首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Genetic instability inStreptomyces glaucescens characteristically involves the occurrence of gross genomic rearrangements including high-level sequence amplification and extensive deletion. We investigated the relationship of the unstablemelC andstrS loci and a 100 kb region of the chromosome which frequently gives rise to intense heterogeneous DNA amplification. Standard chromosome walking using a cosmid bank in conjunction with a “reverse-blot” procedure enabled us to construct a contiguous genomicBamHI map of the unstable region exceeding 900 kb. The unstable genes and the amplifiable region (AUD locus) are physically linked within a 600 kb segment of the chromosome. The previously characterized deletions which affect these loci are merely components of much larger deletions ranging from 270 to over 800 kb which are polar in nature, effecting the sequential loss of thestrS andmelC loci. The more extensive deletions terminate either adjacent to, or in the vicinity of DNA reiterations at the AUD locus. Additionally, a deletion junction fragment and the corresponding deletion ends were cloned and analysed at the sequence level.  相似文献   

2.
Genetic instability and DNA amplification in Streptomyces lividans 66.   总被引:18,自引:11,他引:7       下载免费PDF全文
Streptomyces lividans 66 exhibits genetic instability, involving sequential loss of resistance to chloramphenicol (Cams) and subsequent mutation of argG. Associated with this instability is the amplification of a 5.7-kilobase (kb) amplified DNA sequence (ADS). We have characterized a second, independent pathway of genetic instability, involving sequential loss of resistance to tetracycline (Tets) followed by mutation in nitrogen assimilation (Ntr). We detected DNA amplification in many of these mutant strains, as well as other reiterations coresident with the 5.7-kb ADS in Cams Arg mutants. However, in contrast to the 5.7-kb ADS, none of the novel elements were observed to amplify at high frequency. The mutation of argG is due to a deletion, one endpoint of which is defined by the 5.7-kb ADS. This amplification derives from a structure, the tandemly duplicated amplifiable unit of DNA (AUD), present in the wild-type genome. We found that progenitor strains containing just a single-copy AUD failed to reproducibly generate amplification of this element in Cams argG mutants, and DNA deletion endpoints proximal to the element were found to be unspecific. These results suggest that a duplicated AUD structure is required for high-frequency amplification and that this reiteration can subsequently buffer the extent of deletion formation in the relevant chromosomal region.  相似文献   

3.
Using pulsed-field gel electrophoresis (PFGE) analysis, the amplifiable units of DNA (AUD) loci AUD6 and AUD90 of Streptomyces ambofaciens DSM40697 could be mapped in the wild-type genome within two adjacent AseI restriction fragments estimated to be about 75 and 850 kb. In addition, the genetic instability and formation of very large deletions were strictly correlated. Their sizes were estimated to range from 250 to more than 2,000 kb. These deletions affected the DNA region overlapping both amplifiable loci. PFGE also allowed us to localize the amplified DNA sequences and to establish their structure: amplification takes place at the AUD locus as a tandem array of the wild-type AUD sequence.  相似文献   

4.
In a spontaneous, chloramphenicol-sensitive (Cms), arginine-auxotrophic (Arg-) mutant of Streptomyces lividans 1326, two amplified DNA sequences were found. One of them was the well-characterized 5.7-kb ADS1 sequence, amplified to about 300 copies per chromosome. The second one was a 92-kb sequence called ADS2. ADS2 encoding the previously isolated mercury resistance genes of S. lividans was amplified to around 20 copies per chromosome. The complete ADS2 sequence was isolated from a genomic library of the mutant S. lividans 1326.32, constructed in the phage vector lambda EMBL4. In addition, the DNA sequences flanking the corresponding amplifiable element called AUD2 in the wild-type strain were isolated by using another genomic library prepared from S. lividans 1326 DNA. Analysis of the ends of AUD2 revealed the presence of an 846-bp sequence on both sides repeated in the same orientation. Each of the direct repeats ended with 18-bp inverted repeated sequences. This insertion sequence-like structure was confirmed by the DNA sequence determined from the amplified copy of the direct repeats which demonstrated a high degree of similarity of 65% identity in nucleic acid sequence to IS112 from Streptomyces albus. The recombination event leading to the amplification of AUD2 occurred within these direct repeats, as shown by DNA sequence analysis. The amplification of AUD2 was correlated with a deletion on one side of the flanking chromosomal region beginning very near or in the amplified DNA. Strains of S. lividans like TK20 and TK21 which are mercury sensitive have completely lost AUD2 together with flanking chromosomal DNA on one or both sides.  相似文献   

