首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ruminococcus albus is a typical ruminal bacterium digesting cellulose and hemicellulose. Cellobiose 2-epimerase (CE; EC 5.1.3.11), which converts cellobiose to 4-O-β-d-glucosyl-d-mannose, is a particularly unique enzyme in R. albus, but its physiological function is unclear. Recently, a new metabolic pathway of mannan involving CE was postulated for another CE-producing bacterium, Bacteroides fragilis. In this pathway, β-1,4-mannobiose is epimerized to 4-O-β-d-mannosyl-d-glucose (Man-Glc) by CE, and Man-Glc is phosphorolyzed to α-d-mannosyl 1-phosphate (Man1P) and d-glucose by Man-Glc phosphorylase (MP; EC 2.4.1.281). Ruminococcus albus NE1 showed intracellular MP activity, and two MP isozymes, RaMP1 and RaMP2, were obtained from the cell-free extract. These enzymes were highly specific for the mannosyl residue at the non-reducing end of the substrate and catalyzed the phosphorolysis and synthesis of Man-Glc through a sequential Bi Bi mechanism. In a synthetic reaction, RaMP1 showed high activity only toward d-glucose and 6-deoxy-d-glucose in the presence of Man1P, whereas RaMP2 showed acceptor specificity significantly different from RaMP1. RaMP2 acted on d-glucose derivatives at the C2- and C3-positions, including deoxy- and deoxyfluoro-analogues and epimers, but not on those substituted at the C6-position. Furthermore, RaMP2 had high synthetic activity toward the following oligosaccharides: β-linked glucobioses, maltose, N,N′-diacetylchitobiose, and β-1,4-mannooligosaccharides. Particularly, β-1,4-mannooligosaccharides served as significantly better acceptor substrates for RaMP2 than d-glucose. In the phosphorolytic reactions, RaMP2 had weak activity toward β-1,4-mannobiose but efficiently degraded β-1,4-mannooligosaccharides longer than β-1,4-mannobiose. Consequently, RaMP2 is thought to catalyze the phosphorolysis of β-1,4-mannooligosaccharides longer than β-1,4-mannobiose to produce Man1P and β-1,4-mannobiose.  相似文献   

3.
Campylobacter jejuni is the most common bacterium that causes diarrhea worldwide, and chickens are considered the main reservoir of this pathogen. This study investigated the effects of serial truncation of lipooligosaccharide (LOS), a major component of the outer membrane of C. jejuni, on its bile resistance and intestinal colonization ability in chickens. Genes encoding manno-heptose synthetases or glycosyltransferases were inactivated to generate isogenic mutants. Serial truncation of the LOS core oligosaccharide caused a stepwise increase in susceptibilities of two C. jejuni strains, NCTC 11168 and 81-176, to bile acids. Inactivation of hldE, hldD, or waaC caused severe truncation of the core oligosaccharide, which greatly increased the susceptibility to bile acids. Both wild-type strains grew normally in chicken intestinal extracts, whereas the mutants with severe oligosaccharide truncation were not detected 12 h after inoculation. These mutants attained viable bacterial counts in the bile acid-free extracts 24 h after inoculation. The wild-type strain 11-164 was present in the cecal contents at >107 CFU/g on 5 days after challenge infection and after this time period, whereas its hldD mutant was present at <103 CFU/g throughout the experimental period. Trans-complementation of the hldD mutant with the wild-type hldD allele completely restored the in vivo colonization level to that of the wild-type strain. Mutants with a shorter LOS had higher hydrophobicities. Thus, the length of the LOS core oligosaccharide affected the surface hydrophobicity and bile resistance of C. jejuni as well as its ability to colonize chicken intestines.  相似文献   

4.
Cellobiose 2-epimerase (CE) reversibly converts d-glucose residues into d-mannose residues at the reducing end of unmodified β1,4-linked oligosaccharides, including β-1,4-mannobiose, cellobiose, and lactose. CE is responsible for conversion of β1,4-mannobiose to 4-O-β-d-mannosyl-d-glucose in mannan metabolism. However, the detailed catalytic mechanism of CE is unclear due to the lack of structural data in complex with ligands. We determined the crystal structures of halothermophile Rhodothermus marinus CE (RmCE) in complex with substrates/products or intermediate analogs, and its apo form. The structures in complex with the substrates/products indicated that the residues in the β5-β6 loop as well as those in the inner six helices form the catalytic site. Trp-322 and Trp-385 interact with reducing and non-reducing end parts of these ligands, respectively, by stacking interactions. The architecture of the catalytic site also provided insights into the mechanism of reversible epimerization. His-259 abstracts the H2 proton of the d-mannose residue at the reducing end, and consistently forms the cis-enediol intermediate by facilitated depolarization of the 2-OH group mediated by hydrogen bonding interaction with His-200. His-390 subsequently donates the proton to the C2 atom of the intermediate to form a d-glucose residue. The reverse reaction is mediated by these three histidines with the inverse roles of acid/base catalysts. The conformation of cellobiitol demonstrated that the deprotonation/reprotonation step is coupled with rotation of the C2-C3 bond of the open form of the ligand. Moreover, it is postulated that His-390 is closely related to ring opening/closure by transferring a proton between the O5 and O1 atoms of the ligand.  相似文献   

