首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 716 毫秒
1.
2.
We cloned cDNAs encoding urotensin II (UII)-related peptide (URP) and UII in Japanese eel, Anguilla japonica, the former being the first such cloning in teleost fishes. Unlike the exclusive expression of UII in the urophysis, the URP gene was expressed most abundantly in the brain (medulla oblongata) followed by the urophysis. Peripheral injections of URP into eels increased blood pressure by 16.1 ± 0.8 mmHg at 0.1 nmol/kg in ventral aortic blood pressure (P(VA)) and with similar potency and efficacy to that of UII (relative potency of URP to UII = 0.83). URP/UII and ANG II preferentially acted on the branchial and systemic circulations, respectively, and the duration of effect was distinct among the three peptides in the order of UII (60 min) >URP (30 min) >ANG II (14 min) in P(VA). Urantide, a mammalian UII receptor antagonist, inhibited the URP effect (-63.6 ± 5.2%) to a greater extent than for UII (-39.9 ± 5.0%). URP and UII constricted isolated eel branchial and systemic arteries, showing their direct actions on the vascular smooth muscle. Central injection of URP increased blood pressure by 12.3 ± 0.8 mmHg at 50 pmol/eel in P(VA) and with similar efficacy but less potency (relative potency = 0.47) and shorter duration compared with UII. The central actions of URP/UII were more potent on the branchial circulation than on the systemic circulation, again opposite the effects of ANG II. The similar responses to peripheral and central injections suggest that peripheral hormones may act on the brain. Taken together, in eels, URP and UII are potent cardiovascular hormones like ANG II, acting directly on the peripheral vasculature, as well as a central vasomotor site, and their actions are mediated to different degrees by the UII receptor.  相似文献   

3.
α-Melanocyte-stimulating hormone (α-MSH) regulates important physiological functions including energy homeostasis and inflammation. Potent analogs of α-MSH, [Nle4, d-Phe7]-α-MSH (NDP-α-MSH) and melanotan-II (MT-II), are widely used in pharmacological studies, but the hemodynamic effects associated with their systemic administration have not been thoroughly examined. Therefore, we investigated the hemodynamic actions of these compounds in anesthetized and conscious C57Bl/6N mice using peripheral routes of administration. NDP-α-MSH and MT-II induced mild changes in blood pressure and heart rate in anesthetized mice compared to the effects observed in conscious mice, suggesting that anesthesia distorts the hemodynamic actions of α-MSH analogs. In conscious mice, NDP-α-MSH and MT-II increased blood pressure and heart rate in a dose-dependent manner, but the tachycardic effect was more prominent than the pressor effect. Pretreatment with the melanocortin (MC) 3/4 receptor antagonist SHU9119 abolished these hemodynamic effects. Furthermore, the blockade of β1-adrenoceptors with metoprolol prevented the pressor effect and partly the tachycardic action of α-MSH analogs, while the ganglionic blocker hexamethonium abrogated completely the difference in heart rate between vehicle and α-MSH treatments. These findings suggest that the pressor effect is primarily caused by augmentation of cardiac sympathetic activity, but the tachycardic effect seems to involve withdrawal of vagal tone in addition to sympathetic activation. In conclusion, the present results indicate that systemic administration of α-MSH analogs elevates blood pressure and heart rate via activation of MC3/4 receptor pathways. These effects and the consequent increase in cardiac workload should be taken into account when using α-MSH analogs via peripheral routes of administration.  相似文献   

