首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium selenite (Na2Se03) was tested for its sister-chromatid exchange (SCE)-inducing ability in human whole blood cultures and for the effect of its co-exposure with methyl methanesulfonate (MMS) or N-hydroxy-2-acetyl aminofluorene (N-OH-AAF) on SCE frequency. Long exposure times (77 h and 96 h) to 3.95 × 10-6 M Na2SeO3 resulted in cell death as measured by mitotic indices, but mitotic figures were present after exposure to higher concentrations for a shorter time (19 h). High Na2SeO3 concentrations (7.90 × 10?6 and 1.19 × 10?5 M) resulted in a three-fold increase in the SCE frequency above background level (6–7 SCEs/cell). Exposure of lymphocytes to 1 × 10?4 M MMS for the last 19 h of culture yielded an average SCE frequency of 30.17 ± 0.75 while a similar exposure to 2.7 × 10?5 M N-OH-AAF resulted in 13.61 ± 0.43 SCEs/cell. Simultaneous addition of the high Na2Se03 concentrations and MMS or N-OH-AAF to the cultures resulted in SCE frequencies that were 25–30% and 11–17%, respectively, below the sum of the SCE frequencies produced by the individual compounds.  相似文献   

2.
In contrast with earlier report on the induction of sister-chromatid exchanges (SCEs) by SH compounds in cell lines of the Chinese hamster, cysteine, cysteamine and cystamine did not cause an increase of the SCE frequency in human lymphocyte cultures. Differences in the treatment protocols or variations of the Brd Urd concentration had no effect on the induction of SCEs by these substances. The inclusion of H2O2 and comparative investigations with V79 cells of the Chinese hamster showed that the probable reason for the SCE induction by SH compounds is the inability of the cells to degrade H2O2.Furthermore, for cystamine it became clear that additional effects must exist besides the induction of SCEs through H2O2.The present study underlines the fact that the examination of a substance within one cell system does not necessarily permit a reliable statement about the DNA-damaging property of this substance.  相似文献   

3.
The frequencies of sister-chromatid exchange (SCE) in peripheral blood lymphocytes of 40 workers at a phosphate fertilizer factory in North China were studied. HF and SiF4 are main air pollutants in the factory, there is also some dust containing fluoride, phosphate fog, NH3 and SO2. It was shown that the chemicals caused an increase in SCE, and also induced cell mitotic delays. The mean SCEs/cell of the workers and the non-exposed controls were 7.47 ± 0.31 and 4.94 ± 0.14 (p < 0.01) respectively. SCEs/cell in 75% of 40 workers were higher than 6 while 40 controls all had values lower than 6. SCE frequencies of the workers increased with length of the chemical exposure period up to 10 years. Smoking enhanced the SCE frequencies induced by the chemicals.  相似文献   

4.
Previous reports from this laboratory and others indicate that sodium azide is a unique mutagen. It is highly mutagenic in S. typhimurium TA1530 as well as in barley, rice, peas, yeast and Chinese hamster V79 cells. However, azide apparently does not produce chromosome breaks in barley, Vicia or human lymphocytes. Therefore, a study of the effects of azide on sister-chromatid exchanges (SCE) appeared warranted.Human whole blood and Chinese hamster K1 cell line were exposed for 4 and 2 h resp. to various concentrations of sodium azide ranging from 10−3 to 10−7 M. Cells were harvested and chromosomes stained by the FPG technique. In human lumphocytes, concentrations above 10−4 induced lethality whereas the K1 cell line was sensitive to concentrations above 10−5 M. The lower concentrations of azide produced no significant increase in SCE frequency above controls. Concurrent mitomycin C treatments produced significant increases in SCE levels.This apparent lack of induction of SCEs above background combined with previous data demonstrating negative clastogenic but very positive mutagenic activity of azide confirms the uniqueness of this mutagen. It would appear that azide is one of the few known potent mutagens that does not increase SCEs and/or break chromosomes.  相似文献   