5.
A particulate enzyme system from Phaseolus aureus seedlings catalyzes the synthesis of alkali insoluble polysaccharide material from UDP-d-glucose. 80 to 90% of the d-glucose units are joined by β-1,4 linkages, the remainder being combined by β-1,3 linkages. It is not known whether the material is a single polysaccharide or a mixture.  相似文献   

6.
Campylobacter is a normal inhabitant of the chicken gut. Pathogenic infection with this organism in humans is accompanied by severe inflammation of the intestinal mucosal surface. The aim of this study was to evaluate the ability of Lactobacillus gasseri SBT2055 (LG2055) to inhibit the adhesion and invasion of Campylobacter jejuni in vitro and to suppress C. jejuni colonization of chicks in vivo. Pretreatment with LG2055 significantly reduced adhesion to and invasion of a human epithelial cell line, Intestine 407, by C. jejuni 81–176. Methanol (MeOH)-fixed LG2055 also reduced infection by C. jejuni 81–176. However, proteinase K (ProK)-treated LG2055 eliminated the inhibitory effects. Moreover, LG2055 co-aggregated with C. jejuni 81–176. ProK treatment prevented this co-aggregation, indicating that the co-aggregation phenotype mediated by the proteinaceous cell-surface components of LG2055 is important for reducing C. jejuni 81–176 adhesion and invasion. In an in vivo assay, oral doses of LG2055 were administered to chicks daily for 14 days after oral inoculation with C. jejuni 81–176. At 14 days post-inoculation, chicks treated with LG2055 had significantly reduced cecum colonization by C. jejuni. Reduction in the number of C. jejuni 81–176 cells adhering to and internalized by human epithelial cells demonstrated that LG2055 is an organism that effectively and competitively excludes C. jejuni 81–176. In addition, the results of the chick colonization assay suggest that treatment with LG2055 could be useful in suppressing C. jejuni colonization of the chicks at early growth stages.  相似文献   

7.

Objective

Molecular mimicry between Campylobacter jejuni lipo-oligosaccharides (LOSs) and human gangliosides GM1 and GD1a induces the production of anti-GM1 and anti-GD1a antibodies, and the development of Guillain-Barré syndrome. Complexes of two different gangliosides form new molecular shapes capable of enhancing recognition by anti-ganglioside antibodies. To test the hypothesis that the complex of GM1-like and GD1a-like LOSs of C. jejuni induces the development of anti-GM1b antibodies in Guillain-Barré syndrome patients.

Methods

Mass spectrometry analysis determined the LOS outer core structures, with which mice were immunized. IgG antibodies to single gangliosides and complex of gangliosides were tested in sera from Guillain-Barré syndrome patients from whom C. jejuni LOS had been isolated.

Results

Two isolates from GBS patients who had anti-GM1b antibodies, but neither anti-GM1 nor -GD1a antibodies, expressed both GM1-like and GD1a-like LOSs, but not GM1b-like LOS. Anti-GM1b antibodies were induced in one of the mice immunized with the C. jejuni bearing GM1-like and GD1a-like LOS. Sera from 20 patients had antibodies to the complex of GM1 and GD1a, all of which carried anti-GM1b reactivity. Five of these sera harbored neither anti-GM1 nor anti-GD1a antibodies. IgG antibodies to the complex were absorbed by GM1b, but by neither GM1 nor GD1a.

