首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vertebrate morphologists often implicate functional adaptationsof bone to mechanical milieus when comparing animals with distinctbehavioral repertoires. Functional morphologists frequentlyuse comparative osteology and locomotor behavior to constructcorrelative form–function relationships. While some experimentalwork has investigated functional adaptations of bone elicitedby specific locomotor behaviors, these studies usually manipulaterepertoires by introducing artificial situations (e.g., treadmills)or creating differences in the level of activity (i.e., exercise),either of which can compromise extrapolations to free-ranginganimals. Here, we present trabecular bone morphology and microarchitecturefrom an inbred mouse model in which components of naturalisticlocomotor repertoires were accentuated. Using inbred mice, wecontrol for genetic variability, further isolating the osteogenicresponses to these behaviors. Single female (BALB/cByJ) mice(n = 10 per group) were housed for 8 weeks beginning at 30 dayspostbirth in custom-designed cages that accentuated either linearquadrupedalism or turning. Concurrently, mice in a control groupwere housed singly in open cages. The distal femoral metaphysiswas scanned by micro-computed tomography at the end of the 8-weekexperiment protocol. The experimental groups, particularly the"linear" group, differed significantly from the control group(simulated "free-ranging" condition) in several variables: bonevolume fraction ("linear" 42% less than controls; "turning"24% less than controls), trabecular number ("linear" 12% lessthan controls; "turning" 9% less than controls), connectivitydensity ("linear" 43% less than controls; "turning" 35% lessthan controls), and a characterization of trabecular surfaces("linear" 15% greater than controls; "turning" 11% greater thancontrols). No differences in the degree of anisotropy were observedamong groups, and generally, "linear" and "turning" groups didnot differ significantly from one another in any measures oftrabecular microarchitecture. Considering the distinct differencesin locomotor behaviors between the "linear" quadrupedalism and"turning" groups, these data suggest that comparisons at thedistal femoral metaphysis of trabecular microarchitecture ororientation between different groups of animals may be somewhatlimited in accurately reconstructing the loading conditionsassociated with different locomotor modes.  相似文献   

3.
β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P < 0.05) and soleus muscles (3.9% vs. 1.8%, P < 0.05). Although HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P < 0.05) in plantaris and soleus muscles, respectively. Cleaved caspase-3 was reduced by 12% and 9% (P < 0.05) in HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P < 0.05) in reloaded plantaris and soleus muscles, respectively, compared with vehicle-treated animals. Although, HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial-associated caspase signaling.  相似文献   

4.
There is a history dependence of skeletal muscle contraction: stretching activated muscles induces a long-lasting force enhancement, while shortening activated muscles induces a long-lasting force depression. These history-dependent properties cannot be explained by the current model of muscle contraction, and its mechanism is unknown. The purposes of this study were (i) to evaluate if force enhancement and force depression are present at short lengths (the ascending limb of the force–length (FL) relationship), (ii) to evaluate if the history-dependent properties are associated with sarcomere length (SL) non-uniformity and (iii) to determine the effects of cross-bridge (de)activation on force depression. Rabbit psoas myofibrils were isolated and attached between two microneedles for force measurements. Images of the myofibrils were projected onto a linear photodiode array for measurements of SL. Myofibrils were activated by either Ca2+ or MgADP; the latter induces cross-bridge attachment to actin independently of Ca2+. Activated myofibrils were subjected to three stretches or shortenings (approx. 4% SL at approx. 0.07 µm s−1 sarcomere−1) along the ascending limb of the FL relationship separated by periods (approx. 5 s) of isometric contraction. Force after stretch was higher than force after shortening at similar SLs. The differences in force could not be explained by SL non-uniformity. The FL relationship produced by Ca2+- and MgADP-activated myofibrils were similar in stretch experiments, but after shortening MgADP activation produced forces that were higher than Ca2+ activation. Since MgADP induces the formation of strongly bound cross-bridges, this result suggests that force depression following shortening is associated with cross-bridge deactivation.  相似文献   

5.
Karen  Steudel  Jeanne  Beattie 《Journal of Zoology》1995,235(3):501-514
Do relatively longer limbs result in a lower energetic cost of locomotion? To determine whether or not cost is correlated with limb length in some way other than that due to their respective relationships to body mass, we have removed the effects of size by calculating the residuals of the relationship between each character and body size. We then regressed the pairs of residuals on one another. Because biological variables do not occur in a series of units that have evolved independently, the degree of divergence of two species is likely to be influenced by the length of time since they last shared a common ancestor. We therefore corrected for the phylogenetic relatedness of species. Data on the energetic cost of locomotion of a wide variety of species were taken from published sources. Data on limb lengths were taken from specimens in various museum collections which were similar in body mass (± 12%) to the specimens on which the cost measurements were made. None of the correlations between the residuals of either fore- or hindlimb length and neither of two estimates of the cost of locomotion was significant at P = 0.05. It is concluded that limb length does not importantly influence an animal's locomotor efficiency. These results do not imply the lack of a close relationship between cost and stride length.  相似文献   