5.
Thirty-two 2-deoxygalactose-resistant mutants with DNA amplifications were isolated from Streptomyces lividans 66 strains carrying plasmid pMT664, which carries an agarase gene (dagA) and IS466. Thirty-one of the mutants carried amplified DNA sequences from a 70 kb region about 300 kb from one end of the linear chromosome in this species. In 28 of the mutants, all the wild-type sequences between the amplified region and the start of the 30 kb inverted repeat that forms the chromosome end were deleted. Thus, there appeared to be loss of one chromosome end and its replacement by the DNA amplification. In some mutants there amplification of a previously characterised 5.7 kb sequence that lies about 600 kb from the other chromosome end was also noted.  相似文献   

6.
Summary Streptomycetes are subject to a high degree of genetic instability. One manifestation of this phenomenon is the occurrence of tandemly reiterated DNA stretches within the chromosome. We describe the analysis of ten reiterated sequences observed in various ethidium bromide-treated streptomycin-sensitive and melanin-negative mutant strains of Streptomyces glaucescens. The repeated DNA units were 2.9 to 35 kb in lenght. No two sequences were identical. The amplified sequences occupied up to 45% of the total genomic DNA. Structural analysis of the cloned repeated DNA stretches by means of restriction enzymes and by cross hybridization revealed the presence of two chromosomal areas rich in DNA reiterations. In some cases reiterated regions were accompanied by nearby rearrangements.  相似文献   

7.
In Streptomyces, the linear chromosomal DNA is highly unstable and undergoes large rearrangements usually at the extremities. These rearrangements consist of the deletion of several hundred kilobases, often associated with the amplification of an adjacent sequence, AUD ( amplifiable unit of DNA). In Streptomyces ambofaciens, two amplifiable regions (AUD6 and AUD90), located approximately 600 kb and 1,200 kb from the right chromosomal end respectively, have been characterized. Here, the isolation and molecular characterization of a new S. ambofaciens mutant strain exhibiting a green-pigmented phenotype is described; the wild-type produces a gray pigment. In this mutant, both chromosome ends were deleted, which probably led to circularization of the chromosome. These deletions were associated with amplification of a sequence belonging to the chromosomal terminal inverted repeats (TIRs), which might constitute the new fragment generated by the chromosomal circularization.  相似文献   

8.
Summary Ribosomal DNA (rDNA) repeats of the plant-parasitic nematode Meloidogyne arenaria are heterogeneous in size and appear to contain 5S rRNA gene sequences. Moreover, in a recA + bacterial host, plasmid clones of a 9 kb rDNA repeat show deletion events within a 2 kb intergenic spacer (IGS), between 28S and 5S DNA sequences. These deletions appear to result from a reduction in the number of tandem 129 by repeats in the IGS. The loss of such repeats might explain how rDNA length heterogeneity, observed in the Meloidogyne genome, could have arisen. Each 129 by repeat also contains three copies of an 8 by subrepeat, which has sequence similarity to an element found in the IGS repeats of some plant rDNAs.  相似文献   

9.
Summary Genes encoding enzymes for tylosin biosynthesis, genes involved in the expression of resistance to tylosin (Tyl), hygromycin B (Hm), chloramphenicol (Cm), and mitomycin C (MC), and a single copy of an amplifiable unit of DNA (AUD) were jointly transferred at very high frequencies by conjugation from several different Streptomyces fradiae strains to S. fradiae JS85, a mutant defective in many or possibly all tylosin biosynthetic reactions and containing a multiple tandem reiteration of the AUD. No recombination was observed between nar, rif and spc genes in conjugal matings, but recombination was observed between these genes after protoplast fusion. Tylosin biosynthetic genes were transferred at a much lower frequency to S. fradiae JS87, another mutant defective in many or all tylosin biosynthetic reactions, but deleted for the AUD and other DNA sequences. These findings suggest that tylosin structural genes, several genes encoding antibiotic resistance determinants, and amplifiable DNA are present on a self-transmissible element that does not mobilize chromosomal genes, and that JS85 and JS87 contain deletions, and JS85 an amplification, of overlapping portions of this element.  相似文献   