Conclusions

GM1-like and GD1a-like LOSs form a GM1b epitope, inducing the development of anti-GM1b antibodies in patients with Guillain-Barré syndrome subsequent to C. jejuni enteritis. Here, we present a new paradigm that the complex of two different structures forms a new molecular mimicry, inducing the production of autoantibodies.  相似文献   

8.
Since the discovery that Campylobacter (C.) jejuni produces Autoinducer 2 (AI-2), various studies have been conducted to explore the function and role of AI-2 in C. jejuni. However, the interpretation of these analyses has been complicated by differences in strain backgrounds, kind of mutation and culture conditions used. Furthermore, all research on AI-2 dependent phenotypes has been conducted with AI-2 synthase (luxS) mutants. This mutation also leads to a disruption of the activated-methyl-cycle. Most studies lack sufficient complementation resulting in not knowing whether phenotypes of luxS mutants depend on disrupted metabolism or lack of AI-2. Additionally, no AI-2 receptor has been found yet. All this contributes to an intensive discussion about the exact role of AI-2 in C. jejuni. Therefore, we examined the impact of different experiment settings on three different C. jejuni luxS mutants on growth and motility (37°C and 42°C). Our study showed that differing phenotypes of C. jejuni luxS mutants depend on strain background, mutation strategy and culture conditions. Furthermore, we complemented experiments with synthetic AI-2 or homocysteine as well as the combination of both. Complementation with AI-2 and AI-2+homocysteine significantly increased the cell number of C. jejuni NCTC 11168ΔluxS in stationary phase compared to the non-complemented C. jejuni NCTC 11168ΔluxS mutant. Genetic complementation of both C. jejuni 81-176 luxS mutants resulted in wild type comparable growth curves. Also swarming ability could be partially complemented. While genetic complementation restored swarming abilities of C. jejuni 81-176ΔluxS, it did not fully restore the phenotype of C. jejuni 81-176::luxS, which indicates that compensatory mutations in other parts of the chromosome and/or potential polar effects may appear in this mutant strain. Also with neither synthetic complementation, the phenotype of the wild type-strains was achieved, suggesting yet another reason for differing phenotypes other than communication and methionine metabolism for C. jejuni luxS mutants.  相似文献   

9.
10.
A β-phosphoglucomutase (β-PGM) mutant of Lactococcus lactis subsp. lactis ATCC 19435 was constructed using a minimal integration vector and double-crossover recombination. The mutant and the wild-type strain were grown under controlled conditions with different sugars to elucidate the role of β-PGM in carbohydrate catabolism and anabolism. The mutation did not significantly affect growth, product formation, or cell composition when glucose or lactose was used as the carbon source. With maltose or trehalose as the carbon source the wild-type strain had a maximum specific growth rate of 0.5 h−1, while the deletion of β-PGM resulted in a maximum specific growth rate of 0.05 h−1 on maltose and no growth at all on trehalose. Growth of the mutant strain on maltose resulted in smaller amounts of lactate but more formate, acetate, and ethanol, and approximately 1/10 of the maltose was found as β-glucose 1-phosphate in the medium. Furthermore, the β-PGM mutant cells grown on maltose were considerably larger and accumulated polysaccharides which consisted of α-1,4-bound glucose units. When the cells were grown at a low dilution rate in a glucose and maltose mixture, the wild-type strain exhibited a higher carbohydrate content than when grown at higher growth rates, but still this content was lower than that in the β-PGM mutant. In addition, significant differences in the initial metabolism of maltose and trehalose were found, and cell extracts did not digest free trehalose but only trehalose 6-phosphate, which yielded β-glucose 1-phosphate and glucose 6-phosphate. This demonstrates the presence of a novel enzymatic pathway for trehalose different from that of maltose metabolism in L. lactis.  相似文献   

11.
12.
Campylobacter jejuni 81-176 lipooligosaccharide (LOS) is composed of two covalently linked domains: lipid A, a hydrophobic anchor, and a nonrepeating core oligosaccharide, consisting of an inner and outer core region. We report the isolation and characterization of the deepest rough C. jejuni 81-176 mutant by insertional mutagenesis into the waaC gene, encoding heptosyltransferase I that catalyzes the transfer of the first L-glycero-D-manno-heptose residue to 3-deoxy-D-manno-octulosonic residue (Kdo)-lipid A. Tricine gel electrophoresis, followed by silver staining, showed that site-specific mutation in the waaC gene resulted in the expression of a severely truncated LOS compared to wild-type strain 81-176. Gas-liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy showed that the waaC LOS species lacked all sugars distal to Kdo-lipid A. Parallel structural studies of the capsular polysaccharides of the wild-type strain 81-176 and waaC mutant revealed loss of the 3-O-methyl group in the waaC mutant. Complementation of the C. jejuni mutant by insertion of the wild-type C. jejuni waaC gene into a chromosomal locus resulted in LOS and capsular structures identical to those expressed in the parent strain. We also report here the presence of O-methyl phosphoramidate in wild-type strain 81-176 capsular polysaccharide.  相似文献   

