首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dunger D  Yuen K  Ong K 《Hormone research》2004,62(Z1):101-107
The effects of circulating insulin-like growth factor I (IGF-I) on glucose metabolism are well recognized. IGF-I is also important in maintaining beta-cell mass and regulating endogenous growth hormone (GH) levels. Low IGF-I levels could explain links between small birth size and the risk of developing type 2 diabetes mellitus in short, obese adults. In a recent prospective study, childhood insulin secretion was related to IGF-I levels and statural growth, whereas insulin sensitivity was related to early post-natal weight gain. Common genetic polymorphisms in the IGF1 gene have been linked to small birth size, post-natal growth and future diabetes risk, but these results have been inconsistent. Recent adult studies have demonstrated that lower baseline IGF-I levels predict the subsequent development of impaired glucose tolerance (IGT), type 2 diabetes and cardiovascular disease. Administration of low-dose GH therapy, at a dose that minimizes the lipolytic effects of GH and has the ability to increase IGF-I levels, enhances insulin sensitivity in young healthy adults and in GH-deficient adults and increases insulin secretion in individuals with IGT. Whether the administration of low-dose GH, recombinant IGF-I or combined IGF-I/IGF-binding protein 3 therapy prevents future development of IGT or type 2 diabetes in high-risk normoglycaemic and GH-deficient individuals merits further long-term studies.  相似文献   

2.
The secretion of growth hormone (GH) increases acutely during exercise, but whether this is associated with the concomitant alterations in substrate metabolism has not previously been studied. We examined the effects of acute GH administration on palmitate, glucose, and protein metabolism before, during, and after 45 min of moderate-intensity aerobic exercise in eight GH-deficient men (mean age = 40.8 +/- 2.9 yr) on two occasions, with (+GH; 0.4 IU GH) and without GH administered (-GH). A group of healthy controls (n = 8, mean age = 40.4 +/- 4.2 yr) were studied without GH. The GH replacement during exercise on the +GH study mimicked the endogenous GH profile seen in healthy controls. No significant difference in resting free fatty acid (FFA) flux was found between study days, but during exercise a greater FFA flux was found when GH was administered (211 +/- 26 vs. 168 +/- 28 micromol/min, P < 0.05) and remained elevated throughout recovery (P < 0.05). With GH administered, the exercise FFA flux was not significantly different from that observed in control subjects (188 +/- 14 micromol/min), but the recovery flux was greater on the +GH day than in the controls (169 +/- 17 vs. 119 +/- 11 micromol/min, respectively, P < 0.01). A significant time effect (P < 0.01) for glucose rate of appearance from rest to exercise and recovery occurred in the GH-deficient adults and the controls, whereas there were no differences in glucose rate of disappearance. No significant effect across time was found for protein muscle balance. In conclusion, 1) acute exposure to GH during exercise stimulates the FFA release and turnover in GH-deficient adults, 2) GH does not significantly impact glucose or protein metabolism during exercise, and 3) the exercise-induced secretion of GH plays a significant role in the regulation of fatty acid metabolism.  相似文献   

3.
Growth hormone (GH) releasing hexapeptide (GHRP)-6 and other peptidergic and non-peptidergic compounds collectively designated GH secretagogues (GHS) are potent releasers of GH in man. Their clinical future may be envisioned in three areas: therapy of GH-deficient (GHD) states, diagnosis of GHD, and non-endocrinological actions. As therapeutic agents and compared with GH itself, GHS have the disadvantage of lower potency but have a more physiological and safer profile of GH secretion. GHS administration could be indicated for states in which medium GH doses have been shown to be effective. As a diagnostic tool, the combined administration of GH releasing hormone plus GHRP-6, both at saturating doses, is currently the most powerful releaser of GH, devoid of side effects and convenient for the patient; it may also be an alternative to the insulin tolerance test for the diagnosis of GHD in adult patients. Their potential action at cardiovascular level is highly promising. Although the clinical future of GH releasing substances is appealing, probably the most relevant contribution has yet to be discovered. Once the endogenous ligand of the GHS receptor is identified, we will have an insight into the real hypothalamic control of GH secretion in man. With this knowledge it is likely that some diagnostic and therapeutic actions that are commonly undertaken will significantly change.  相似文献   

