首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of engineered Trichoderma reesei endo-beta-1,4-xylanase (Xyn II) mutants were created and activity tests were performed for increased stability. The stability of the earlier characterized mutant Y5 (T2C, T28C, K58R, +191D) was further increased by the mutations creating the constructs P9 (N97R+F93W+H144K), P12 (H144C+N92C), P15 (F180Q+H144C+N92C) and P21 (H22K+F180Q+H144C+N92C). The resistance towards thermal inactivation at alkaline pH was increased in all of the mutants. Residual activity T(50%) was increased 4-5 degrees C for P9 at pH 9. The performance of the P9 mutant in sulphate pulp bleaching was also tested and was shown to increase brightness markedly compared to the reference. The bleaching results showed the industrial potential of the obtained mutant.  相似文献   

2.
Trichoderma reesei tyrosinase TYR2 has been demonstrated to be able to oxidize various phenolic compounds and also peptide and protein bound tyrosine, and thus is of great interest for different biotechnological applications. In order to understand the reaction mechanism of the enzyme it would be essential to solve its three dimensional structure. Pichia pastoris is a suitable expression system for the production of recombinant enzymes for NMR studies and therefore we expressed TYR2 in this host. As a result of extensive optimization, the production yield of active histidine tagged tyrosinase purified from P. pastoris shake flask cultures was increased from 2.5 to 24 mg/L. Correct copper concentration in the growth medium was critical for the expression of this copper containing enzyme. Our analysis showed that TYR2 expressed in P. pastoris is post-translationally modified; the C-terminal domain of 153 amino acids of the protein is proteolytically cleaved off from the catalytic domain and the only potential N-glycosylation site is glycosylated. The activities of TYR2 expressed in P. pastoris and T. reesei on diphenolic L-dopa and monophenolic L-tyrosine were rather similar. The TYR2 expressed in P. pastoris showed the same physicochemical properties in CD and unfolding assays as the native TYR2 enzyme. Uniform isotopic (15)N-labeling of TYR2 was carried out with (15)NH(4)SO(4) in minimal medium to assess the suitability of the expression system for investigation by NMR spectroscopy.  相似文献   

3.
The three-dimensional structure of endo-1,4-beta-xylanase II (XYNII) from Trichoderma reesei has been determined by X-ray diffraction techniques and refined to a conventional R-factor of 18.3% at 1.8 A resolution. The 190 amino acid length protein was found to exist as a single domain where the main chain folds to form two mostly antiparallel beta-sheets, which are packed against each other in parallel. The beta-sheet structure is twisted, forming a large cleft on one side of the molecule. The structure of XYNII resembles that of Bacillus 1,3-1,4-beta-glucanase. The cleft is an obvious suggestion for an active site, which has putative binding sites for at least four xylose residues. The catalytic residues are apparently the two glutamic acid residues (Glu86 and Glu177) in the middle of the cleft. One structure was determined at pH 5.0, corresponding to the pH optimum of XYNII. The second structure was determined at pH 6.5, where enzyme activity is reduced considerably. A clear structural change was observed, especially in the position of the side chain of Glu177. The observed conformational change is probably important for the mechanism of catalysis in XYNII.  相似文献   

4.
We have successfully engineered a disulphide bridge into the N-terminal region of Trichoderma reesei endo-1,4-beta-xylanase II (XYNII) by substituting Thr-2 and Thr-28 with cysteine. The T2C:T28C mutational changes increased the half-life in thermal inactivation of this mesophilic enzyme from approximately 40 s to approximately 20 min at 65 degrees C, and from less than 10 s to approximately 6 min at 70 degrees C. Therefore, the N-terminal disulphide bridge enables the use of XYNII at substantially higher temperatures than permitted by its native mesophilic counterpart. Altogether, thermostability increased by about 15 degrees C. The kinetic properties of the mutant XYNII were maintained at the level of the wild type enzyme. Our findings demonstrated that a properly designed disulphide bridge, here within the N-terminal region of XYNII, can be very effective in resisting thermal inactivation.  相似文献   

5.
Ovotransferrin is an egg white protein with complex disulfide and bilobal structures, which is derived from the same gene as chicken serum transferrin. We demonstrate here the structural and functional characteristics of bilobal ovotransferrin, produced at a high level using Pichia pastoris expression system. The recombinant protein was secreted into the medium, and the secretion signal peptide was processed correctly. The secretion level was almost 100 mg/l culture and the yield after purification by two-step anion exchange chromatography was 57 mg/l. The CD spectrum and fluorescence spectra indicate the correct folding of the recombinant protein. The analyses for the Fe3+ binding ability by urea-PAGE and visible absorption spectrum revealed that two Fe3+ sites exist in a recombinant ovotransferrin molecule as in the egg white protein. Endoglycosidases, such as endo-beta-N-acetylglucosaminidase H (Endo-H), peptide:N-glycosidase F (PNGaseF), and endo-beta-N-acetylglucosaminidase from Mucor hiemalis, showed differential activities for the native Fe3+-loaded, native Fe3+-free, and denatured forms of recombinant ovotransferrin; only the first enzyme displayed the cleavage ability for all the ovotransferrin forms. The results from the enzyme specificity and from the molecular weight difference for the intact and deglycosylated proteins were consistent with the view that recombinant ovotransferrin have one N-linked carbohydrate chain which mainly consists of two GlcNac and 10 mannoses.  相似文献   

