首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geminivirus miscanthus streak virus (MiSV) was used as a gene vector to study the transposition of the maize Ds element in rice protoplasts. Efficient excision of the Ds from the MISV vector was observed only when the MiSV vector was allowed to replicate and the plasmid expressing the transposase gene encoded by Ac was co-transfected. Under the same condition, the Ds carrying a hygromycin phosphotransferase gene (Ds::HPT) was also efficiently excised. Hygromycin-resistant calli were obtained by culturing these transfected protoplasts in order to examine the transposition of the excised Ds::HPT into the rice genome. In five out of 16 calli examined, the Ds::HPT, but not the vector sequence, was integrated into the rice genome and 8 bp target site duplication typical of Ac/Ds transposition was generated. These results show that the Ds::HPT inserted in the MISV vector transposed directly into the rice genome. This demonstrates the direct transposition of a cloned plant transposable element into the plant genome. Implications of these finding are discussed.  相似文献   

2.
To develop an efficient gene tagging system in rice, a plasmid was constructed carrying a non-autonomous maize Ds element in the untranslated leader sequence of a hygromycin B resistance gene fused with the 35S promoter of cauliflower mosaic virus. This plasmid was cotransfected by electroporation into rice protoplasts together with a plasmid containing the maize Ac transposase gene transcribed from the 35S promoter. Five lines of evidence obtained from the analyses of hygromycin B-resistant calli, regenerated plants and their progeny showed that the introduced Ds was trans-activated by the Ac transposase gene in rice. (1) Cotransfection of the two plasmids is necessary for generation of hygromycin B resistant transformants. (2) Ds excision sites are detected by Southern blot hybridization. (3) Characteristic sequence alterations are found at Ds excision sites. (4) Newly integrated Ds is detected in the rice genome. (5) Generation of 8 by target duplications is observed at the Ds integration sites on the rice chromosomes. Our results also show that Ds can be trans-activated by the transiently expressed Ac transposase at early stages of protoplast culture and integrated stably into the rice genome, while the cotransfected Ac transposase gene is not integrated. Segregation data from such a transgenic rice plant carrying no Ac transposase gene showed that four Ds copies were stably integrated into three different chromosomes, one of which also contained the functional hph gene restored by Ds excision. The results indicate that a dispersed distribution of Ds throughout genomes not bearing the active Ac transposase gene can be achieved by simultaneous transfection with Ds and the Ac transposase gene.  相似文献   

3.
To develop an efficient gene tagging system in rice, a plasmid was constructed carrying a non-autonomous maize Ds element in the untranslated leader sequence of a hygromycin B resistance gene fused with the 35S promoter of cauliflower mosaic virus. This plasmid was cotransfected by electroporation into rice protoplasts together with a plasmid containing the maize Ac transposase gene transcribed from the 35S promoter. Five lines of evidence obtained from the analyses of hygromycin B-resistant calli, regenerated plants and their progeny showed that the introduced Ds was trans-activated by the Ac transposase gene in rice. (1) Cotransfection of the two plasmids is necessary for generation of hygromycin B resistant transformants. (2) Ds excision sites are detected by Southern blot hybridization. (3) Characteristic sequence alterations are found at Ds excision sites. (4) Newly integrated Ds is detected in the rice genome. (5) Generation of 8 by target duplications is observed at the Ds integration sites on the rice chromosomes. Our results also show that Ds can be trans-activated by the transiently expressed Ac transposase at early stages of protoplast culture and integrated stably into the rice genome, while the cotransfected Ac transposase gene is not integrated. Segregation data from such a transgenic rice plant carrying no Ac transposase gene showed that four Ds copies were stably integrated into three different chromosomes, one of which also contained the functional hph gene restored by Ds excision. The results indicate that a dispersed distribution of Ds throughout genomes not bearing the active Ac transposase gene can be achieved by simultaneous transfection with Ds and the Ac transposase gene.  相似文献   