4.
To gain insight into the mechanism of the altered carbohydrate metabolism in thyrotoxicosis, intravenous glucose tolerance tests (IVGTT) and pancreatic suppression tests (PST) were performed in hyperthyroid rats (0.1 mg/kg T4 X 5 days) to assess insulin secretion and action in vivo. Thyroid hormone injections significantly increased T4 levels (182.8 nM +/- 11.6 (SEM) versus 50.2 +/- 6.4; P less than 0.001) and baseline glucose concentrations (9.3 mM +/- 0.2 versus 7.1 +/- 0.2; P less than 0.001). Body weights, basal insulin concentrations, glucose concentrations during IVGTT, glucose disappearance rates and steady state plasma glucose levels (SSPG) were normal. Insulin concentrations during the glucose tolerance test and during the PST were significantly decreased. The metabolic clearance rate of insulin (ml/min/kg +/- SEM) was significantly (P less than 0.01) increased (54.4 +/- 3.5 versus 41.6 +/- 2.3) in the hyperthyroid rats. If the different baseline glucose values were subtracted from the glucose concentrations achieved during the 2 tests, both the glucose disappearance rate and the fall in SSPG levels were significantly enhanced in the T4-injected animals. Thus, in the hyperthyroid rat, insulin secretion is decreased, the clearance of insulin is increased and insulin sensitivity is either normal or possibly enhanced.  相似文献   

5.
BACKGROUND/AIM: In children with Prader-Labhart-Willi syndrome (PWS), the insulin secretion is reduced, despite obesity, being ascribed to the growth hormone (GH) deficiency of hypothalamic origin. Besides, an increased prevalence of diabetes mellitus was described in this syndrome. Hence, we addressed the questions of how body composition and insulin secretion are interrelated and what impact GH therapy has on the carbohydrate metabolism in PWS. METHODS: We measured weight, lean and fat mass (by dual-energy X-ray absorptiometry), triglycerides, HbA(1c), and fasting insulin and glucose levels in 17 children (age range 1.5-14.6 years) with PWS to examine whether the carbohydrate metabolism is altered during 36 months of therapy with 8 mg GH/m(2) body surface/week. In a subgroup of 8 children, the insulin secretion was longitudinally assayed during oral glucose tolerance at 0 and 12 months of therapy. RESULTS: Before therapy, the insulin secretion was lower and markedly delayed as compared with reference data and did not rise during therapy. The glucose tolerance was impaired in 2 of 12 children examined by oral glucose tolerance test before therapy and normalized during therapy. Fasting insulin and insulin resistance being normal at the beginning, significantly increased at 12 months and returned to initial levels at 36 months of GH therapy. Fasting glucose as well as HbA(1c) and triglyceride levels were always normal. The fat mass before GH therapy was increased (39.5%) and dropped into the upper normal range (28.3%) during 3 years of therapy, being correlated with fasting insulin concentration and indices of insulin sensitivity before and after 1 year of therapy. CONCLUSIONS: Children with PWS are characterized by an intact insulin sensitivity with a decrease and a delay of insulin secretion, regardless of moderate obesity or GH treatment. In the present setting, the carbohydrate metabolism is not impaired by GH therapy, but by the excessively increased fat mass.  相似文献   