5.
The hepatic tumor cell line (HTC) was tested for the ability to produce sister chromatid exchanges (SCEs) in response to chemical carcinogens which require activation. Without the addition of exogenous microsomal enzyme preparations, cyclophosphamide, N-nitrosodiethylamine (DEN) and aflatoxin B1 (AFB1) induced significant levels of SCEs in these cells. Mitomycin C (MMC) and ultraviolet light, which do not require activation, also produced significant levels of SCEs. The induction of SCEs in HTC cells by AFB1 was shown to be inhibited by estradiol, a known inhibitor of microsomal activating enzymes. For the carcinogens tested, the HTC cell SCE assay was quite sensitive and comparable to other mammalian test systems. Exceptional sensitivity was found in the case of AFB1. SCE analysis of HTC cells offers a simplified system of detecting carcinogens requiring activation. This system also has the potential of investigating interactions between agents such as steroid hormones and carcinogens.  相似文献   

6.
The compound N-methyl-amino-2-nitro-4-N′,N′-bis-(2-hydroxyethyl)-aminobenzene was tested for mutagenic activity in the sex-linked recessive lethal test with Drosophila melanogaster, the induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) with Chinese hamster ovary (CHO) cells in vitro, and the micronucleus test with mouse bone-marrow cells in vivo. Consistently negative results were obtained with the 3 tests. The SCE tests gave positive results with prolonged treatments. It is concluded that reliable decisions about mutagenic activity cannot be based on the induction, in vitro, of SCEs alone.  相似文献   

7.
Culture of cells in high exogenous levels (>10–4 M) of bromodeoxyuridine (BrdUrd) or thymidine will increase the baseline sister chromatid exchange (SCE) frequency. The effect is thought to be related to the balance of the DNA precursors thymidine and deoxycytidine. Exogenous addition of deoxycytidine will reverse this effect. Single and twin SCEs were analysed in Colcemid-induced tetraploid Chinese hamster ovary cells exposed to different concentrations of BrdUrd to determine at what stage SCEs are induced by high levels of BrdUrd. In cells exposed to low concentrations of BrdUrd (10–5 M), equal numbers of SCEs were induced in each of the two cell cycles. With increasing concentrations of BrdUrd (10–4 to 2×10–4 M), SCE frequency increased in both cell cycles, but far more SCEs were induced in the second cell cycle. Deoxycytidine (2×10–4 M) reduced the frequency of SCEs primarily by reducing the frequency of SCEs induced in the second cell cycle. Treatment with 3-aminobenzamide (3AB), a potent inhibitor of poly(ADP-ribose) polymerase, produced effects similar to exposure to high levels of BrdUrd including inducing SCEs in the second replication cycle. This suggests a similar mechanism of action. Deoxycytidine had no effect on 3AB-induced SCEs, however, and there was no interaction between 3AB and high exogenous levels of BrdUrd in SCE induction. Thus these two agents probably act through different mechanisms.  相似文献   

8.
2 rat cell lines originated from ascites hepatoma AH66-B and esophageal tumor R1 were examined for their inducibility of sister-chromatid exchanges (SCEs) after treatment with 14 kinds of indirect mutagens/carcinogens, including 6 amine derivatives, 4 azo compounds, 3 aromatic hydrocarbons and 1 steroid. Of the 14 chemicals tested, 2-acetylaminofluorene (AAF), butylbutanolnitrosamine (BBN), dimethylnitrosamine (DMN), cyclophosphamide (CP), urethane, 2-methyl-4-dimethylaminoazobenzene (2-MeDAB), 3′-methyl-4-dimethylaminoazobenzene (3′-MeDAB), 4-o-tolylazo-o-toluidine (4-TT), benzo[a]pyrene (BP), 7,12-dimethyl-benz[a]anthracene (DMBA) and diethylstilbestrol (DES) were estimated to be effective inducers of SCEs in AH66-B and/or R1 cells, without the use of exogenous activating systems. Cell-mediated SCE tests with 6 selected chemicals, CP, 2-MeDAB, 4-TT, BP, DMBA and DES, showed a significant increase of SCEs in Chinese hamster Don-6 cells co-cultivated with AH66-B or R1 cells, depending on the number and sensitivity of AH66-B or R1 cells, as well as on the dose of chemicals tested, whereas singly cultured Don-6 cells were much less sensitive or almost insensitive to these chemicals. The above findings suggest that AH66-B and R1 cells may retain metabolic activities to convert a wide range of indirect mutagens/carcinogens into their active forms to induce SCEs, and that these cell lines provide simple and reliable screening systems in vitro, including the cell-mediated SCE assay, for detection of genotoxic agents, without the use of exogenous activation systems.  相似文献   