6.
The soleus, rectus femoris, and gastrocnemius muscles of young rats trained isometrically for 4 weeks were studied by light and electron microscopy.--The percentage of fast-twitch oxidative muscle fibers decreased at the cost of the fast-twitch glycolytic fibers in the rectus femoris muscle. The percentages of the slow-twitch oxidative fibers did not change significantly in any of the muscles studied. The changes in the areas of the muscle fibers were specific for the muscle and the fiber type and indicate geometrical rearrangements of the fibers in the trained muscles. The Z and M lines were broader in the soleus (containing about 85% slow-twitch oxidative fibers) than in the rectus femoris muscle (containing about 90% fast-twitch glycolytic fibers), while the sarcomere length and the pseudo-H zone were similar. The length of the myosin filaments appeared to be slightly shorter in the fast rectus femoris than in the slow soleus muscle.--The hypothesis on the temporal progress of muscle adaptation to training (Müller, 1974) was substantiated. Correlations between biochemical (Exner et al., 1973a) and histochemical parameters measuring the oxidative capacity were preserved during adaptation to training. The comparison of the histochemical results with the physiological data on similar animals (Exner et al., 1973a) suggests a complex relationship between the contraction time and the percentage of fast-twitch muscle fibers.  相似文献   

7.
Tendon elasticity is important for economical locomotion; however it is unknown whether tendon stiffness is appropriate to achieve an optimal efficiency in various muscles. Here we test the hypothesis that the Achilles tendon is of an appropriate stiffness to maximise medial gastrocnemius muscle efficiency during locomotion with different power requirements. To test this hypothesis we used a three element Hill muscle model to determine how muscle fascicles would be required to change length if the series elastic element stiffness is varied, whilst the limb kinematics and muscle properties are held constant. We applied a model of muscle energetics to these data to predict muscle efficiency for a range of stiffness values in both walking and running conditions. We also compared the model results to in vivo data collected using ultrasonography. The muscle model predicted that optimal series elastic element stiffness for maximising efficiency is equal or slightly higher than that of the average Achilles tendon in running and walking, respectively. Although the peak efficiency values for running (26%) and walking (27%) are similar, the range of stiffness values achieving high efficiency in running is much smaller than that during walking. These results suggest that a compliant tendon, such as the Achilles tendon, is required for efficient running. Such a finding is important, because it describes how the stiffness of a tendon may be adapted to achieve optimal efficiency for particular athletic pursuits. The influence of varying tendon stiffness on kinematic performance may, however, play an important role in determining the efficiency of the muscle.  相似文献   

8.
Vegetation History and Archaeobotany - Between the initial colonization of North America and the European settlement period, Indigenous American land use practices shaped North American landscapes...  相似文献   

9.
It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG–force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20–100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P < 0.05). Comparing the normalized EMG among the four QF synergists, a significantly lower normalized EMG was observed in the VI at 150° as compared with the other three QF muscles (P < 0.05). These results suggest that the EMG–force relationship of the four QF synergists shifted downward at an extended knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles.  相似文献   

10.
The purpose of this study was to determine the test–retest reliability of the soleus (SOL) H-reflex during rest and isometric contractions at 10%, 30%, and 50% of the maximal voluntary force (MVC) at the ankle joint angles of neutral (0°), plantarflexion (20°), and dorsiflexion (?20°) respectively, in a sitting position. Ten healthy participants, with mean age of 24.9 ± 5.0 (SD) years, height 168.3 ± 8.8 cm, weight 62.7 ± 12.3 kg, were tested for the SOL H-reflex (Hmax) on two separate occasions within 7 days. The intraclass correlation coefficient (ICC) for the test–retest of the SOL H-reflex during rest was found to be high at ankle joint angle of neutral (ICC = 0.92) and plantarflexion (0.96), and moderate at dorsiflexion (0.75). Inconsistent ICC values (range from 0.62 to 0.97) were found during the submaximal voluntary contractions at the three ankle joint positions. High ICCs were also found in Hmax/Mmax ratio at neutral (0.86), plantarflexion (0.96), and dorsiflexion (0.84) positions. It was concluded that the test–retest reliability of the SOL H-reflex was affected by the intensity of voluntary contraction and ankle joint position. The H-reflex demonstrated a higher reliability at the neutral and plantarflexion positions than that at the dorsiflexion position during rest, and a higher reliability at 10% MVC than that at 30% and 50% MVC.  相似文献   