6.
Glucose oxidation and incorporation into lipid were measured in epididymal adipose tissues and isolated adipose cells of normal and hypophysectomized rats in an effort to determine whether the acute hypoglycemic effect of a systemic growth hormone (GH) injection was related to alterations in the glucose metabolism of adipose tissue. The rats were fed rat chow or a high sucrose diet and received 100 mug GH intraperitoneally 30 minutes or three and one-half hours before sacrifice. Hypophysectomized rats showed a lower plasma glucose as compared with normal rats on both diets. Thirty minutes after a GH injection there was a further decrease of the plasma glucose which, however, was not present in those rats receiving GH three and one-half hours before sacrifice. Adipose tissues from hypophysectomized rats fed the high sucrose diet showed a blunted insulin sensitivity as compared with normal rats on a similar diet. The insulin sensitivity of these tissues was further decreased 30 minutes after a GH injection. Basal glucose metabolism of isolated adipocytes from hypophysectomized rats, as compared with normal rats, was depressed if they were fed rat chow, was at normal levels if they were fed the high sucrose diet and was increased if they were fed the sucrose diet and received triiodothyronine and cortisone supplements. No manipulations of diet or hormonal treatments made the isolated adipocyte from hypophysectomized rats sensitive to insulin either 30 minutes or three and one-half hours after a GH injection. Since basal glucose utilization is not enhanced by GH injection and both the blunted insulin sensitivity of adipose tissue and the absent insulin sensitivity of adipopocytes would be expected to produce hyperglycemia rather than hypoglycemia, it is concluded that immediate systemic effects of a GH injection on carbohydrate metabolism are not related to changes in glucose metabolism of the peripheral adipose tissues.  相似文献   

7.
OBJECTIVE: To investigate the possible contribution of plasma cortisol and growth hormone (GH) as reflected by insulin-like growth factor-I (IGF-I)/insulin-like growth factor-binding protein-3 (IGFBP-3) on insulin action in short-statured children. METHODS: In this study, insulin resistance (HOMA) was determined in 34 normal short-statured (age 9.4 +/- 3.5 years) and in 19 GH-deficient children (age 10.4 +/- 2.2 years). HOMA was examined in relation to fasting plasma cortisol, IGF-I, IGFBP-3 and in addition to birthweight and body mass index (BMI). RESULTS: Birthweight was not correlated to insulin resistance. In GH-deficient children, BMI was significantly augmented and was associated with HOMA (p < 0.02). In both groups of patients, fasting plasma cortisol was related to HOMA (normal: r = 0.295, p < 0.05, GH-deficient: r = 0.495, p < 0.02). Only in normal short-statured children IGF-I (r = 0.338, p < 0.03) and IGFBP-3 (r = 0.493, p < 0.002) were associated with insulin resistance. CONCLUSION: The results indicated that at a young age cortisol contributed to insulin resistance in short-statured children. In normal short-statured children HOMA was associated with IGF-I and IGFBP-3. Possibly GH, a known cause of insulin resistance, contributed to HOMA as IGF-I and IGFBP-3 do not mediate insulin resistance but reflect growth hormone secretion. The results in GH-deficient children supported this conclusion as in the absence of GH insulin resistance was not associated with IGF-I/IGFBP-3.  相似文献   