10.
We describe the characterization of tandemly repeated DNA sequences, which resemble the satellite DNA sequences of multicellular eucaryotes, in the unicellular green alga Chlamydomonas reinhardtii. Restriction enzymes that cleave C. reinhardtii DNA relatively frequently produce a number of high molecular weight DNA fragments in addition to the bulk of low molecular weight DNA fragments. pTANC 1.5 contains a 1.5 kb Sau3A fragment cloned from one of these large bands. pTANC 1.5 hybridized to at least three large arrays (200 to 700 kb) of tandemly repeated DNA sequences in the cell-wall-deficient strain cw1.5. These arrays are composed of repeat units that are each cleaved once by BamHl into bands of 1.5, 1.9, 2.0 and 2.5 kb in size. The copy numbers of the 1.5, 1.9, 2.0 and 2.5 kb Bamhl bands vary between different C. reinhardtii strains. Chlamydomonas smithii and a number of C. reinhardtii strains are deficient in all four BamHl bands. Genetic analysis of wild-type strain 137c, which is deficient in the 2.0 kb BamHl band, indicates that the 1.5, 1.9 and 2.5 kb BamHl bands derive from at least five loci. The 1.5, 1.9 and 2.5 kb repeat units are not extensively interspersed with each other in strain 137c. Pulsed-field gel electrophoresis of intact C. reinhardtii chromosomes indicates that TANC arrays are present on more than one chromosome.  相似文献   

11.
Development of efficient methods to transfer large DNA fragments into plants will greatly facilitate the map-based cloning of genes. The recently developed BIBAC and TAC vectors have shown potential to deliver large DNA fragments into plants via Agrobacterium-mediated transformation. Here we report that BIBAC and TAC clones containing potato genomic DNA fragments larger than 100 kb are not stable in Agrobacterium. We tested the possible factors that may cause instability, including the insert sizes of the BIBAC and TAC constructs, potato DNA fragments consisting of highly repetitive or largely single-copy DNA sequences, different Agrobacterium transformation methods and different Agrobacterium strains. The insert sizes of the potato BIBAC and TAC constructs were found to be critical to their stability in Agrobacterium. All constructs containing a potato DNA fragment larger than 100 kb were not stable in any of the four tested Agrobacterium strains, including two recA deficient strains. We developed a transposon-based technique that can be used to efficiently subclone a BAC insert into two to three BIBAC/TAC constructs to circumvent the instability problem.Communicated by J. Dvorak  相似文献   

12.
Summary Mitochondrial DNA from four strains of the oomycete Achlya has been compared and nine gene loci mapped, including that of the ribosomal protein gene, var1. Examination of the restriction enzyme site maps showed the presence of four insertions relative to a map common to all four strains. All the insertions were found in close proximity to genic regions. The four strains also cotained the inverted repeat first observed in A. ambisexualis (Hudspeth et al. 1983), allowing an examination by analysis of retained restriction sites of the evolutionary stability of repeated DNA sequences relative to single copy sequences. Although the inverted repeat is significantly more stable than single copy sequences, more detailed analysis indicated that this stability is limited to the portion encoding the ribosomal RNA genes. Thus, the apparent evolutionary stability of the repeat does not appear to derive from the inverted repeat structure per se.Abbreviations ATPase 6, 9 genes for ATPase subunits 6 and 9 - COI, II, III genes for cytochrome oxidase subunits 1, 2, and 3 - COB gene for apocytochrome b - L-, S-RNA genes for the mitochondrial large and small ribosomal RNAs - mtDNA mitochondrial DNA - var1 gene for the S. cerevisiae mitochondrially, encoded ribosomal protein - m.u. map units - bp base pairs - kb kilobase pairs  相似文献   

13.
B Zhu  J Madoń  A H?usler  R Hütter 《Plasmid》1990,24(2):132-142
An amplification of a 2.0-kb fragment was found on the plasmid pMEA100 isolated from a subculture of the wild-type strain LBG A3136 of Amycolatopsis (Nocardia) mediterranei. Plasmid preparations contained a mixture of molecules with copy numbers of the amplified unit in the range of 2 to 10. The amplification on pMEA100 was stable; propagation of cells for many generations did not change the pattern of the amplified DNA. Fragments of the plasmids containing the amplifiable unit of DNA (AUD) and the amplified DNA sequence (ADS) were subcloned and characterized. Sequencing of the AUD terminal regions and the junction between ADS units showed that the amplifiable unit of DNA was flanked by 12-bp direct repeats. The DNA segments adjacent to the 12-bp sequence common to the left and right AUD terminal regions also showed significant similarities. In addition, the left AUD terminal region flanking the 12-bp repeat exhibited considerable sequence similarity to actinomycete plasmid attachment sites, particularly to the pMEA 100 att site.  相似文献   

