyze highly polymerized polynucleotides. The molecular weight of the native enzyme was estimated as 270 000 to 280 000 by gel filtration on Sephadex G-200 and Bio-Gel A-5m. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the enzyme was composed of subunits with molecular weights calculated to be 75 000. The enzyme did not require divalent cations for activity being fully active in the presence of ethylenediaminetetraacetic acid. The pH optimum for the enzyme was approximately 6 with p-ni-trophenyl thymidine 5'-phosphate or adenosine cyclic 3',5'monophosphate, and 5.3 with NAD+. Double reciprocal plots of the initial velocity against the concentration of p-nitrophenyl thymidine 5'-phosphate gave two apparent Km values of 0.17 and 1.3 mM, suggesting the presence of at least two active sites.  相似文献   

13.
A DNA-dependent ATPase formed after T4 phage infection is purified to apparent homogeneity. The molecular weight of the purified enzyme is 50 000 when determined by glycerol gradient centrifugation and by sodium dodecylsulfate/polyacrylamide gel electrophoresis. The enzyme at an earlier stage in purification (prior to DEAE-cellulose chromatography) exists as a complex with a molecular weight of 100000. However, molecular weight determinations by Sephadex gel chromatography give considerably decreased molecular weights for the complex and for the enzyme after DEAE-cellulose chromatography. The enzyme is stimulated to varying degrees by a variety of single-stranded polydeoxyribonucleotides or by single-stranded DNA, but no chemical change in the polynucleotide has been detected as a result of the enzyme action.  相似文献   

14.
The protein kinase associated with virions of frog virus 3 was purified to apparent homogeneity by ion exchange chromatography and gel filtration. The enzyme protein appeared as a single polypeptide of molecular weight 50,000 to 55,000 as determined by gel filtration, glycerol gradient sedimentation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and comprised approximately 0.4% of the total virion protein. The activity was classified as a cyclic nucleotide-independent protein kinase as it was not effected by cyclic adenosine 3':5'-monophosphate, cyclic guanosine 3':5'-monophosphate, or inhibited by a cyclic nucleotide-dependent protein kinase inhibitor protein, and utilized GTP as well as ATP as a phosphate donor. The greatest rates of phosphorylation were obtained with acidic phosphoprotein substrates such as casein or phosvitin, although potential physiological substrates for this activity included specific virion polypeptides of frog virus.  相似文献   

15.
Recombinant human deoxyribonuclease I (DNase I) is an important clinical agent that is inhaled into the airways where it degrades DNA to lower molecular weight fragments, thus reducing the viscoelasticity of sputum and improving the lung function of cystic fibrosis patients. To investigate DNases with potentially improved properties, we constructed a molecular fusion of human DNase I with the hinge and Fc region of human IgG1 heavy chain, creating a DNase I-Fc fusion protein. Infection of Sf9 insect cells with recombinant baculovirus resulted in the expression and secretion of the DNase I-Fc fusion protein. The fusion protein was purified from the culture medium using protein A affinity chromatography followed by desalting by gel filtration and was characterized by amino-terminal sequence, amino acid composition, and a variety of enzyme-linked immunosorbent assays (ELISA) and activity assays. The purified fusion contains DNase I, as determined by a DNase I ELISA and an actin-binding ELISA, and an intact antibody Fc region, which was quantified by an Fc ELISA, in a 2:1 stoichiometric ratio, respectively. The dimeric DNase I-Fc fusion was functionally active in enzymatic DNA digestion assays, albeit about 10-fold less than monomeric DNase I. Cleavage of the DNase I-Fc fusion by papain resulted in a specific activity comparable to the monomeric enzyme. Salt was inhibitory for wild type monomeric DNase I but actually enhanced the activity of the dimeric DNase I-Fc fusion. The DNase I-Fc fusion protein was also less Ca2+-dependent than DNase I itself. These results are consistent with a higher affinity of the dimeric fusion protein to DNA than monomeric DNase I. The engineered DNase I-Fc fusion protein described herein has properties that may have clinical benefits.  相似文献   

16.
Bordetella pertussis, the bacterium responsible for whooping cough, releases a soluble, calmodulin-sensitive adenylate cyclase into its culture medium. B. pertussis mutants deficient in this enzyme are avirulent, indicating that the adenylate cyclase contributes to the pathogenesis of the disease. It has been proposed that B. pertussis adenylate cyclase may enter animal cells and increase intracellular adenosine cyclic 3',5'-phosphate (cAMP) levels. We have purified the enzyme extensively from culture medium using anion-exchange chromatography in the presence and absence of calmodulin and gel filtration chromatography. The enzyme was purified 1600-fold to a specific activity of 608 mumol of cAMP min-1 mg-1 and was free of islet activating protein. The molecular weight of the enzyme was 43 400 in the absence of calmodulin and 54 200 in the presence of calmodulin. The Km of the bacterial enzyme for adenosine 5'-triphosphate was 2.0 mM, whereas the Km of the calmodulin-sensitive adenylate cyclase from bovine brain was 0.07 mM. Although the enzyme was not purified to homogeneity, its turnover number of 27 000 min-1 is the highest documented for any adenylate cyclase preparation.  相似文献   