4.
Hood SG  Watson AM  May CN 《Peptides》2005,26(7):1248-1256
Urotensin II (UII) is a highly conserved peptide that has potent cardiovascular actions following central and systemic administration. To determine whether the cardiovascular actions of UII are mediated via beta-adrenoceptors, we examined the effect of intravenous (IV) propranolol on the responses to intracerebroventricular (ICV) and IV administration of UII in conscious sheep. Sheep were surgically instrumented with ICV guide tubes and flow probes or cardiac sympathetic nerve recording electrodes. ICV UII (0.2 nmol/kg over 1 h) caused prolonged increases in heart rate (HR; 33 +/- 11 beats/min; P < 0.01), dF/dt (581 +/- 83 L/min/s; P < 0.001) and cardiac output (2.3 +/- 0.4 L/min; P < 0.001), accompanied by increases in coronary (19.8 +/- 5.4 mL/min; P < 0.01), mesenteric (211 +/- 50 mL/min; P < 0.05) and iliac (162 +/- 31 mL/min; P < 0.001) blood flows and plasma glucose (7.0 +/- 2.6 mmol/L; P < 0.05). Propranolol (30 mg bolus followed by 0.5 mg/kg/h IV) prevented the cardiac responses to ICV UII and inhibited the mesenteric vasodilatation. At 2 h after ICV UII, when HR and mean arterial pressure (MAP) were increased, cardiac sympathetic nerve activity (CSNA) was unchanged and the relation between CSNA and diastolic pressure was shifted to the right (P < 0.05). The hyperglycemia following ICV UII was abolished by ganglion blockade but not propranolol. IV UII (20 nmol/kg) caused a transient increase in HR and fall in stroke volume; these effects were not blocked by propranolol. These results demonstrate that the cardiac actions of central UII depend on beta-adrenoreceptor stimulation, secondary to increased CSNA and epinephrine release, whereas the cardiac actions of systemic UII are not mediated by beta-adrenoreceptors and probably depend on a direct action of UII on the heart.  相似文献   

5.
Urotensin II (UII) is a vasoactive peptide that has recently emerged as a likely contributor to cardiovascular physiology and pathology. Acute infusion of UII into nonhuman primates results in circulatory collapse and death; however, the exact cause of death is not well understood. This study was undertaken to elucidate the mechanism underlying the fatal cardiovascular event on UII application in vivo in nonhuman primates. To this end, cynomolgus monkeys (n = 4) were anesthetized and tracheal intubation was performed. One internal jugular vein was cannulated for administration of drugs, and one femoral artery for recording of blood pressure and heart rate using a transonic pressure transducer. Cardiac parameters were not significantly changed after administration of 0.003 nmol/kg human UII. A bolus of human UII (0.03 nmol/kg) caused a decrease of heart rate (HR) (13%), mean blood pressure (MBP) (18%), and first-order derivative of left ventricular pressure (dP/dt) (11%). Carotid and coronary blood flow were reduced by 9% and 7%, respectively; 0.3 nmol/kg of human UII resulted in a further reduction of HR (50.3%), MBP (65%), dP/dt (45%), carotid (38%), and coronary blood flow (30%), ultimately leading to cardiovascular breakdown and death. Pulmonary pressure, however, was increased by 30%. Plasma histamine levels were found to be unaffected by administration of UII. Our results indicate that systemic administration of human UII has negative inotropic and chronotropic effects and reduces total peripheral resistance ultimately leading to severe myocardial depression, pulmonary hypertension, and fatal circulation collapse in nonhuman primates. We suggest that successful design of UII antagonists might offer a new therapeutic principle in treating cardiovascular diseases.  相似文献   

6.
Adrenomedullin and central cardiovascular regulation.   总被引:4,自引:0,他引:4  
M M Taylor  W K Samson 《Peptides》2001,22(11):1803-1807
Adrenomedullin gene products have been localized to neurons in brain that innervate sites known to be important in the regulation of cardiovascular function. Those sites also have been demonstrated to possess receptors for the peptide and central administrations of adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) elevate blood pressure and heart rate in both conscious and anesthetized animals. The accumulated evidence points to a role of the sympathetic nervous system in these cardiovascular effects. These sympathostimulatory actions of AM and PAMP have been hypothesized to be cardioprotective in nature and to reflect the central nervous system (CNS) equivalent of the direct cardiostimulatory effects of the peptides in the periphery. This review summarizes the most recent data on the CNS actions of the adrenomedullin gene-derived peptides and suggests future strategies for the elucidation of the physiologic relevance of the already demonstrated, pharmacologic actions of these peptides.  相似文献   