14.
Summary The tobacco (Nicotiana tabacum) nuclear genome contains long tracts of DNA (i.e. in excess of 18 kb) with high sequence homology to the tobacco plastid genome. Five lambda clones containing these nuclear DNA sequences encompass more than one-third of the tobacco plastid genome. The absolute size of these five integrants is unknown but potentially includes uninterrupted sequences that are as large as the plastid genome itself. An additional sequence was cloned consisting of both nuclear and plastid-derived DNA sequences. The nuclear component of the clone is part of a family of repeats, which are present in about 400 locations in the nuclear genome. The homologous sequences present in chromosomal DNA were very similar to those of the corresponding sequences in the plastid genome. However significant sequence divergence, including base substitutions, insertions and deletions of up to 41 bp, was observed between these nuclear sequences and the plastid genome. Associated with the larger deletions were sequence motifs suggesting that processes such as DNA replication slippage and excision of hairpin loops may have been involved in deletion formation.  相似文献   

15.
Summary Mitochondrial DNAs (mtDNA) from four stable revertant strains generated from high frequency petite forming strains of Saccharomyces cerevisiae have been shown to contain deletions which have eliminated intergenic sequences encompassing ori1, ori2 and ori7. The deleted sequences are dispensable for expression of the respiratory phenotype and mutant strains exhibit the same relative amount of mtDNA per cell as the wild-type (wt) parental strain. These deletion mutants were also used to study the influence of particular intergenic sequences on the transmission of closely linked mitochondrial loci. When the mutant strains were crossed with the parental wt strains, there was a strong bias towards the transmission into the progeny of mitochondrial genomes lacking the intergenic deletions. The deficiency in the transmission of the mutant regions was not a simple function of deletion length and varied between different loci. In crosses between mutant strains which had non-overlapping deletions, wt mtDNA molecules were formed by recombination. The wt recombinants were present at high frequencies among the progeny of such crosses, but recombinants containing both deletions were not detected at all. The results indicate that mitochondrial genomes can be selectively transmitted to progeny and that two particular intergenic regions positively influence transmission. Within these regions other sequences in addition to ori/rep affect transmission.This paper is dedicated to colleagues J. Jana, D. Tasi, I. Bortner, and F. Zavrl  相似文献   

16.
The amplifiable unit of DNA no. 1 (AUD1) of Streptomyces lividans consists of three 1 kb repeats (left direct repeat, LDR; middle direct repeat, MDR; and the slightly different right direct repeat, RDR) and two 4.7 kb repeats alternately arranged in identical orientation to each other. Both 4.7 kb repeats have been sequenced. They are identical and contain one open reading frame ( orf4.7  ). The deduced amino acid sequence has a low similarity to chitinases, and two amino acid repeats present high similarities to fibronectin type III modules. Sequencing had previously shown that the ORF corresponding to each 1 kb repeat encodes a putative DNA-binding protein. Crude extracts of Escherichia coli overexpressing the orfRDR- encoded protein and of S. lividans Jni1, having a high amplification of AUD1 and therefore orfMDR , were used in gel retardation assays. The orfRDR - and probably the orfMDR -encoded proteins can bind to an imperfect palindromic sequence upstream from MDR and RDR and to another sequence downstream from RDR. An extrachromosomal DNA amplification system was constructed containing different combinations of the sequences composing AUD1. In mutants having a deletion of the chromosomal AUD1, the 4.7 kb repeats could be reduced in size, mutated or replaced by E. coli DNA without altering the ability to amplify when RDR was present. Therefore, the only function of the 4.7 kb repeats in amplification is to provide directly repeated DNA sequences. When RDR was lacking or mutated, no amplification was observed. This strongly suggests that the DNA-binding protein encoded by orfRDR is required for AUD1 amplification.  相似文献   