17.
Arylsulphatase C (EC 3.1.6.1) has been purified 300-fold from human placental microsomes using a four step procedure involving solubilization with Triton X-100, chromatography on hydroxyapatite, column chromatofocussing and ion-exchange chromatography on DEAE-Sepharose. The purified enzyme is electrophoretically homogeneous and has a molecular weight of 440 000 as determined by polyacrylamide gradient gel electrophoresis. On analysis of the preparation by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate a polypeptide of molecular weight 74 000 was observed, suggesting that the enzyme as purified may be a hexamer. The behaviour of the enzyme during chromatofocussing indicates the enzyme has a pI of 6.56. Steroid sulphatase, as measured by activity towards dehydroepiandrosterone sulphate, co-purifies with arylsulphatase C suggesting that both activities are due to a single enzyme.  相似文献   

18.
H Okazaki  C Niedergang  P Mandel 《Biochimie》1980,62(2-3):147-157
The mechanism of poly ADPR synthesis and the transfer of poly ADPR to histone H1 molecule by electrophoretically homogenous calf thymus poly ADPR polymerase containing DNA was examined. 1) An acid insoluble radioactive complex (I) was obtained after incubation of purified enzyme with [3H] NAD. The stability of (I) was examined by SDS-polyacrylamide gel electrophoresis. The complex (I) was stable against acid, SDS, urea, DNase and RNase, but labile against pronase, trypsin, alkali and snake venom phosphodiesterase treatment. The molecular weight of (I) was about 130 000 daltons estimated by SDS-gel electrophoresis. The radioactive products of successive alkali, venom phosphodiesterase and Pronase hydrolysis of (I) were PR-AMP and AMP. The mean chain length of poly ADPR of (I) was 20--30. These results suggest that the complex (I) is poly ADP-ribosylated poly ADPR polymerase. 2) Besides (I), a second radioactive peak (II) was observed when acid insoluble products obtained from an incubation mixture containing purified poly ADPR polymerase, [3H] NAD and purified histone H1 were analyzed on SDS-polyacrylamide gel electrophoresis. The molecular weight of (II) was estimated to be about 23 000 daltons. The complex (II) is eluted like histone H1 on CM-cellulose columns and hydrolyzed by alkali, trypsin and snake venom phosphodiesterase but not by DNase, or RNase. The comples (II) was extracted selectively by 5 per cent perchloric acid or 5 per cent trichloroacetic acid from mixture of (I) and (II). The mean chain length of poly ADPR of complex (II) and 5--20; these results suggest that the complex (II) is poly ADP-ribosylated histone H1. 3) Results 1) and 2) indicate that purified DNA containing, thus DNA independent, poly ADPR polymerase catalyzes two different reactions, the ADPR transfer onto the enzyme itself and onto histone H1 and the elongation of ADPR chains. Dimeric forms of ADP-ribosylated histone H1 was not observed. Free poly ADPR was observed only when very small quantities of enzyme were used for incubation.  相似文献   

19.
The constitutive NADP+-dependent alcohol dehydrogenase from Acinetobacter calcoaceticus can be accumulated about 50 fold in 3 purification steps. The end-product shows in the analytical polyacrylamide gel electrophoresis only one active enzyme band. The molecular weight of the enzyme was determined to be 235,000 by gel chromatography on Sephadex G 200, the smallest subunit shows a molecular weight of 61 000 on SDS electrophoresis. The isoelectric point is at 5.84. The KM values determined with primary aliphatic alcohols diminish in the range of the homologous order (C2--C10) with growing chain length. The KM value for hexanal is about 20 fold less than that for 1-hexanol.  相似文献   

20.
Thermus aquaticus DNA polymerase was shown to contain an associated 5' to 3' exonuclease activity. Both polymerase and exonuclease activities cosedimented with a molecular weight of 72,000 during sucrose gradient centrifugation. Using a novel in situ activity gel procedure to simultaneously detect these two activities, we observed both DNA polymerase and exonuclease in a single band following either nondenaturing or denaturing polyacrylamide gel electrophoresis: therefore, DNA polymerase and exonuclease activities reside in the same polypeptide. As determined by SDS-polyacrylamide gel electrophoresis this enzyme has an apparent molecular weight of 92,000. The exonuclease requires a divalent cation (MgCl2 or MnCl2), has a pH optimum of 9.0 and excises primarily deoxyribonucleoside 5'-monophosphate from double-stranded DNA. Neither heat denatured DNA nor the free oligonucleotide (24-mer) were efficient substrates for exonuclease activity. The rate of hydrolysis of a 5'-phosphorylated oligonucleotide (24-mer) annealed to M13mp2 DNA was about twofold faster than the same substrate containing a 5'-hydroxylated residue. Hydrolysis of a 5'-terminal residue from a nick was preferred threefold over the same 5'-end of duplex DNA. The 5' to 3' exonuclease activity appeared to function coordinately with the DNA polymerase to facilitate a nick translational DNA synthesis reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号