7.
K Raese  D Albeck  R Cooper  S Arnold  C Le  B Bradley  T Smock 《Peptides》1991,12(3):461-464
Inhibition of the hippocampus by the medial amygdala is mediated by vasopressin-like peptide. Because vasopressin has action on the periphery as well as the brain, we conducted experiments to evaluate the relationship between possible peripheral actions and the central effects of the endogenous peptide. In the acutely anesthetized rat, peptide-mediated inhibition of the hippocampus is not associated with significant changes in heart rate, blood pressure or body temperature. Peripheral injections of peptide agonist fail to evoke the central inhibition, and peripheral injections of peptide antagonist fail to block the central inhibition. Stimulation of central nuclei that contain vasopressin or a similar peptide also fail to duplicate the effect of stimulating the amygdala. We conclude that the peptidergic transmission is independent of peripheral causes or correlates.  相似文献   

8.
Cardiac side population cells (CSPs) are promising cell resource for the regeneration in diseased heart as intrinsic cardiac stem cells. However, the relative low ratio of CSPs in the heart limited the ability of CSPs to repair heart and improve cardiac function effectively under pathophysiological condition. Which factors limiting the proliferation of CSPs in diseased heart are unclear. Here, we show that urotensin II (UII) regulates the proliferation of CSPs by c‐Jun N‐terminal kinase (JNK) and low density lipoprotein receptor‐related protein 6 (LRP6) signalling during pressure overload. Pressure overload greatly upregulated UII level in plasma, UII receptor (UT) antagonist, urantide, promoted CSPs proliferation and improved cardiac dysfunction during chronic pressure overload. In cultured CSPs subjected to mechanical stretch (MS), UII significantly inhibited the proliferation by UT. Nanofluidic proteomic immunoassay showed that it is the JNK activation, but not the extracellular signal‐regulated kinase signalling, that involved in the UII‐inhibited‐ proliferation of CSPs during pressure overload. Further analysis in vitro indicated UII‐induced‐phospho‐JNK regulates phosphorylation of LRP6 in cultured CSPs after MS, which is important in the inhibitory effect of UII on the CSPs during pressure overload. In conclusion, UII inhibited the proliferation of CSPs by JNK/LRP6 signalling during pressure overload. Pharmacological inhibition of UII promotes CSPs proliferation in mice, offering a possible therapeutic approach for cardiac failure induced by pressure overload.  相似文献   

9.
Gao S  Oh YB  Park BM  Park WH  Kim SH 《Peptides》2012,36(2):199-205
Urotensin II (UII) is a vasoactive peptide which is bound to a G protein-coupled receptor. UII and its receptor are upregulated in ischemic and chronic hypoxic myocardium, but the effect of UII on ischemic reperfusion (I/R) injury is still controversial. The aim of the present study was to investigate whether UII protects heart function against I/R injury. Global ischemia was performed using isolated perfused Langendorff hearts of Sprague-Dawley rats. Hearts were perfused with Krebs-Henseleit buffer for 20min pre-ischemic period followed by a 20min global ischemia and 50min reperfusion. Pretreatment with UII (10nM) for 10min increased recovery percentage of the post-ischemic left ventricular developed pressure and ±dp/dt, and decreased post-ischemic left ventricular end-diastolic pressure as compared with I/R group. UII decreased infarct size and an increased lactate dehydrogenase level during reperfusion. Cardioprotective effects of UII were attenuated by pretreatment with UII receptor antagonist. The hydrogen peroxide activity was increased in UII-treated heart before ischemia. The Mn-SOD, catalase, heme oxygenase-1 and Bcl-2 levels were increased, and the Bax and caspase-9 levels were decreased in UII-treated hearts. These results suggest that UII has cardioprotective effects against I/R injury partly through activating antioxidant enzymes and reactive oxygen species.  相似文献   

