首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nuclear factor κB (NF-κB) is a promising target for drug discovery. NF-κB is a heterodimeric complex of RelA and p50 subunits that interact with the DNA, regulating the expression of several genes; its dysregulation can trigger diverse diseases including inflammation, immunodeficiency, and cancer. There is some experimental evidence, based on whole cells studies, that natural sesquiterpene lactones (Sls) can inhibit the interaction of NF-κB with DNA, by alkylating the RelA subunit via a Michael addition. In the present work, 28 natural and semisynthetic pseudoguianolides were screened as potential inhibitors of NF-κB in a biochemical assay that was designed using pure NF-κB heterodimer, pseudoguianolides and a ~1000 bp palindromic DNA fragment harboring two NF-κB recognition sequences. By comparing the relative amount of free DNA fragment to the NF-κB – DNA complex, in a routine agarose gel electrophoresis, the destabilizing effect of a compound on the complex is estimated. The results of the assay and the following structure-activity relationship study, allowed the identification of several relevant structural features in the pseudoguaianolide skeleton, which are necessary to enhance the dissociating capacity of NF-κB–DNA complex. The most active compounds are substituted at C-3 (α-carbonyl), in addition to having the α-methylene-γ-lactone moiety which is essential for the alkylation of RelA.  相似文献   

2.
3.

Background

Dexamethasone suppressed inflammation and haemodynamic changes in an animal model of pulmonary arterial hypertension (PAH). A major target for dexamethasone actions is NF-κB, which is activated in pulmonary vascular cells and perivascular inflammatory cells in PAH. Reverse remodelling is an important concept in PAH disease therapy, and further to its anti-proliferative effects, we sought to explore whether dexamethasone augments pulmonary arterial smooth muscle cell (PASMC) apoptosis.

Methods

Analysis of apoptosis markers (caspase 3, in-situ DNA fragmentation) and NF-κB (p65 and phospho-IKK-α/β) activation was performed on lung tissue from rats with monocrotaline (MCT)-induced pulmonary hypertension (PH), before and after day 14–28 treatment with dexamethasone (5 mg/kg/day). PASMC were cultured from this rat PH model and from normal human lung following lung cancer surgery. Following stimulation with TNF-α (10 ng/ml), the effects of dexamethasone (10−8–10−6 M) and IKK2 (NF-κB) inhibition (AS602868, 0–3 μM (0-3×10−6 M) on IL-6 and CXCL8 release and apoptosis was determined by ELISA and by Hoechst staining. NF-κB activation was measured by TransAm assay.

Results

Dexamethasone treatment of rats with MCT-induced PH in vivo led to PASMC apoptosis as displayed by increased caspase 3 expression and DNA fragmentation. A similar effect was seen in vitro using TNF-α-simulated human and rat PASMC following both dexamethasone and IKK2 inhibition. Increased apoptosis was associated with a reduction in NF-κB activation and in IL-6 and CXCL8 release from PASMC.

Conclusions

Dexamethasone exerted reverse-remodelling effects by augmenting apoptosis and reversing inflammation in PASMC possibly via inhibition of NF-κB. Future PAH therapies may involve targeting these important inflammatory pathways.  相似文献   