13.
Particulate enzyme preparations from Phaseolus aureus hypocotyls catalyze the formation of an alkali insoluble β, 1 → 4 linked [14C]-glucan using UDP-α-d [14C]-glucose as substrate. Particulate enzymes prepared from root tissue also catalyzed the production of β, 1 → 4 glucan. UDP-β-d-[14C]-glucose would not serve as a substrate for these enzymes. The presence or absence of β, 1 → 4 glucan synthetase activity was independent of tissue source, substrate concentration, or homogenization method.  相似文献   

14.
Significant interest in studying the lipooligosaccharide (LOS) of Campylobacter jejuni has stemmed from its potential role in postinfection paralytic disorders. In this study we present the results of PCR screening of five LOS locus classes (A, B, C, D, and E) for a collection of 116 C. jejuni isolates from chicken meat (n = 76) and sporadic human cases of diarrhea (n = 40). We correlated LOS classes with clonal complexes (CC) assigned by multilocus sequence typing (MLST). Finally, we evaluated the invasion potential of a panel of 52 of these C. jejuni isolates for Caco-2 cells. PCR screening showed that 87.1% (101/116) of isolates could be assigned to LOS class A, B, C, D, or E. Concordance between LOS classes and certain MLST CC was revealed. The majority (85.7% [24/28]) of C. jejuni isolates grouped in CC-21 were shown to express LOS locus class C. The invasion potential of C. jejuni isolates possessing sialylated LOS (n = 29; classes A, B, and C) for Caco-2 cells was significantly higher (P < 0.0001) than that of C. jejuni isolates with nonsialylated LOS (n = 23; classes D and E). There was no significant difference in invasiveness between chicken meat and human isolates. However, C. jejuni isolates assigned to CC-206 (correlated with LOS class B) or CC-21 (correlated with LOS class C) showed statistically significantly higher levels of invasion than isolates from other CC. Correlation between LOS classes and CC was further confirmed by pulsed-field gel electrophoresis. The present study reveals a correlation between genotypic diversity and LOS locus classes of C. jejuni. We showed that simple PCR screening for C. jejuni LOS classes could reliably predict certain MLST CC and add to the interpretation of molecular-typing results. Our study corroborates that sialylation of LOS is advantageous for C. jejuni fitness and virulence in different hosts. The modulation of cell surface carbohydrate structure could enhance the ability of C. jejuni to adapt to or survive in a host.Campylobacter jejuni is an important human enteric pathogen worldwide (3, 7, 26). Infected humans exhibit a range of clinical spectra, from mild, watery diarrhea to severe inflammatory diarrhea (28). Factors influencing the virulence of C. jejuni include motility, chemotaxis, the ability to adhere to and invade intestinal cells, intracellular survival, and toxin production (28, 30, 52). Besides its role in human enteric illnesses, C. jejuni is a predominant infectious trigger of acute postinfectious neuropathies, such as Guillain-Barré syndrome (GBS) and Miller Fisher syndrome (MFS) (1). Significant interest in studying the structure and biosynthesis of the core lipooligosaccharide (LOS) of C. jejuni has resulted from its potential role in these paralytic disorders. Many studies have now provided convincing evidence that molecular mimicry between C. jejuni LOS and gangliosides in human peripheral nerve tissue plays an important causal role in the pathogenesis of GBS/MFS (16, 17, 19, 21).Initial comparative studies of C. jejuni LOS structure and the corresponding DNA sequences of the LOS biosynthesis loci identified eight different LOS locus classes. Three of these classes, A, B, and C, harbor sialyltransferase genes involved in incorporating sialic acid into the LOS (42). Sialylation of the LOS core was found to be associated with ganglioside mimicry and also to affect immunogenicity and serum resistance (21). Recently, Parker et al. (43) identified 11 additional LOS classes on the basis of the sequence at the LOS biosynthesis locus. Their investigation also suggested that the LOS loci of C. jejuni strains are hot spots for genetic exchange, which can lead to mosaicism.Despite evidence on locus variation within C. jejuni LOS classes, PCR-based screening of a collection of 123 clinical and environmental strains showed that almost 60% of C. jejuni strains belong to class A, B, or C (42). Additionally, Godschalk et al. (16) found that 53% (9/17) of GBS-associated C. jejuni strains possessed LOS of class A, while 64% (35/55) of the non-GBS-associated isolates possessed LOS of class A, B, or C, and 62% (13/21) of enteritis-associated Campylobacter strains expressed LOS of class A, B, or C, as well. This relative representation of sialylated LOS classes A, B, and C was hypothesized to be advantageous for C. jejuni in the colonization and infection of various hosts (42, 49). Recently, Louwen et al. (34) demonstrated that C. jejuni strains possessing sialylated LOS (class A, B, or C) invade Caco-2 cells significantly better than nonsialylated strains (with class D or E). Knockout mutagenesis of the LOS sialyltransferase Cst-II in three C. jejuni strains revealed a significant reduction in the invasion potentials of the mutant strains (34). The possible role of LOS in adhesion and invasion was previously highlighted in the work of Perera et al. (44) and Kanipes et al. (29), where a C. jejuni waaF mutant strain showed significant reductions in levels of adherence to and invasion of INT-407 cells.LOS class diversity in C. jejuni strains isolated from chicken meat, an important source of human campylobacteriosis (6, 7, 26), has hardly been studied at all. In addition, the role of LOS class variation in the invasion potential of C. jejuni strains from chicken meat still needs to be explored. The epidemiological relevance of C. jejuni LOS gene screening can be further elaborated by correlating its results with results from other molecular-typing tools (e.g., multilocus sequence typing [MLST] and pulsed-field gel electrophoresis [PFGE]). In the present study, we screened a diverse collection of C. jejuni isolates, from consumer-packaged chicken meats and from sporadic human cases of diarrhea, by PCR for five LOS classes (A, B, C, D, and E). Then we correlated the LOS classes assigned by PCR screening with the genotypes assigned by PFGE and MLST. Finally, we tested the invasion potentials of a representative subset of C. jejuni isolates in relation to their LOS classes and genotypic diversity.  相似文献   