6.
Trichoderma reesei cellulases are important biocatalysts for a wide range of industrial applications that include the paper, feed, and textile industries. T. reesei endoglucanase 1 (egl1) was successfully expressed as an active and stable catalyst in Pichia pastoris for the first time. Codon optimization was applied to egl1 of T. reesei to enhance its expression levels in P. pastoris. When compared with the originally cloned egl1 gene of T. reesei, the synthetic codon optimized egl1 gene (egl1s) was expressed at a higher level in P. pastoris. Batch fermentations of both clones with the same copy number under controlled conditions indicated that codon optimized EGI enzyme activity increased to 1.24 fold after 72 h of methanol induction. Our research indicated that P. pastoris is a suitable host for cellulase production.  相似文献   

7.
Pichia pastoris was transformed with the Trichoderma reesei cbh1 gene, and the recombinant enzyme was purified and analyzed kinetically and by circular dichroism. The P. pastoris rCBH I was recognized by MoAb raised to T. reesei CBH I but was found in multiple molecular weight species on SDS-PAGE gels. Carbohydrate content determination and SDS-PAGE western analysis indicated that the recombinant protein was hyperglycosylated, although a species very similar in molecular weight to the T. reesei enzyme could be isolated chromatographically. The P. pastoris rCBH I also demonstrated activity toward soluble and insoluble substrates (i.e., pNPL and Sigmacell), although at a level significantly lower than the wild-type enzyme. More seriously, the yeast-expressed enzyme showed non-wild-type secondary structure by circular dichroism. We conclude that P. pastoris may not serve as an adequate host for the site-directed mutagenesis of T. reesei CBH I.  相似文献   

8.
The Cel6A deficiency has become one of the limiting factors for cellulose saccharification in biochemical conversion of cellulosic biomass to fuels and chemicals. The work attempted to use codon optimization to enhance Trichoderma reesei Cel6A expression in Pichia pastoris. Two recombinants P. pastoris GS115 containing AOX1 and GAP promotors were successfully constructed, respectively. The optimal temperatures and pHs of the expressed Cel6A from two recombinants were consistent with each other, were also in the extremely similar range to that reported on the native Cel6A from T. reesei. Based on the shake flask fermentation, AOX1 promotor enabled the recombinant to produce 265 U/L and 300 mg/L of the Cel6A enzyme, and the GAP promotor resulted in 145 U/L and 200 mg/L. High cell density fed batch (HCDFB) fermentation significantly improved the enzyme titer (1100 U/L) and protein yield (2.0 g/L) for the recombinant with AOX1 promotor. Results have showed that the AOX1 promotor is more suitable than the GAP for the Cel6A expression in P. pastoris. And the HCDFB cultivation is a favorable way to express the Cel6A highly in the methanol inducible yeast.  相似文献   

9.
内切纤维素酶Cel5A缺乏是限制纤维素酶制剂高效酶解天然纤维素的关键因素。本文尝试构建高效表达里氏木霉Cel5A的毕赤酵母重组菌株以弥补目前Cel5A的天然分泌不足,通过基因密码子偏好性优化里氏木霉Cel5A基因和构建表达载体p PIC9K-eg2,并将其电转入毕赤酵母GS115以构建重组子,利用浓度梯度平板和摇瓶发酵筛选获得一株高产毕赤酵母Pichia pastoris菌株GS115-EGⅡ。重组酶的酶学性质分析显示,该酶分子量50 k Da、最适p H(p H 4.5)略有降低及最适反应温度为60℃,专一性地作用于非结晶纤维素,与天然里氏木霉Cel5A并无明显区别。通过摇瓶发酵的初步优化,该菌摇瓶培养条件:培养温度28℃、起始p H 5.0、接种量2%、每24 h添加甲醇1.5%(V/V)、每24 h添加山梨醇4 g/L及吐温80添加4 g/L,发酵192 h重组酶酶活达到24.0 U/m L。进一步上罐(5 L)发酵180 h,该重组酶Cel5A酶活高达270.9 U/m L,蛋白含量达到4.16 g/L。重组毕赤酵母P.pastoris GS115-EGⅡ是一株适合于外源表达Cel5A的工程菌,该重组酶可替代天然分泌Cel5A适用于当前酶基生物炼制模式下木质纤维素基质高效水解中。  相似文献   