4.
5.
Utilizing the Citrobacter rodentium-induced transmissible murine colonic hyperplasia (TMCH) model, we measured hyperplasia and NF-κB activation during progression (days 6 and 12 post-infection) and regression (days 20–34 post-infection) phases of TMCH. NF-κB activity increased at progression in conjunction with bacterial attachment and translocation to the colonic crypts and decreased 40% by day 20. NF-κB activity at days 27 and 34, however, remained 2–3-fold higher than uninfected control. Expression of the downstream target gene CXCL-1/KC in the crypts correlated with NF-κB activation kinetics. Phosphorylation of cellular IκBα kinase (IKK)α/β (Ser176/180) was elevated during progression and regression of TMCH. Phosphorylation (Ser32/36) and degradation of IκBα, however, contributed to NF-κB activation only from days 6 to 20 but not at later time points. Phosphorylation of MEK1/2 (Ser217/221), ERK1/2 (Thr202/Tyr204), and p38 (Thr180/Tyr182) paralleled IKKα/β kinetics at days 6 and 12 without declining with regressing hyperplasia. siRNAs to MEK, ERK, and p38 significantly blocked NF-κB activity in vitro, whereas MEK1/2-inhibitor (PD98059) also blocked increases in MEK1/2, ERK1/2, and IKKα/β thereby inhibiting NF-κB activity in vivo. Cellular and nuclear levels of Ser536-phosphorylated (p65536) and Lys310-acetylated p65 subunit accompanied functional NF-κB activation during TMCH. RSK-1 phosphorylation at Thr359/Ser363 in cellular/nuclear extracts and co-immunoprecipitation with cellular p65-NF-κB overlapped with p65536 kinetics. Dietary pectin (6%) blocked NF-κB activity by blocking increases in p65 abundance and nuclear translocation thereby down-regulating CXCL-1/KC expression in the crypts. Thus, NF-κB activation persisted despite the lack of bacterial attachment to colonic mucosa beyond peak hyperplasia. The MEK/ERK/p38 pathway therefore seems to modulate sustained activation of NF-κB in colonic crypts in response to C. rodentium infection.  相似文献   

6.
7.
Both β-catenin and NF-κB have been implicated in our laboratory as candidate factors in driving proliferation in an in vivo model of Citrobacter rodentium (CR)-induced colonic crypt hyper-proliferation and hyperplasia. Herein, we test the hypothesis that β-catenin and not necessarily NF-κB regulates colonic crypt hyperplasia or tumorigenesis in response to CR infection. When C57Bl/6 wild type (WT) mice were infected with CR, sequential increases in proliferation at days 9 and 12 plateaued off at day 19 and paralleled increases in NF-κB signaling. In Tlr4−/− (KO) mice, a sequential but sustained proliferation which tapered off only marginally at day 19, was associated with TLR4-dependent and independent increases in NF-κB signaling. Similarly, increases in either activated or total β-catenin in the colonic crypts of WT mice as early as day 3 post-infection coincided with cyclinD1 and c-myc expression and associated crypt hyperplasia. In KO mice, a delayed kinetics associated predominantly with increases in non-phosphorylated (active) β-catenin coincided with increases in cyclinD1, c-myc and crypt hyperplasia. Interestingly, PKCζ-catalyzed Ser-9 phosphorylation and inactivation of GSK-3β and not loss of wild type APC protein accounted for β-catenin accumulation and nuclear translocation in either strain. In vitro studies with Wnt2b and Wnt5a further validated the interplay between the Wnt/β-catenin and NF-κB pathways, respectively. When WT or KO mice were treated with nanoparticle-encapsulated siRNA to β-catenin (si- β-Cat), almost complete loss of nuclear β-catenin coincided with concomitant decreases in CD44 and crypt hyperplasia without defects in NF-κB signaling. si-β-Cat treatment to Apc Min/+ mice attenuated CR-induced increases in β-catenin and CD44 that halted the growth of mutated crypts without affecting NF-κB signaling. The predominant β-catenin-induced crypt proliferation was further validated in a Castaneus strain (B6.CAST.11M) that exhibited significant crypt hyperplasia despite an attenuated NF-κB signaling. Thus, β-catenin and not necessarily NF-κB regulates crypt hyperplasia in response to bacterial infection.  相似文献   