8.
Plerocercoids of Spirometra mansonoides produce a functional analogue of mammalian growth hormone (GH). Plerocercoid growth factor (PGF) mimics the growth-promoting actions of GH, but has not been shown to duplicate all of the actions reported for GH. The purpose of this study was to determine the effects of plerocercoid infection (chronic PGF treatment) on glucose metabolism of adipose tissue and to compare the effects to those elicited by insulin and GH in intact, diabetic, and hypophysectomized male rats. Groups of rats were constantly exposed to PGF (via plerocercoid infection) or injected twice daily with bovine GH, insulin, or saline for 10 days. Basal oxidation rates of [U-14C]glucose to 14CO2 in adipose tissue segments were measured in vitro immediately after tissue removal. Other aliquots of adipose tissue were preincubated in hormone-free medium for 3 hr prior to testing the ability of the tissue to respond to insulin or human GH (hGH) added in vitro. Adipose tissue from PGF-treated intact and hypophysectomized rats had significantly elevated basal glucose oxidation rates, and the tissue was sensitive to further stimulation by insulin or hGH. The results obtained with intact and hypophysectomized rats were essentially the same, indicating that the effects of PGF were not due to suppression of endogenous GH. The basal glucose oxidation rate in adipose tissue from diabetic rats was stimulated (P less than 0.01) by PGF, but the tissue was not sensitive to insulin added in vitro. Furthermore, PGF had no effect on body growth or blood glucose concentrations of diabetic rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Patients with cirrhosis of the liver often have insulin resistance and elevated circulating growth hormone levels. This study was undertaken (a) to evaluate glucose intolerance, insulin resistance and abnormal growth hormone secretion and (b) to determine if GH suppression improves insulin resistance. Glucose tolerance tests (GTT), intravenous insulin tolerance tests (IVITT), arginine stimulation tests (AST) and glucose clamp studies before and during GH suppression with somatostatin were performed in a group of patients with alcohol-induced liver cirrhosis. During GTT cirrhotic subjects had a 2-hour plasma glucose of 200 +/- 9.8 ng/dl (N = 14) compared to 128 +/- 8.0 ng/dl in normal controls (N = 15), P less than 0.001. Basal GH was elevated in cirrhotic patients and in response to arginine stimulation reached a peak of 17.0 +/- 5.4 ng/ml (N = 7), compared to a peak of 11.3 +/- 1.8 ng/ml in 5 normal controls (P = NS). During IVITT patients with cirrhosis had a glucose nadir of 60.0 +/- 4.0 mg/dl (N = 9), compared to 29.0 +/- 7.0 mg/dl in controls (N = 5), P less than 0.001. Peak GH levels during IVITT were not significantly different in cirrhotics and controls. Glucose utilization rates in 4 patients with cirrhosis of the liver before somatostatin mediated GH suppression was 3.1 +/- 0.5 mg/kg/min and 6.5 +/- 1.5 mg/kg/min during somatostatin infusion, P less than 0.025. We conclude that patients with alcohol induced cirrhosis have sustained GH elevations resulting in insulin resistance which improves after GH suppression.  相似文献   

10.
The effects of chronic (3 mg/day for 1 week) administration of the vasodilator drug prazosin on several metabolic and endocrine variables were evaluated in 12 hypertensive patients, 6 with normal and 6 with abnormal oral glucose tolerance test (OGTT). After 1 week prazosin treatment there were no significant modifications in fasting plasma glucose, serum free fatty acids (FFA), cholesterol, triglycerides, insulin (IRI), growth hormone (GH), prolactin (PRL) and gastrin levels; oral glucose tolerance and IRI response to glucose were unchanged in normal subjects, while in chemical diabetics there was a significant improvement in glucose tolerance and a slight increse in IRI secretion. Therefore, the untoward metabolic effects of acute prazosin administration, i.e. increased plasma glucose and serum FFA, are not sustained during chronic treatment, which may even improve glucose metabolism in diabetic patients.  相似文献   

11.
The incretin hormones, glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), potentiate insulin secretion and are responsible for the majority of insulin secretion that occurs after a meal. They may also, however, have a fundamental role in pancreatic beta cell development and function, independently of their role in potentiating insulin secretion after a meal. This has led to observations that a loss of GIP or GLP-1 action affects normal beta cell function, however each one of the incretin hormones may compensate when the action of the other is lost and therefore the overall impact of the incretin hormones on beta cell function is not known. We therefore utilized a mouse line deficient in both the GLP-1 and GIP receptor genes, the double incretin receptor knockout (DIRKO), to determine the consequences of a lifelong, complete lack of incretin hormone action on beta cell function, in vivo, in intact animals. We found that DIRKO mice displayed impaired glucose tolerance and insulin secretion in response to both oral glucose and mixed meal tolerance tests compared to wild-type mice. Assessment of beta cell function using the hyperglycemic clamp technique revealed an 80% decrease in first phase insulin response in DIRKO mice, but a normal second phase insulin secretion. A similar decline was seen when wild-type mice were given acute intravenous injection of glucose together with the GLP-1 receptor antagonist Ex9-39. Ex vivo assessments of the pancreas revealed significantly fewer islets in the pancreata of DIRKO mice despite no differences in total pancreatic mass. Insulin secretion from isolated islets of DIRKO mice was impaired to a similar extent to that seen during the hyperglycemic clamp. Insulin secretion in wild-type islets was impaired by acute treatment with Ex9-39 to a similar extent as the in vivo intravenous glucose tolerance tests. In conclusion, a loss of the action of both incretin hormones results in direct impairment of beta cell function both in vivo and in vitro in a process that appears to be independent of the intestinally secreted incretin hormones. We therefore conclude that the incretin hormones together significantly impact both beta-cell function and beta-cell development.  相似文献   