15.
Campylobacter jejuni is an important cause of human foodborne gastroenteritis; strategies to prevent infection are hampered by a poor understanding of the complex interactions between host and pathogen. Previous work showed that C. jejuni could bind human histo-blood group antigens (BgAgs) in vitro and that BgAgs could inhibit the binding of C. jejuni to human intestinal mucosa ex vivo. Here, the major flagella subunit protein (FlaA) and the major outer membrane protein (MOMP) were identified as BgAg-binding adhesins in C. jejuni NCTC11168. Significantly, the MOMP was shown to be O-glycosylated at Thr268; previously only flagellin proteins were known to be O-glycosylated in C. jejuni. Substitution of MOMP Thr268 led to significantly reduced binding to BgAgs. The O-glycan moiety was characterized as Gal(β1–3)-GalNAc(β1–4)-GalNAc(β1–4)-GalNAcα1-Thr268; modelling suggested that O-glycosylation has a notable effect on the conformation of MOMP and this modulates BgAg-binding capacity. Glycosylation of MOMP at Thr268 promoted cell-to-cell binding, biofilm formation and adhesion to Caco-2 cells, and was required for the optimal colonization of chickens by C. jejuni, confirming the significance of this O-glycosylation in pathogenesis.  相似文献   

16.
Tsai CM  Hassid WZ 《Plant physiology》1973,51(6):998-1001
UDP-d-glucose, at a micromolar level in the presence of MgCl2 and oat (Avena sativa) coleoptile particulate enzyme which contains both β-(1 → 3) and β-(1 → 4) glucan synthetases, produces glucan with mainly β-(1 → 4) glucosyl linkages. An activation of β-(1 → 3) glucan synthetase by UDP-d-glucose and a decrease in the formation of β-(1 → 3) glucan in the presence of MgCl2 have been observed. However, at high substrate concentration (≥ 10−4m), the activation of β-(1 → 3) glucan synthetase is so pronounced that the formation of β-(1 → 3) glucosyl linkage predominates in synthesized glucan regardless of the presence of MgCl2. These observations may explain the striking shift in the composition of glucan of particulate enzyme from a β-(1 → 4) to β-(1 → 3) glucosyl linkage when UDP-d-glucose concentration is raised from a low concentration (≤ 10−5m) to a higher concentration (≥ 10−4m).  相似文献   