10.
11.
Kinetic as well as energetic aspects of the thermal denaturation of Trichoderma reesei endo-1,4-beta-xylanase II (TRX II) and its three thermostable disulfide mutants were characterized by means of differential scanning calorimetry (DSC) in different solution conditions. The calorimetric transitions were strongly scan-rate dependent, characteristic for an irreversible, kinetically controlled protein denaturation. The DSC-determined T*-values (the temperature at which the denaturation rate constant equals 1min(-1)), and the activation free energies for the transitions are consistent with the apparent transition temperatures of TRX II determined earlier by mass spectrometry. Protein aggregation, connected with the irreversibility of the transitions, was present in all cases but was less pronounced with the mutants as well as highly dependent on experimental conditions.  相似文献   

12.
The sequences encoding the genes for endoglucanase II and cellobiohydrolase II from the fungus Trichoderma reesei QM9414 were successfully cloned and expressed in Yarrowia lipolytica under the control of the POX2 or TEF promoters, and using either the native or preproLip2 secretion signals. The expression level of both recombinant enzymes was compared with that obtained using Pichia pastoris, under the control of the AOX1 promoter to evaluate the utility of Y. lipolytica as a host strain for recombinant EGII and CBHII production. Extracellular endoglucanase activity was similar between TEF-preoproLip2-eglII expressed in Y. lipolytica and P. pastoris induced by 0.5 % (v/v) methanol, but when recombinant protein expression in P. pastoris was induced with 3 % (v/v) methanol, the activity was increased by about sevenfold. In contrast, the expression level of cellobiohydrolase from the TEF-preproLip2-cbhII cassette was higher in Y. lipolytica than in P. pastoris. Transformed Y. lipolytica produced up to 15 mg/l endoglucanase and 50 mg/l cellobiohydrolase, with the specific activity of both proteins being greater than their homologs produced by P. pastoris. Partial characterization of recombinant endoglucanase II and cellobiohydrolase II expressed in both yeasts revealed their optimum pH and temperature, and their pH and temperature stabilities were identical and hyperglycosylation had little effect on their enzymatic activity and properties.  相似文献   

13.
Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N-glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The k(cat) and K(m) values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site-directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system.  相似文献   

14.
平菇漆酶基因在毕赤酵母中的分泌表达及酶学性质研究   总被引:5,自引:0,他引:5  
采用RTPCR技术克隆到一个平菇(Pleurotusostreatus)漆酶基因的全长cDNA,命名为lccPo1,其序列提交GenBank,登录号为AY450404。将其ORF克隆到毕赤酵母表达载体pHBM906,转化3株毕赤酵母GS115、KM71和SMD1168,该漆酶基因在3种毕赤酵母菌株中均实现了分泌表达。3种摇瓶培养条件①25℃,1.0%(VV)甲醇;②20℃,1.0%(VV)甲醇;③20℃,0.5%(VV)甲醇,进行比较研究后发现适当提高甲醇浓度有利于漆酶在低温条件下表达,而降低培养温度到20℃则可以提高漆酶的产量2~6倍。3株重组毕赤酵母在其最适反应条件下测得三者粗酶液最高漆酶酶活分别为3.19UmL[GS115(pHBM565)]、2.56UmL[KM71(pHBM565)]和2.49UmL[SMD1168(pHBM565)]。对重组酶进行相关的酶学性质分析表明,三者的最适反应pH值约为4.2,最适反应温度约为60℃。重组毕赤酵母GS115(pHBM565)所产酶的热稳定性稍好,在pH稳定性方面三者没有太大差异。  相似文献   

15.
Equistatin (EI) is a cysteine protease inhibitor that was isolated from the sea anemone Actinia equina. It belongs to a recently discovered group of thyroglobulin type-I domain inhibitors called thyropins. Since native EI is found only in low amounts in the body of sea anemone and expression of recombinant EI in Escherichia coli yielded only 1 mg/liter of protein, we used the Pichia pastoris expression system to obtain higher yields. A cDNA encoding EI was inserted into pPIC9 vector and transformed into the P. pastoris, strain GS115. Clones expressing high levels of EI were selected from 48 transformants. Recombinant EI was produced in 2-liter shake flasks and recovered from the fermentation broth by affinity chromatography using CM-papain-Sepharose. SDS-PAGE and N-terminal sequence analysis revealed that EI was N-terminally intact and running at the expected molecular weight of 22 kDa. The equilibrium dissociation constants of EI with papain and bovine cathepsin D were determined and were found to be similar to the results for the native inhibitor. EI production was scaled up to a bench top fermentor with a 25 mg/liter yield of active EI.  相似文献   