12.
The effect of intravenous infusion of growth hormone (GH) on glucose metabolism in sheep was determined. To maintain low levels of insulin somatostatin was infused with and without GH. The infusion of GH for 6 hr was without effect on glucose metabolism.  相似文献   

13.
Growth hormone (GH) is a protein that is known to stimulate postnatal growth, counter regulate insulin’s action and induce expression of insulin-like growth factor-1. GH exerts anabolic or catabolic effects depending upon on the targeted tissue. For instance, GH increases skeletal muscle and decreases adipose tissue mass. Our laboratory has spent the past two decades studying these effects, including the effects of GH excess and depletion, on the proteome of several mouse and human tissues. This review first discusses proteomic techniques that are commonly used for these types of studies. We then examine the proteomic differences found in mice with excess circulating GH (bGH mice) or mice with disruption of the GH receptor gene (GHR?/?). We also describe the effects of increased and decreased GH action on the proteome of adult patients with either acromegaly, GH deficiency or patients after short-term GH treatment. Finally, we explain how these proteomic studies resulted in the discovery of potential biomarkers for GH action, particularly those related with the effects of GH on aging, glucose metabolism and body composition.  相似文献   

14.
Adult growth hormone deficiency (GHD) is a multifactorial disorder in which pituitary dysfunction associated with pituitary adenomas or their treatment plays a major role. The introduction of recombinant growth hormone (GH) for the treatment of GHD has opened up new treatment avenues but has also raised concerns about possible untoward long-term metabolic effects of GH, such as the potential effect of GH on insulin sensitivity and a deterioration in glucose tolerance. Research has shown that GH induces insulin resistance by the stimulation of lipolysis and a concomitant switch from oxidation of glucose to oxidation of lipids, during both acute and chronic treatment. However, although this is a consistent effect of GH therapy, it does not mean per se that it leads to abnormal glucose tolerance and diabetes mellitus. This article discusses this and other potential long-term metabolic effects of GH, and raises a number of questions to be addressed by future research.  相似文献   

15.
16.
Growth-hormone-releasing hormone (GHRH) tests were performed once [GHRH(1-29)NH2, 1 microgram/kg] or on 2 consecutive days [GHRH(1-44)NH2, 1 and 2 microgram/kg administered in random order] in 27 children with idiopathic, isolated growth hormone (GH)-deficiency and in 49 short normal children, all clinically prepubertal. No differences in GH release were found between the tests performed on the 1st and 2nd day or according to GHRH dose or sex, both in GH-deficient and control children. 80% of GH-deficient and 87% of control children responded (GH peak greater than 10 ng/ml) to GHRH(1-29)NH2, and 65% of GH-deficient and all control children to GHRH(1-44)NH2. No differences in GH release were found between GH-deficient GHRH responders and control children. 17% of GH-deficient and 10% of control children responded only to one of the two tests performed on 2 consecutive days; the lack of responsiveness was unrelated to GHRH dose and sequence of GHRH administration (1st or 2nd day). The GHRH test does not seem to be a reproducible test for the evaluation of GH release, nor is it useful to differentiate GH-deficient GHRH responders from short normal children.  相似文献   