10.
Peripheral chemoreceptors located in the carotid bodies are the primary sensors of systemic hypoxia. Although the pattern of responses elicited by peripheral chemoreceptor activation is well established in rats, lambs, and rabbits, the cardiovascular responses to peripheral chemoreflex activation in conscious mice have not been delineated. Here we report that stimulation of peripheral chemoreceptors by potassium cyanide (KCN) in conscious mice elicits a unique biphasic response in blood pressure that is characterized by an initial and robust rise followed by a decrease in blood pressure, which is accompanied by a marked reduction in heart rate. The depressor and bradycardic responses to KCN were abolished by muscarinic receptor blockade with atropine, and the pressor response was abolished by alpha-adrenergic receptor blockade with prazosin, suggesting that vagal and sympathetic drive to the heart and sympathetic drive to the vasculature mediate these cardiovascular responses. These studies characterized the chemoreflex in conscious mice and established the reliability of using them for studying hypoxia-related diseases such as obstructive sleep apnea. In another series of experiments, two methods for analyzing baroreflex sensitivity were compared: the classical pharmacological approach using phenylephrine and sodium nitroprusside (i.e., the Oxford technique) or the sequence method for analyzing spontaneous baroreflex activity. Our findings indicate that both methods are reliable, and the sequence method certainly has its benefits as a predictive tool in the context of long-term noninvasive studies using telemetry. However, for absolute determination of baroreflex function, analysis of spontaneous baroreflex activity should be complemented by the classical pharmacological method.  相似文献   

11.
Conlon JM 《Peptides》2008,29(5):651-657
During the past 20 years, urotensin II (UII) has progressed from being a peptide synthesized only in the urophysis of the caudal neurosecretory system of teleost fish to being considered an important physiological regulator in mammals with implications for the pathogenesis of a range of human cardiovascular and renal diseases. The "liberation" of UII from the urophysis was a gradual process and involved the sequential realization that (a) UII is present not only in the urophysis but also in the central nervous systems (CNS) of teleosts, (b) UII peptides, similar in structure to the urophysial peptides, are present in the diffuse caudal neurosecretory systems and/or CNS of species less evolutionarily advanced than teleosts, including Agnatha, thereby showing that UII is a phylogenetically ancient peptide, (c) UII is present in the brain and spinal cord of a tetrapod, the green frog Rana ridibunda, and (d) the UII gene and its specific receptor (GPR14/UT) are expressed in the CNS and certain peripheral tissues of mammals, including the human. The discovery that the genomes of mammals contain an additional gene encoding a UII-related peptide (URP) and the availability of highly effective peptide and non-peptide antagonists to investigate the role of UII in human physiology and pathophysiology ensure that the peptide will remain "center stage" for several years to come.  相似文献   

12.

Background

Urotensin II (UII) is a potent vasoconstrictor peptide, which signals through a G-protein coupled receptor (GPCR) known as GPR14 or urotensin receptor (UTR). UII exerts a broad spectrum of actions in several systems such as vascular cell, heart muscle or pancreas, where it inhibits insulin release.

Objective

Given the reported role of UII in insulin secretion, we have performed a genetic association analysis of the UTS2 gene and flanking regions with biochemical parameters related to insulin resistance (fasting glucose, glucose 2 hours after a glucose overload, fasting insulin and insulin resistance estimated as HOMA).

Results and Conclusions

We have identified several polymorphisms associated with the analysed clinical traits, not only at the UTS2 gene, but also in thePER3 gene, located upstream from UTS2. Our results are compatible with a role for UII in glucose homeostasis and diabetes although we cannot rule out the possibility that PER3 gene may underlie the reported associations.  相似文献   

13.
Venodilation is thought to contribute to the hemodynamic actions of atrial peptides. Therefore, we measured the effective vascular compliance (EVC) as a parameter of overall venous tone in 7 pentobarbital anesthetized dogs under autonomic blockade during i.v. infusions of rat atriopeptin II (AP II, up to 100 pmol/kg/min), rat alpha-atrial natriuretic factor, and nitroglycerin (GTN). AP II lowered mean arterial pressure by reducing peripheral vascular resistance with a threshold between 3 and 10 pmol/kg/min (but was ineffective in anesthetized or conscious dogs without autonomic blockade). Neither atrial peptide altered EVC, while GTN augmented EVC and caused a 4.6-fold larger reduction of central venous pressure than AP II at equihypotensive dosage. These findings, with infusion rates probably close to endogeneous release, reveal a vasodilator potency of atrial peptides, which is restricted to systemic arterioles without affecting venous tone.  相似文献   