17.
We have examined the influence of proximity on the efficiency of recombination between repeated DNA sequences in Escherichia coli. Our experiments have employed a plasmid-based assay to detect deletions between direct repeats of 100 bp. The rate of deletion of the juxtaposed direct repeats was reasonably high at 6 × 10–5 per cell. A comparison of recA+ and recA mutant strains showed that these deletion events are primarily the result of recA-independent recombination at these homologous sequences. Random restriction fragments of yeast or E. coli genomic DNA were used to separate the two repeats. Deletion rates decreased over two orders of magnitude with increasing separation of up to 7 kb. There was a surprisingly strong effect of even short sequence separations, with insertions of a few hundred base pairs exhibiting 10-fold reductions of deletion rates. No effect of recA on the efficiency of deletion was observed at any distance between repeats.  相似文献   

18.
Zhang CY  Wei JF  Het SH 《Biochemical genetics》2005,43(5-6):229-237
CCR5 is a seven-transmembrane G-protein-coupled receptor that binds the CC-chemokines including RANTES, eotaxin, MIP-1α and β. CCR5 serves as an essential coreceptor for cell entry of R5 (macrophage-tropic, nonsyncytium-inducing) strains of HIV-1. To date, four deletions have been found in human and primate ccr5. There is little evidence, however, on how these deletion mutations occur. In the present study, we analyzed ccr5 sequences of both mutants and wild type and found that direct repeats flanked the breakpoints of the deletions, suggesting that these deletions resulted from slipped mispairing during DNA replication. Of particular interest was the location of these deletions in or near the regions with higher negative FORS-D values. High negative FORS-D values stand for high stem-loop potential determined by base order and influence mainly the formation of stem-loop structures. Therefore, the particular location of these deletions suggests that the local sequence of bases might be important in the initiation of deletions mediated by DNA slip replication in concert with direct repeats. Contributed to this paper equally  相似文献   

19.
Southern blot analysis of BglII-digested DNA isolated from wild-type Streptomyces achromogenes, which harbors the 8.8-kilobase amplifiable unit of DNA, AUD-Sar 1, and of similarly digested DNA from 12 strains carrying an array of 200 to 300 tandem copies of a specific AUD-Sar 1-derived 8.0-kilobase DNA sequence, ADS-Sar 1, revealed the absence of the 12.4-kilobase BglII AUD-Sar 1-chromosome right junction band in the latter strains, whereas the corresponding 26.0-kilobase left junction band remained unaltered. Further Southern analyses indicated in all of the seven amplified strains tested the occurrence of a deletion of at least 10 kilobases of the DNA adjacent to the right side of the AUD. The deletion has one endpoint in the vicinity of the ADS array. Corroborating and expanding upon previously reported results, we found that the amplified DNA of strain C010 was stably maintained for at least 20 transfers when the transfers involved mycelia propagated in spectinomycin-free liquid medium. In contrast, when strain C010 was subjected separately to one cycle of protoplast formation and regeneration or to three cycles of spore germination, aerial mycelium formation, and sporulation on spectinomycin-free media, only approximately 20% of the protoplast regenerants and spores retained the reiterated DNA sequences and the ability subsequently to form colonies on media containing high levels of spectinomycin. Approximately 80% of these units completely deleted the reiterated DNA and left adjacent sequences and exhibited sensitivity to 25 micrograms of spectinomycin per ml. One among 24 protoplast-derived deletants apparently retained the left portion of the AUD-ADS left direct repeat plus left adjacent sequences.  相似文献   

20.
    
TheMagnaporthe grisea repeat (MGR) sequence MGR586 has been widely used for population studies of the rice blast fungus, and has enabled classification of the fungal population into hundreds of genetic lineages. While studying the distribution of MGR586 sequences in strains ofM. grisea, we discovered that the plasmid probe pCB586 contains a significant amount of single-copy DNA. To define precisely the boundary of the repetitive DNA in pCB586, this plasmid and four cosmid clones containing MGR586 were sequenced. Only 740 bp of one end of the 2.6-bp insert in the pCB586 plasmid was common to all clones. DNA sequence analysis of cosmid DNA revealed that all the cosmids contained common sequences beyond the cloning site in pCB586, indicating that the repetitive DNA in the fingerprinting clone is part of a larger element. The entire repetitive element was sequenced and found to resemble an inverted repeat transposon. This putative transposon is 1.86 kb in length and has perfect terminal repeats of 42 bp, which themselves contain direct repeats of 16 bp. The internal region of the transposon possesses one open reading frame which shows similarity at the peptide level to the Pot2 transposon fromM. grisea and Fot1 fromFusarium oxysporum. Hybridization studies using the entire element as a probe revealed that some strains ofM. grisea, whose DNA hybridized to the pCB586 probe, entirely lacked MGR586 transposon sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号