17.
Many filamentous fungi produce β-mannan-degrading β-1,4-mannanases that belong to the glycoside hydrolase 5 (GH5) and GH26 families. Here we identified a novel β-1,4-mannanase (Man134A) that belongs to a new glycoside hydrolase (GH) family (GH134) in Aspergillus nidulans. Blast analysis of the amino acid sequence using the NCBI protein database revealed that this enzyme had no similarity to any sequences and no putative conserved domains. Protein homologs of the enzyme were distributed to limited fungal and bacterial species. Man134A released mannobiose (M2), mannotriose (M3), and mannotetraose (M4) but not mannopentaose (M5) or higher manno-oligosaccharides when galactose-free β-mannan was the substrate from the initial stage of the reaction, suggesting that Man134A preferentially reacts with β-mannan via a unique catalytic mode. Man134A had high catalytic efficiency (kcat/Km) toward mannohexaose (M6) compared with the endo-β-1,4-mannanase Man5C and notably converted M6 to M2, M3, and M4, with M3 being the predominant reaction product. The action of Man5C toward β-mannans was synergistic. The growth phenotype of a Man134A disruptant was poor when β-mannans were the sole carbon source, indicating that Man134A is involved in β-mannan degradation in vivo. These findings indicate a hitherto undiscovered mechanism of β-mannan degradation that is enhanced by the novel β-1,4-mannanase, Man134A, when combined with other mannanolytic enzymes including various endo-β-1,4-mannanases.  相似文献   

18.
The most abundant N-glycan in plants is the paucimannosidic N-glycan with core β1,2-xylose and α1,3-fucose residues (Man3XylFuc(GlcNAc)2). Here, we report a mechanism in Arabidopsis thaliana that efficiently produces the largest N-glycan in plants. Genetic and biochemical evidence indicates that the addition of the 6-arm β1,2-GlcNAc residue by N-acetylglucosaminyltransferase II (GnTII) is less effective than additions of the core β1,2-xylose and α1,3-fucose residues by XylT, FucTA, and FucTB in Arabidopsis. Furthermore, analysis of gnt2 mutant and 35S:GnTII transgenic plants shows that the addition of the 6-arm non-reducing GlcNAc residue to the common N-glycan acceptor GlcNAcMan3(GlcNAc)2 inhibits additions of the core β1,2-xylose and α1,3-fucose residues. Our findings indicate that plants limit the rate of the addition of the 6-arm GlcNAc residue to the common N-glycan acceptor as a mechanism to facilitate formation of the prevalent N-glycans with Man3XylFuc(GlcNAc)2 and (GlcNAc)2Man3XylFuc(GlcNAc)2 structures.  相似文献   

19.
Lipoarabinomannan (LAM) is composed of a phosphatidylinositol anchor followed by a mannan followed by an arabinan that may be capped with various motifs including oligosaccharides of mannose. A related polymer, lipomannan (LM), is composed of only the phosphatidylinositol and mannan core. Both the structure and the biosynthesis of LAM have been studied extensively. However, fundamental questions about the branching structure of LM and the number of arabinan chains on the mannan backbone in LAM remain. LM and LAM molecules produced by three different glycosyltransferase mutants of Mycobacterium smegmatis were used here to investigate these questions. Using an MSMEG_4241 mutant that lacks the α-(1,6)-mannosyltransferase used late in LM elongation, we showed that the reducing end region of the mannan that is attached to inositol has 5–7 unbranched α-6-linked-mannosyl residues followed by two or three α-6-linked mannosyl residues branched with single α-mannopyranose residues at O-2. After these branched mannosyl residues, the α-6-linked mannan chain is terminated with an α-mannopyranose at O-2 rather than O-6 of the penultimate residue. Analysis of the number of arabinans attached to the mannan core of LM in two other mutants (ΔembC and ΔMSMEG_4247) demonstrated exactly one arabinosyl substitution of the mannan core suggestive of the arabinosylation of a linear LM precursor with ∼10–12 mannosyl residues followed by additional mannosylation of the core and arabinosylation of a single arabinosyl “primer.” Thus, these studies suggest that only a single arabinan chain attached near the middle of the mannan core is present in mature LAM and allow for an updated working model of the biosynthetic pathway of LAM and LM.  相似文献   

20.
Proteases, glycosidases, and lectins were tested and the results supported a role in host recognition for glycoproteins containing β-glucose and α-mannose on the cuticular surface of host and parasite. Carbohydrates containing α-glucose, galactose, fucose, or N-acetylglucosamine residues apparently are not involved in nematode attachment. Chitin or a related N-acetylglucosamine polymer was found in R. culicivorax preparasites. Treatment of preparasites with neuraminidase, which hydrolyzes sialic acids, increased nematode attachment to Anopheles freeborni larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号