14.
15.
Intravenous injection of substance P (SP) increases renal nerve firing and heart rate in spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) by stimulating sympathetic ganglia. Blood pressure is increased in SHRs but lowered in WKYs. This study assesses the role of neurokinin-1 (NK(1)) receptors in mediating the ganglion actions of SP. Rats for functional studies were anesthetized and then treated with chlorisondamine. Renal nerve, blood pressure, and heart rate responses to intravenous injection of the NK(1) receptor agonist GR-73632 were similar but less than those to equimolar doses of SP in SHRs. GR-73632 only slightly increased renal nerve firing and heart rate and lowered blood pressure in WKYs. The NK(1) receptor antagonist GR-82334 (200 nmol/kg iv) blocked the ganglionic actions of GR-73632 and the pressor response to SP in SHRs. It reduced the renal nerve and heart rate responses by 52 and 35%. This suggests that the pressor response to SP is mediated by ganglionic NK(1) receptors and that NK(1) receptors also have a prominent role in mediating the renal nerve and heart rate responses to SP. Quantitative autoradiography showed that NK(1) receptors are more abundant in the superior cervical ganglia of SHRs. RT-PCR showed increased abundance of NK(1) receptor mRNA in SHRs as well. These observations suggest that the greater ganglionic stimulation caused by SP in SHRs is due to upregulation of NK(1) receptors.  相似文献   

16.
Central and peripheral cardiovascular actions of apelin in conscious rats   总被引:13,自引:0,他引:13  
APJ was cloned as an orphan G protein-coupled receptor and shares a close identity with angiotensin II type 1 receptor (AT1R). Apelin is a peptide that has recently been identified as an endogenous ligand of the APJ. Apelin and APJ mRNA are expressed in peripheral tissue and the central nervous system. However, little is known about the effects of apelin in cardiovascular regulation. To examine the central and peripheral role of apelin, we injected the active fragment of apelin [(Pyr1)apelin-13] intracerebroventricularly (ICV, 5 and 20 nmol, n=6) or intravenously (IV, 20 and 50 nmol, n=4 or 5) in conscious rats. ICV injection of (Pyr1)apelin-13 dose-dependently increased mean arterial pressure (MAP) and heart rate (HR) (19+/-3 mm Hg and 162+/-26 bpm at 20 nmol). Pretreatment with ICV injection of the AT1R antagonist (CV-11974, 20 nmol) did not alter the apelin-induced increase in MAP and HR. IV injection of (Pyr1)apelin-13 also dose-dependently increased MAP and HR (13+/-2 mm Hg and 103+/-18 bpm at 50 nmol); however, the peripheral effects of apelin were relatively weak compared to its central effects. Expression of c-fos in the paraventricular nucleus (PVN) of hypothalamus was increased in the rat that received ICV injection of (Pyr1)apelin-13 but not in the rat that received IV injection of (Pyr1)apelin-13. These results suggest that apelin plays a role in both central and peripheral cardiovascular regulation in conscious rats, and that the cardiovascular effects of apelin are not mediated by the AT1R.  相似文献   

17.
Studies were performed in conscious and anesthetized Sprague-Dawley rats to examine whether the cardiovascular responses to intracerebroventricular (i.c.v.) administration of corticotropin-releasing factor (CRF) required concomitant locomotor activation. I.c.v. administration of CRF to conscious animals elicited significant increases in arterial pressure, heart rate, mesenteric resistance, and iliac blood flow, as well as intermittent locomotor, grooming and chewing activity. Intravenous infusion of the anesthetic agent, Saffan, at the minimal dose required to abolish locomotor activity caused slight but significant elevations of heart rate and mesenteric vascular resistance. I.c.v. administration of CRF to anesthetized animals produced delayed, yet significant and sustained increases in the heart rate and arterial pressure, without altering regional blood flow. These results demonstrate that locomotor activation is not requisite for the expression of CRF-induced pressor and tachycardic responses. It is concluded that CRF acts within the central nervous system to influence cardiovascular function in the absence of locomotor activity.  相似文献   