11.
Spliceosomal Prp38 proteins contain a conserved amino-terminal domain, but only higher eukaryotic orthologs also harbor a carboxy-terminal RS domain, a hallmark of splicing regulatory SR proteins. We show by crystal structure analysis that the amino-terminal domain of human Prp38 is organized around three pairs of antiparallel α-helices and lacks similarities to RNA-binding domains found in canonical SR proteins. Instead, yeast two-hybrid analyses suggest that the amino-terminal domain is a versatile protein–protein interaction hub that possibly binds 12 other spliceosomal proteins, most of which are recruited at the same stage as Prp38. By quantitative, alanine surface-scanning two-hybrid screens and biochemical analyses we delineated four distinct interfaces on the Prp38 amino-terminal domain. In vitro interaction assays using recombinant proteins showed that Prp38 can bind at least two proteins simultaneously via two different interfaces. Addition of excess Prp38 amino-terminal domain to in vitro splicing assays, but not of an interaction-deficient mutant, stalled splicing at a precatalytic stage. Our results show that human Prp38 is an unusual SR protein, whose amino-terminal domain is a multi-interface protein–protein interaction platform that might organize the relative positioning of other proteins during splicing.  相似文献   

12.
13.
The integration of proteomic methods to virology has facilitated a significant breadth of biological insight into mechanisms of virus replication, antiviral host responses and viral subversion of host defenses. Throughout the course of infection, these cellular mechanisms rely heavily on the formation of temporally and spatially regulated virus–host protein–protein interactions. Reviewed here are proteomic-based approaches that have been used to characterize this dynamic virus–host interplay. Specifically discussed are the contribution of integrative mass spectrometry, antibody-based affinity purification of protein complexes, cross-linking and protein array techniques for elucidating complex networks of virus–host protein associations during infection with a diverse range of RNA and DNA viruses. The benefits and limitations of applying proteomic methods to virology are explored, and the contribution of these approaches to important biological discoveries and to inspiring new tractable avenues for the design of antiviral therapeutics is highlighted.  相似文献   

14.
Most bird species endure a high mortality at fledging, and selection should favour parental behaviour diminishing these costs. Post-fledging parental care varies greatly among species and is often linked to parent–offspring recognition. In the Black-legged Kittiwake (Rissa tridactyla), fledglings need to return to the natal nest to be fed by their parents until independence. Rejections of fledglings by non-parent adults may be fairly violent, and parents are expected to recognize and help their chicks at the time of first return. However, previous cross-fostering experiments pointed out that parents are not able to recognize their chicks up to 15 days before fledging. In this paper, we study the behaviour of both parents and juveniles at fledging. We found that parents answered significantly more to their fledgling's calls than to those of others. Compared to silent juveniles, juveniles that called before landing were more likely to be accepted by their parents. No such pattern was observed with foreign juveniles, indicating that fledglings’ voice may carry individual identity. Furthermore, fledglings found their way back to the natal nest faster when parents attended the natal nest and reacted to their offspring's calls than when they were absent or inactive. Such interactions may therefore diminish juvenile mortality at fledging.  相似文献   

15.
The biodiversity of tropical reefs is typified by the interaction between fishes and corals. Despite the importance of this ecological association, coevolutionary patterns between these two animal groups have yet to be critically evaluated. After compiling a large dataset on the prevalence of fish–coral interactions, we found that only a minority of fish species associate strongly with live corals (~5%). Furthermore, we reveal an evolutionary decoupling between fish and coral lineage trajectories. While fish lineages expanded in the Miocene, the bulk of coral diversification occurred in the Pliocene/Pleistocene. Most importantly, we found that coral association did not drive major differences in fish diversification. These results suggest that the Miocene fish diversification is more likely related to the development of novel, wave-resistant reef structures and their associated ecological opportunities. Macroevolutionary patterns in reef fishes are thus more strongly correlated with the expansion of reefs than with the corals themselves.  相似文献   