16.
The ste1 gene encoding a steryl esterase was isolated from the thermophilic fungus Melanocarpus albomyces. The gene has one intron, and it encodes a protein consisting of 576 amino acids. The deduced amino acid sequence of the steryl esterase was shown to be related to lipases and other esterases such as carboxylesterases. Formation of mature protein requires post-translational removal of a putative 18-amino-acid signal sequence and a 13-residue propeptide at the N-terminus. The intronless version of the Melanocarpus albomyces ste1 gene was expressed in Pichia pastoris under the inducible AOX1 promoter. The production level was low, and a large proportion of the total activity yield was found to be present intracellularly. However, the fact that steryl esterase activity was produced by P. pastoris cells carrying the expression cassette confirmed that the correct gene had been cloned. The ste1 gene was subsequently expressed in T. reesei under the inducible cbh1 promoter, and a clearly higher production level was obtained. About 60% of the total activity was bound to the fungal mycelium or to solid components of the culture medium, or existed as aggregates. Triton X-100 was successfully used to recover this activity. The heterologous production system in T. reesei provides a means of producing M. albomyces steryl esterase STE1 reliably in large scale for future studies.  相似文献   

17.
Therapeutic glycoprotein production in the widely used expression host Pichia pastoris is hampered by the differences in the protein-linked carbohydrate biosynthesis between this yeast and the target organisms such as man. A significant step towards the generation of human-compatible N-glycans in this organism is the conversion of the yeast-type high-mannose glycans to mammalian-type high-mannose and/or complex glycans. In this perspective, we have co-expressed an endoplasmic reticulum-targeted Trichoderma reesei 1,2-alpha-D-mannosidase with two glycoproteins: influenza virus haemagglutinin and Trypanosoma cruzi trans-sialidase. Analysis of the N-glycans of the two purified proteins showed a >85% decrease in the number of alpha-1,2-linked mannose residues. Moreover, the human-type high-mannose oligosaccharide Man(5)GlcNAc(2) was the major N-glycan of the glyco-engineered trans-sialidase, indicating that N-glycan engineering can be effectively accomplished in P. pastoris.  相似文献   

18.
一株纤维素酶高产菌株经ITS序列鉴定并命名为长梗木霉SSL (Trichoderma longibrachiatum, SSL)。利用RT-PCR的方法从该菌株中克隆出内切-1-4-β-D-葡聚糖酶I的基因 (eg1), 该基因全长1386 bp, 编码461个氨基酸。序列分析表明:该基因序列与T. longibrachiatum egl1基因具有90%以上的同源性。将该基因的成熟肽编码序列插入到Pichia pastoris表达载体ppic9k中, 构建重组表达质粒ppic9k-eg1, 转化P. pa  相似文献   

19.
The endoglucanase II of Trichoderma reesei is considered the most effective enzyme for biofinishing cotton fabrics and biostoning denim garments. However, the commercially available preparation of endoglucanase II is usually mixed with other cellulase components, especially endoglucanase I, resulting in hydrolysis and weight loss of garments during biofinishing and biostoning. We thus isolated the endoglucanase II gene from T. reesei to express this in Pichia pastoris, under the control of a methanol-inducible AOX1 promoter, to avoid the presence of other cellulase components. A highly expressible Mut(+) transformant was selected and its expression in BMMH medium was found most suitable for the production of large amounts of the recombinant protein. Recombinant endoglucanase II was purified to electrophoretic homogeneity, and functionally characterized by activity staining. The specific activity of recombinant endoglucanase II was found to be 220.57 EU/mg of protein. Purified recombinant endoglucanase II was estimated to have a molecular mass of 52.8 kDa. The increase in molecular mass was likely due to hyperglycosylation. Hyperglycosylation of recombinant endoglucanase II secreted by P. pastoris did not change the temperature or pH optima as compared to the native protein, but did result in increased thermostability. Kinetic analysis showed that recombinant endoglucanase was most active against amorphous cellulose, such as carboxymethyl cellulose, for which it also had a high affinity.  相似文献   

20.
《Gene》1988,63(1):11-21
A novel endoglucanase from Trichoderma reesei, EGIII, has been purified and its catalytic properties have been studied. The gene for that enzyme (egl3) and cDNA have been cloned and sequenced. The deduced EGIII protein shows clear sequence homology to a Schizophyllum commune enzyme (M. Yaguchi, personal communication), but is very different from the three other T. reesei cellulases with known structure. Nevertheless, all the four T. reesei cellulases share two common, adjacent sequence domains, which apparently can be removed by proteolysis. These homologous sequences reside at the N termini of EGIII and the cellobiohydrolase CBHII, but at the C termini of EGI and CBHI. Comparison of the fungal cellulase structures has led to re-evaluation of hypotheses concerning the localization of the active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号