18.
Circulating urotensin II (UII) concentrations and the tissue expression of its cognate receptor (UT) are elevated in patients with cardiovascular disease (CVD). The functional significance of elevated plasma UII levels in CVD is unclear. Urotensin-related peptide (URP) is a paralog of UII in that it contains the six amino acid ring structures found in UII. Although both peptides are implicated as bioactive factors capable of modulating cardiovascular status, the role of both UII and URP in ischemic injury is unknown. Accordingly, we provide here the first report describing the direct cardiac effects of UII and URP in ischemia-reperfusion injury. Isolated perfused rat hearts were subjected to no-flow global ischemia for 45 min after 30min preconditioning with either 1nM rUII or 10nM URP. Both rUII- and URP-induced significant vasodilation of coronary arteries before (both P<0.05) and after ischemia (both P<0.05). Rat UII alone lowered contractility prior to ischemia (P=0.053). Specific assay of perfusate revealed rUII and URP both significantly inhibited reperfusion myocardial creatine kinase (CK) release (P=0.012 and 0.036, respectively) and atrial natriuretic peptide (ANP) secretion (P=0.025). Antagonism of the UT receptor with 1muM palosuran caused a significant increase in perfusion pressure (PP) prior to and post-ischemia. Furthermore, palosuran significantly inhibited reductions in both PP and myocardial damage marker release induced by both rUII and URP. In conclusion, our data suggests rUII and URP reduce cardiac ischemia-reperfusion injury by increasing flow through the coronary circulation, reducing contractility and therefore myocardial energy demand, and inhibiting reperfusion myocardial damage. Thus, UII and URP present as novel peptides with potential cardioprotective actions.  相似文献   

19.
Lu N  Yu HY  Wang R  Zhu YC 《生理学报》2012,64(2):142-148
Central urotensin II (UII) may participate in the regulation of cardiovascular functions by stimulating sympathy pathway. However, the central mechanism remained unknown. Recent studies have shown that brain reactive oxygen species (ROS) mediate the sympatho-excitatory effects. In the present study, we tested the hypothesis that ROS mediate central cardiovascular effects of UII. Experiments were conducted in Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). Immunocytochemistry, intracerebroventricular (icv) infusion and lucigenin-enhanced chemiluminescence assay were employed to detect UII receptor expression and ROS level, respectively. The following results were obtained: (1) Expressions of UII receptors of rostral ventrolateral medulla (RVLM) and nucleus tractus solitarii (NTS) were increased in SHR rats compared with WKY rats (P < 0.05). (2) UII (icv) significantly increased mean arterial pressure (MAP) (P < 0.05), and the effect of UII was significantly more pronounced in SHR rats than that in WKY rats (P < 0.05); (3) Tempol (a superoxide dismutase mimic) or Urantide (an antagonist of UII receptor) pretreatments eliminated the pressor effect of UII (P < 0.05) in SHR rats; (4) Brain superoxide level was increased in UII-treated SHR rats compared with that in cerebrospinal fluid (CSF)-treated SHR rats (P < 0.05). These results indicate that ROS mediate central cardiovascular effects of UII in SHR rats and provide evidence for a novel relationship between UII and ROS.  相似文献   

20.
Hill C  Dunbar JC 《Peptides》2002,23(9):1625-1630
Alpha melanocyte stimulating hormone (alphaMSH) has been demonstrated to have regulatory functions in the periphery and central nervous system (CNS). alphaMSH plays a central role in the regulation of metabolic balance such as decreasing food intake, increasing sympathetic outflow and hypothalamic/pituitary function. Our laboratory has investigated the actions of alphaMSH on sympathetic and cardiovascular dynamics using anesthetized animals. In this study we determined both the acute and chronic effects of alphaMSH on cardiovascular and metabolic dynamics in conscious unrestrained rats. Animals were each implanted with a radio-telemetry transmitter for recording of cardiovascular parameters and subsequently instrumented with intracerebroventricular (ICV) cannulas. The acute ICV administration of alphaMSH significantly increased the mean arterial pressure (MAP) and heart rate (HR) when compared to artificial cerebrospinal fluid (ACSF) controls. On the other hand chronic alphaMSH infusion resulted in an initial increase in MAP and HR lasting for 2 days followed by a decrease in MAP. Chronic alphaMSH administration decreased physical activity and food intake but not weight gain. We conclude that in the conscious unrestrained animal the acute administration of alphaMSH increased MAP and HR, however, chronic infusion is associated with decreased MAP, physical activity and food intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号