16.
It has been stated repeatedly for the past 50 years that the steady-state force depression following shortening of an activated muscle depends on the speed of shortening. However, these statements were based on results from experiments in which muscles were shortened at different speeds but identical activation levels. Therefore, the force during shortening was changed in accordance with the force-velocity relationship of muscles: that is, increasing speeds of shortening were associated with decreasing forces, and vice versa. Consequently, it is not possible at present to distinguish whether force depression is caused by the changes in speed, as frequently stated, or the associated changes in force, or both. The purpose of this study was to test if force depression depends on the speed of shortening. We hypothesized that force depression was dependent on the force but not the speed of contraction. Our prediction is that the amount of force depression after shortening contractions at different speeds could be similar if the force during contraction was controlled at a similar level. Cat soleus muscles (n=7) were shortened by 9 or 12 mm at speeds of 3, 9, and 27 mm/s, first with a constant activation during shortening (30Hz), then with activation levels that were reduced (<30Hz) for the slow speeds (3 and 9 mm/s) to approximate the shortening forces of the fast speed contractions (27 mm/s). If done properly, force depression could be precisely matched at the three different speeds, indicating that force depression was related to the force during the shortening contraction but not to the speed. However, in order to match force depression, the forces during shortening had to be systematically greater for the slow compared to the fast speeds of shortening, suggesting that force depression also depends on the level of activation, as force depression at constant activation levels can only be matched if the force during shortening, evaluated by the mechanical work, is identical. Therefore, we conclude that force depression depends on the force and activation level during shortening, but does not depend on the speed of shortening as has been assumed for half a century. These results support, but do not prove, the current hypothesis that force depression is caused by a stress-related cross-bridge inhibition in the actin-myosin overlap zone that is newly formed during muscle shortening.  相似文献   

17.
Early development of protein biotherapeutics using recombinant DNA technology involved progress in the areas of cloning, screening, expression and recovery/purification. As the biotechnology industry matured, resulting in marketed products, a greater emphasis was placed on development of formulations and delivery systems requiring a better understanding of the chemical and physical properties of newly developed protein drugs. Biophysical techniques such as analytical ultracentrifugation, dynamic and static light scattering, and circular dichroism were used to study protein–protein interactions during various stages of development of protein therapeutics. These studies included investigation of protein self-association in many of the early development projects including analysis of highly glycosylated proteins expressed in mammalian CHO cell cultures. Assessment of protein–protein interactions during development of an IgG1 monoclonal antibody that binds to IgE were important in understanding the pharmacokinetics and dosing for this important biotherapeutic used to treat severe allergic IgE-mediated asthma. These studies were extended to the investigation of monoclonal antibody–antigen interactions in human serum using the fluorescent detection system of the analytical ultracentrifuge. Analysis by sedimentation velocity analytical ultracentrifugation was also used to investigate competitive binding to monoclonal antibody targets. Recent development of high concentration protein formulations for subcutaneous administration of therapeutics posed challenges, which resulted in the use of dynamic and static light scattering, and preparative analytical ultracentrifugation to understand the self-association and rheological properties of concentrated monoclonal antibody solutions.  相似文献   

18.
Soils contain the greatest reservoir of biodiversity on Earth, and the functionality of the soil ecosystem sustains the rest of the terrestrial biosphere. This functionality results from complex interactions between biological and physical processes that are strongly modulated by the soil physical structure. Using a novel combination of biochemical and biophysical indicators and synchrotron microtomography, we have discovered that soil microbes and plant roots microengineer their habitats by changing the porosity and clustering properties (i.e., spatial correlation) of the soil pores. Our results indicate that biota act to significantly alter their habitat toward a more porous, ordered, and aggregated structure that has important consequences for functional properties, including transport processes. These observations support the hypothesis that the soil–plant–microbe complex is self-organized.  相似文献   

19.
Summary A total of 147 muscle spindles was studied histochemically in serial transverse sections of 42 cat tenuissimus muscle specimens. Nuclear bag1, nuclear bag2 and nuclear chain intrafusal muscle fibers were distinguished by the differential staining resulting from the reactions for myosin adenosine 5-triphosphatase and nicotinamide adenine dinucleotide tetrazolium reductase. The majority of intrafusal fibers were of the same histochemical type at both fiber poles. However, seven muscle spindles contained one nuclear bag fiber each that presented as a bag1 in one pole and as a bag2 in the other pole. These mixed nuclear bag fibers were found in spindles that also contained at least one bag1 and one bag2 fiber of equivalent histochemical presentation in both fiber poles. The mixed bag fibers displayed differences of apparent fiber diameter and relative polar length between the two fiber poles. The motor innervation pattern, as revealed by staining for cholinesterase, was also dissimilar between the two poles of mixed bag fibers. The study indicates that the spindle equatorial region may in some instances serve as a boundary between two morphologically and histochemically different poles of the same intrafusal fiber.  相似文献   

20.
  1. Download : Download high-res image (190KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号