8.
9.
10.
Cytokine-induced beta cell dysfunction is a hallmark of type 2 diabetes (T2D). Chronic exposure of beta cells to inflammatory cytokines affects gene expression and impairs insulin secretion. Thus, identification of anti-inflammatory factors that preserve beta cell function represents an opportunity to prevent or treat T2D. Butyrate is a gut microbial metabolite with anti-inflammatory properties for which we recently showed a role in preventing interleukin-1β (IL-1β)-induced beta cell dysfunction, but how prevention is accomplished is unclear. Here, we investigated the mechanisms by which butyrate exerts anti-inflammatory activity in beta cells. We exposed mouse islets and INS-1E cells to a low dose of IL-1β and/or butyrate and measured expression of inflammatory genes and nitric oxide (NO) production. Additionally, we explored the molecular mechanisms underlying butyrate activity by dissecting the activation of the nuclear factor-κB (NF-κB) pathway. We found that butyrate suppressed IL-1β-induced expression of inflammatory genes, such as Nos2, Cxcl1, and Ptgs2, and reduced NO production. Butyrate did not inhibit IκBα degradation nor NF-κB p65 nuclear translocation. Furthermore, butyrate did not affect binding of NF-κB p65 to target sequences in synthetic DNA but inhibited NF-κB p65 binding and RNA polymerase II recruitment to inflammatory gene promoters in the context of native DNA. We found this was concurrent with increased acetylation of NF-κB p65 and histone H4, suggesting butyrate affects NF-κB activity via inhibition of histone deacetylases. Together, our results show butyrate inhibits IL-1β-induced inflammatory gene expression and NO production through suppression of NF-κB activation and thereby possibly preserves beta cell function.  相似文献   

11.
Experimental characterization of the structural couplings in free B-DNA in solution has been elusive, because of subtle effects that are challenging to tackle. Here, the exploitation of the NMR measurements collected on four dodecamers containing a substantial set of dinucleotide sequences provides new, consistent correlations revealing the DNA intrinsic mechanics. The difference between two successive residual dipolar couplings (ΔRDCs) involving C6/8-H6/8, C3′-H3′ and C4′-H4′ vectors are correlated to the 31P chemical shifts (δP), which reflect the populations of the BI and BII backbone states. The δPs are also correlated to the internucleotide distances (Dinter) involving H6/8, H2′ and H2″ protons. Calculations of NMR quantities on high resolution X-ray structures and controlled models of DNA enable to interpret these couplings: the studied ΔRDCs depend mostly on roll, while Dinter are mainly sensitive to twist or slide. Overall, these relations demonstrate how δP measurements inform on key inter base parameters, in addition to probe the BI↔BII backbone equilibrium, and shed new light into coordinated motions of phosphate groups and bases in free B-DNA in solution. Inspection of the 5′ and 3′ ends of the dodecamers also supplies new information on the fraying events, otherwise neglected.  相似文献   

12.
13.
14.
NF-κB essential modulator, NEMO, plays a key role in canonical NF-κB signaling induced by a variety of stimuli, including cytokines and genotoxic agents. To dissect the different biochemical and functional roles of NEMO in NF-κB signaling, various mutant forms of NEMO have been previously analyzed. However, transient or stable overexpression of wild-type NEMO can significantly inhibit NF-κB activation, thereby confounding the analysis of NEMO mutant phenotypes. What levels of NEMO overexpression lead to such an artifact and what levels are tolerated with no significant impact on NEMO function in NF-κB activation are currently unknown. Here we purified full-length recombinant human NEMO protein and used it as a standard to quantify the average number of NEMO molecules per cell in a 1.3E2 NEMO-deficient murine pre-B cell clone stably reconstituted with full-length human NEMO (C5). We determined that the C5 cell clone has an average of 4 x 105 molecules of NEMO per cell. Stable reconstitution of 1.3E2 cells with different numbers of NEMO molecules per cell has demonstrated that a 10-fold range of NEMO expression (0.6–6x105 molecules per cell) yields statistically equivalent NF-κB activation in response to the DNA damaging agent etoposide. Using the C5 cell line, we also quantified the number of NEMO molecules per cell in several commonly employed human cell lines. These results establish baseline numbers of endogenous NEMO per cell and highlight surprisingly normal functionality of NEMO in the DNA damage pathway over a wide range of expression levels that can provide a guideline for future NEMO reconstitution studies.  相似文献   

15.
16.

Background

Up-regulation and association of nuclear factor kappa B (NF-κB) with carcinogenesis and tumor progression has been reported in several malignancies. In the current study, expression of NF-κB in cholangiocarcinoma (CCA) patient tissues and its clinical significance were determined. The possibility of using NF-κB as the therapeutic target of CCA was demonstrated.