17.
It is well established that somatotropin (GH) antagonizes insulin action in vivo and that supraphysiologic concentrations of GH frequently result in insulin resistance and glucose intolerance. However, the demonstration of an anti-insulin activity by GH in vitro has been difficult. This study, therefore, set out to determine whether cultures of 3T3-L1 adipocytes could be used to examine the anti-insulin activity of GH. The ability of insulin to stimulate glucose utilization by 3T3-L1 adipocytes increases approximately five-fold during the first 4 days following treatment of the cells with a differentiation medium. It was found that glucose utilization in 3T3-L1 adipocytes is regulated in a reciprocal fashion by insulin and GH. Bovine or human GH directly inhibit up to 50% of insulin-stimulated [14C]-glucose incorporation into lipids in a concentration-dependent manner. The 3T3-L1 sensitivity to GH appears to be at the maximum (50% inhibition of an insulin response) immediately following removal of the cells from the differentiation medium and remains essentially constant during the subsequent 4 days. The GH inhibition of insulin action does not appear to be due GH enhancement of cellular degradation of insulin, competitive binding of GH to the insulin receptor, or GH-induced decrease in cell number. The 3T3-L1 adipocyte system appears to be a sensitive and reliable in vitro model with which to study the molecular mechanisms involved in both GH antagonism of insulin action and development of hormone responsiveness during cellular differentiation into adipocytes.  相似文献   

18.
Oral glucose tolerance tests were performed in the morning and afternoon of separate days on 31 people derived from a normal population sample. Blood sugar levels were higher in the afternoon test from and including 60 minutes after the glucose load. The degree of diurnal variation was similar in men and women, but greater in the older half of the group. It was negatively correlated with the degree of obesity. The plasma insulin response was less at the 30 minute time point in the afternoon, but significantly exceeded the morning values at 120 and 150 minutes after the glucose load. Growth hormone levels were similar in morning and afternoon tests. Fasting non-esterified fatty acid levels were significantly higher before the afternoon test.The relatively impaired glucose tolerance in the afternoon is associated with a delayed insulin response to the glucose load. This seems unlikely to be the sole explanation, however, and increased non-esterified fatty acid metabolism with a consequent decrease in glucose disposal may also contribute.  相似文献   

19.
To investigate the role of low molecular weight protein-tyrosine phosphatase (LMW-PTP) in glucose metabolism and insulin action, a specific antisense oligonucleotide (ASO) was used to reduce its expression both in vitro and in vivo. Reduction of LMW-PTP expression with the ASO in cultured mouse hepatocytes and in liver and fat tissues of diet-induced obese (DIO) mice and ob/ob mice led to increased phosphorylation and activity of key insulin signaling intermediates, including insulin receptor-beta subunit, phosphatidylinositol 3-kinase, and Akt in response to insulin stimulation. The ASO-treated DIO and ob/ob animals showed improved insulin sensitivity, which was reflected by a lowering of both plasma insulin and glucose levels and improved glucose and insulin tolerance in DIO mice. The treatment did not decrease body weight or increase metabolic rate. These data demonstrate that LMW-PTP is a key negative regulator of insulin action and a potential novel target for the treatment of insulin resistance and type 2 diabetes.  相似文献   

20.
Fasting-related states of distress pose major health problems, and growth hormone (GH) plays a key role in this context. The present study was designed to assess the effects of GH on substrate metabolism and insulin sensitivity during short-term fasting. Six GH-deficient adults underwent 42.5 h of fasting on two occasions, with and without concomitant GH replacement. Palmitate and urea fluxes were measured with the steady-state isotope dilution technique after infusion of [9,10-3H]palmitate and [13C]urea. During fasting with GH replacement, palmitate concentrations and fluxes increased by 50% [palmitate: 378 +/- 42 (GH) vs. 244 +/- 12 micromol/l, P < 0.05; palmitate: 412 +/- 58 (GH) vs. 276 +/- 42 microM, P = 0.05], and urea turnover and excretion decreased by 30-35% [urea rate of appearance: 336 +/- 22 (GH) vs. 439 +/- 43 micromol. kg-1. h-1, P < 0.01; urea excretion: 445 +/- 43 (GH) vs. 602 +/- 74 mmol/24 h, P < 0.05]. Insulin sensitivity (determined by a euglycemic hyperinsulinemic clamp) was significantly decreased [M value: 1.26 +/- 0.06 (GH) vs. 2.07 +/- 0.22 mg. kg-1. min-1, P < 0.01] during fasting with GH replacement. In conclusion, continued GH replacement during fasting in GH-deficient adults decreases insulin sensitivity, increases lipid utilization, and conserves protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号