9.
The addition of 7,8-benzoflavone to a monooxygenase system from human liver markedly stimulated the metabolic activation of aflatoxin B1 to mutagens. When 7,8-benzoflavone (5 × 10?5M) was added to this monooxygenase system, the amount of aflatoxin B1 needed for a mutagenic response was decreased by 20- to 40-fold. 7,8-Benzoflavone did not stimulate the metabolic activation of aflatoxin B1 to mutagens when rat liver was used as a source of monooxygenase.  相似文献   

10.
The ability of aflatoxins B1 and G1 to induce back mutations to arg+ in Escherichia coli K-12/343/113 was compared with induction of mitotic gene conversion to ade+ in the diploid yeast strain Saccharomyces cerevisiae D4, ade2?. In analogy to previous results with other microorganisms, the compounds were not genetically active per se, indicating that under the experimental conditions employed none of the tester strains were able to activate the compounds to mutagenic products.In experiments using liver homegenates (S-9 fraction) of male Golden Syrian hamsters previously treated with phenobarbital, aflatoxin B1 exhibited strong genetic activity both in E. coli and in S. cerevisiae, whereas the mutagenic activity of aflatoxin G1 was markedly lower and could be detected only in the E. coli tester strain. These results correlate the findings that aflatoxin G1 is a less potent carcinogen and mutagen than aflatoxin B1.  相似文献   

11.
The respiratory adaptation process (i.e essentially mitochondrial biogenesis) in the cells of both wild-type Saccharomyces cerevisiae and strains sensitive to ultraviolet radiation (UV) undergoing transition from the anaerobic to the aerobic state (1–2 h aeration) could be arrested by a prior incubation for 15–30 min with several chemical mutagens and other DNA-acting chemicals at very low concentrations (10?7 to 10?6 M added to cells suspended at the density of 107 cells/ml). At the same concentrations, these chemicals also inhibited DNA and RNA biosynthesis in maturing mitochondria during respiratory adaptation. This provides suggestive evidence for the view that the inhibitory effect of the chemical mutagens on respiratory adaptation could be due to lesions introduced into the DNA of promitochondria in the anaerobic cells. The system of respiratory adaptation in S. cerevisiae cells could serve as a rapid test for ascertaining the potentiality of a chemical to affect DNA and probably, in turn, its potentiality to be mutagenic.  相似文献   

12.
Chemically-induced sister-chromatid exchange (SCE) was measured in vivo in bone marrow of Chinese hamsters. Chemicals were administered either intraperitoneally or orally and increased SCE frequencies were noted with 6 of 6 direct-acting genotoxins and with 9 of 14 activation-dependent genotoxins. Metronidazole, O-toluidine, 4-nitro-O-phenylenediamine and 2-nitro-p-phenylenediamine, compounds which have shown either mutagenic or carcinogenic activity, did not induce SCE in vivo. 4 non-genotoxins and 4 different control treatments did not induce SCE. The results show that the in vivo SCE method may be useful for the identification of genotoxins and that the outcome of the test is, for certain chemicals, dependent upon the route of exposure.  相似文献   