Methodology

Expression of NF-κB in CCA patient tissues was determined using immunohistochemistry. Dehydroxymethylepoxyquinomicin (DHMEQ), a specific NF-κB inhibitor, was used to inhibit NF-κB action. Cell growth was determined using an MTT assay, and cell apoptosis was shown by DNA fragmentation, flow cytometry and immunocytofluorescent staining. Effects of DHMEQ on growth and apoptosis were demonstrated in CCA cell lines and CCA-inoculated mice. DHMEQ-induced apoptosis in patient tissues using a histoculture drug response assay was quantified by TUNEL assay.

Principal Findings

Normal bile duct epithelia rarely expressed NF-κB (subunits p50, p52 and p65), whereas all CCA patient tissues (n  =  48) over-expressed all NF-κB subunits. Inhibiting NF-κB action by DHMEQ significantly inhibited growth of human CCA cell lines in a dose- and time-dependent manner. DHMEQ increased cell apoptosis by decreasing the anti-apoptotic protein expressions–Bcl-2, XIAP–and activating caspase pathway. DHMEQ effectively reduced tumor size in CCA-inoculated mice and induced cell apoptosis in primary histocultures of CCA patient tissues.

Conclusions

NF-κB was over-expressed in CCA tissues. Inhibition of NF-κB action significantly reduced cell growth and enhanced cell apoptosis. This study highlights NF-κB as a molecular target for CCA therapy.  相似文献   

17.
18.
19.
Biliary pancreatitis is the most common etiology of acute pancreatitis, accounting for 30–60% of cases. A dominant theory for the development of biliary pancreatitis is the reflux of bile into the pancreatic duct and subsequent exposure to pancreatic acinar cells. Bile acids are known to induce aberrant Ca2+ signals in acinar cells as well as nuclear translocation of NF-κB. In this study, we examined the role of the downstream Ca2+ target calcineurin on NF-κB translocation. Freshly isolated mouse acinar cells were infected for 24 h with an adenovirus expressing an NF-κB luciferase reporter. The bile acid taurolithocholic acid-3-sulfate caused NF-κB activation at concentrations (500 μm) that were associated with cell injury. We show that the NF-κB inhibitor Bay 11-7082 (1 μm) blocked translocation and injury. Pretreatment with the Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, the calcineurin inhibitors FK506 and cyclosporine A, or use of acinar cells from calcineurin Aβ-deficient mice each led to reduced NF-κB activation with taurolithocholic acid-3-sulfate. Importantly, these manipulations did not affect LPS-induced NF-κB activation. A critical upstream regulator of NF-κB activation is protein kinase C, which translocates to the membranes of various organelles in the active state. We demonstrate that pharmacologic and genetic inhibition of calcineurin blocks translocation of the PKC-δ isoform. In summary, bile-induced NF-κB activation and acinar cell injury are mediated by calcineurin, and a mechanism for this important early inflammatory response appears to be upstream at the level of PKC translocation.  相似文献   

20.
The goals of this study were to investigate the effects of hypoxia on cochlear hair cell damage, and to explore the role of sirtuin1 in hypoxia-induced hair cell damage. Cochlear organotypic cultures from postnatal day 4 rats were used in this study. Hypoxia was induced by treating cochlear explants with CoCl2. Cochlear cultures were treated with CoCl2 alone or in combination with the sirtuin1 activator resveratrol and the sirtuin1 inhibitor sirtinol. Hair cell damage was identified by phalloidin staining and imaged using scanning electron microscopy. RT-PCR and Western blot analyses were used to detect the expression of sirtuin1 and acetylated nuclear factor-κB (NF-κB). Low concentrations of CoCl2 (100–200 μM) did not cause an obvious change in the number and morphology of hair cells, whereas higher concentrations of CoCl2 (300–400 μM) induced swelling of hair cells, accompanied by cell loss. Increased sirtuin1 expression was induced by CoCl2 at 100 to 200 μM, but not at 400 μM. NF-κB acetylation was significantly increased in explants treated with 400 μM CoCl2. Pretreatment with resveratrol prevented CoCl2-induced hair cell loss and acetylation of NF-κB. The protective effect of resveratrol was significantly reduced by sirtinol. CoCl2 induces hair cell damage in organotypic cochleae cultures. Resveratrol attenuates CoCl2-induced cochlear hair cell damage possibly via activation of sirtuin1, which deacetylates NF-κB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号