13.
Sister-chromatid exchanges (SCEs) in a permanent cell line of human lymphoblastoid cells were induced by 3-amino-1,4-dimethyl-5H-pyrido-[4,3-b]-indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-6-methyldipyridol[1,2-a:3′,2′-d]imidazole (Glu-P-1) and 2-amino-9H-pyrido[2,3-b]indole (2-amino-α-carboline). The first two compounds were found in tryptophan pyrolysates, the third in a glutamic acid pyrolysate and the last in a globulin pyrolysate. All these compounds required the metabolic activation system (S9 mix) for induction of SCE. Trp-P-2 had the highest SCE-inducing activity of these chemicals (approximately equivalent to that of aflatoxin B1), followed by Trp-P-1, Glu-P-1 and then 2-amino-α-carboline.  相似文献   

14.
In vivo cyclophosphamide (CP)-induced sister chromatid exchanges (SCEs) were evaluated in females from five genetic strains of mice (C57BL/6J, C3H/S, 129/ReJ, BALB/c and DBA/2) and their F1 hybrids. Baseline (noninduced) SCE values differ significantly among strains, 129/ReJ having the lowest and DBA/2 having the highest mean SCE per cell values. In general, the baseline SCE of a given F1 is within the range of its corresponding parental strains or near the lower parental value. Furthermore, there is a genotype-dependent increase in mean SCEs per cell with CP dose. Strain differences in SCE induction are noted particularly at the two higher CP doses (4.50 and 45.0 mg/kg). In general, F1 hybrids involving a strain with high induced SCEs and a strain with low induced SCEs exhibit mean SCE values that are closer to the value of the lower strain. F1 s involving two strains with high SCEs or two strains with low SCEs yield SCEs not different from parental strains. The method of diallel cross analysis showed the order of dominance of these strains in SCE induction to be 129/ReJ BALB/c C3H/S DBA/2 C57BL/6J. These results support the involvement of predominantly nonadditive genetic factors as major gene(s) in SCE induction. In addition, involvement of random and independent events in SCE induction is suggested by the distribution of SCEs which follows a Poisson distribution.  相似文献   

15.
Differential staining of sister chromatids with Giemsa after BrdU incorporation into DNA was performed in Allium cepa L. chromosomes. A treatment solution containing 10–7 M FdU, 10–4 M BrdU and 10–6 M Urd was found to ensure BrdU incorporation without affecting cell cycle duration. After several procedures before staining the slides with Giemsa had been tested, treatment with the fluorochrome compound 33258 Hoechst, exposure to UV light and heating at 55° C in 0.5×SSC, were found to be essential for good differentiation. The distribution of SCEs per chromosome agrees with the expected Poisson distribution. The mean value of SCEs per chromosome occurring when cells were exposed to the treatment solution for two consecutive rounds of replication (=5.5) was double the mean value observed when cells were exposed to the same treatment for only one round of replication (=2.8). SCEs were found to occur more frequently in those chromosome regions corresponding neither to C-bands nor to late replicating DNA-rich regions. Finally, the occurrence of SCEs involving less than the width of a chromatid is discussed.  相似文献   

16.
Chinese hamster ovary (CHO) cells were exposed to [3H]ethyl nitrosourea (ENU) or [3H]ethyl methanesulfonate (EMS) and the following DNA ethylation products were quantitated: 3- and 7-ethyladenine, O2-ethylcytosine, 3-, 7- and O6-ethylguanine, O2- and O4-ethyldeoxythymidine and the representative ethylated phosphodiester, deoxythymidylyl (3′–5′)ethyl-deoxythymidine. When mutations at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus induced by these same treaments were compared with the observed ethylation products, mutations were found to correlate best with 3- and O6-ethylguanine. EMS induced approximately twice as many sister-chromatid exchanges (SCEs) as ENU at doses yielding equal mutation frequencies. When SCEs were indirectly compared with DNA ethylation products, 3-ethyladenine and ethylated phosphodiesters related best to SCE formation. Because mutation and SCE induction appear, at least in part, to be related to different DNA adducts, SCE induction by simple ethylating agents may not be a quantitative indicator of potentially mutagenic DNA damage.  相似文献   

17.
C. Gutiérrez  A. Calvo 《Chromosoma》1981,83(5):685-695
In the present paper we have developed a new rationale and an experimental schedule to approximate the frequency of SCEs which occur independently of BrdU incorporation, namely, the baseline frequency of SCEs. The method used includes the analysis of SCE yields in second and third division chromosomes after BrdU-substitution for 1, 2, and/or 3 successive replication rounds in the presence of this thymidine analogue, leading to a set of ten different experimental results. As a result of formulating various mathematical equations and applying them to the data, an accurate estimation of the frequency of baseline (BrdU-independent) and BrdU-induced SCEs, can be made, thus avoiding the difficulties inherent in the current extrapolation methods. The conclusions are that 1) SCEs seem to be formed after DNA synthesis (by exchanging post-replicative DNA portions), but, obviously, very near to the replication fork and 2) that under our experimental conditions about 0.065 SCEs per picogram of DNA per cell cycle occur as a consequence of chromosome replication, this frequency being increased by BrdU-substitution. The methodology seems to be reliable enough to be used in other species and systems in order to compare baseline SCE frequencies.Abbreviations SCEs sister-chromatid exchanges - BrdU(BrdUrd) 5-bromodeoxyuridine - dTh(dThd) thymidine - 3H-dTh(3H-dThd) tritiated thymidine - FdU(FdUrd) 5-fluorodeoxyuridine - Urd uridine - FPG fluorescent plus Giemsa  相似文献   

18.
Cultured Chinese hamster ovary (CHO) cells were exposed to two neurotoxic organophosphates, either satin (GBI, GBII) at 1.4 x 10−3 M or soman (GD) at 1.1 and 2.2 x 10t-3 M for 1 h, grown and their metaphase chromosomes scored for sister-chromatid exchanges (SCE). No cytotoxicity was seen with either agent at any dose level tested. Since histograms of SCE per cell showed that they were non-symmetrically arrayed around the mean, the number of SCEs were analyzed by using the nonparametric tests, Mann-Whitney and Kruskall-Wallis. Agents GBI and GBII did not show any significant increase in SCE over baseline. On the other hand, GD demonstrated a statistically significant increase in SCE with and without metabolic activation. Ethyl methanesulfonate (EMS) alone at 5 x 10−3 M and cyclophosphamide (CP) at 10−4 M in the presence of rat microsomes (S9) induced a 3- and 8-fold increase in SCE per cell, respectively.  相似文献   

19.
Sister-chromatid exchanges (SCE) were studied in allium cepa L. meristematic cells at the second and third divisions after BrdUrd-substitution during just the first or during the second and third cycles, respectively. The observed SCE nonreciprocal/reciprocal ratios detected at the third division in both experiments, as well as comparison of the lowest SCE frequency observed per cycle and expressed per picogram of DNA with data from different species expressed accordingly, strongly suggest that most of the exchanges detected in BrdUrd-substituted chromosomes are BrdUrd-dependent events. Hypotheses suggesting some different mechanisms are discussed to explain the formation of these BrdUrd-dependent SCEs.  相似文献   

20.
DNA crosslinking, sister-chromatid exchange and specific-locus mutations   总被引:2,自引:0,他引:2  
Chinese hamster ovary cells were treated with the DNA-crosslinking chemicals, mitomycin C (MMC) and porfiromycin (POR), and their monofunctional derivative decarbamoyl mitomycin C (DCMMC). After exposure, the cells were studied for the induction of sister-chromatid exchanges (SCEs) and mutations at the hypoxanthine phosphoribosyltransferase and adenine phosphoribosyltransferase loci. The frequency of SCEs varied significantly in successive sampling intervals, requiring the weighting of each interval by the percentage of second-division mitosis in that interval to obtain the mean SCE frequency for each dose. All 3 compounds were potent inducers of SCEs but weakly mutagenic. All 3 chemicals by concentration were approximately equally effective in inducing SCEs or mutations. When the induced SCEs and mutations were compared at equal levels of survival, DCMMC was slightly more effective than MMC or POR in inducing SCEs and somewhat less mutagenic. These results indicate that the DNA interstrand crosslink is not the major lesion responsible for the induction of SCE or mutation by these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号