4.
In rice, limited efforts have been made to identify genes by the use of insertional mutagens, especially heterologous transposons such as the maize Ac/Ds. We constructed Ac and gene trap Ds vectors and introduced them into the rice genome by Agrobacterium-mediated transformation. In this report, rice plants that contained single and simple insertions of T-DNA were analysed in order to evaluate the gene-tagging efficiency. The 3' end of Ds was examined for putative splicing donor sites. As observed in maize, three splice donor sites were identified at the 3' end of the Ds in rice. Nearly 80% of Ds elements were excised from the original T-DNA sites, when Ac cDNA was expressed under a CaMV 35S promoter. Repetitive ratoon culturing was performed to induce new transpositions of Ds in new plants derived from cuttings. About 30% of the plants carried at least one Ds which underwent secondary transposition in the later cultures. Eight per cent of transposed Ds elements expressed GUS in various tissues of rice panicles. With cloned DNA adjacent to Ds, the genomic complexities of the insertion sites were examined by Southern hybridization. Half of the Ds insertion sites showed simple hybridization patterns which could be easily utilized to locate the Ds. Our data demonstrate that the Ac/Ds-mediated gene trap system could prove an excellent tool for the analysis of functions of genes in rice. We discuss genetic strategies that could be employed in a large scale mutagenesis using a heterologous Ac/Ds family in rice.  相似文献   

5.
Wheat dwarf virus (WDV) is a geminivirus that infects monocotyledonous plants. To exploit the potential of WDV as a replicative gene vector, we developed a transient replication and expression system based on the transfection of protoplasts derived from Triticum monococcum suspension culture cells. Cloned genomic copies of various WDV isolates as well as mutants constructed in vitro were introduced into the protoplasts and assayed for their ability to replicate. As a result, regions of the WDV genome necessary or dispensable for the viral DNA replication could be defined. In addition, the gene encoding the viral capsid protein was replaced by three different bacterial marker genes, neomycin phosphotransferase, chloramphenicol acetyltransferase, and beta-galactosidase. The beta-galactosidase gene doubled the size of the WDV genome. The replication of the recombinant WDV genomes and the expression of these genes were monitored in suspension culture cells of T. monococcum. The potential of replicative expression vectors based on the WDV genome is discussed.  相似文献   

6.
Potato is an autotetraploid crop plant that is not very amenable to the deployment of transposon tagging for gene cloning and gene identification. After diploidisation it is possible to get potato genotypes that grow well, but they are self-incompatible. This prevents the production of selfed progeny that are normally used in gene tagging approaches to select for parental lines with the target gene to be tagged in a homozygous stage. We describe here an alternative selection method for directed transposon tagging for a gene of interest in a heterozygous background. Diploid potato plants with a Ds transposon linked to the desired gene of interest (the Phytophthora infestans R1 resistance locus) in a heterozygous stage were used for the development of this directed transposon tagging strategy. After crossing to a diploid Ac transposon-containing genotype, 22 ’interesting’ seedlings (R1Ds/r–; Ac/–) were selected that showed active Ds transposition as displayed by DNA blot hybridisation, empty donor site PCR and sequencing. Protoplast isolation and the use of the hygromycin gene as a cell-specific selection marker of Ds excision enabled the direct selection of Ds excision sectors in these highly chimaeric seedlings. This somatic selection of Ds transpositions and the regeneration through protoplasts resulted in the development of a large population of almost 2000 hygromycin-resistant plants. Southern blot analysis confirmed the insertion of Ds at independent positions in the genome. Every selected plant displayed independent Ds excisions and re-insertions due to the expression of the Ac transposase throughout development. This population, which is developed from seedlings with the desired R1 gene in a heterozygous stage, is directly useful for searching for transposon-tagged R1 mutants. In general, this approach for selecting for somatic transpositions is particularly suitable for the molecular isolation of genes in a heterozygous crop like potato. Received: 29 November 1999 / Accepted: 30 December 1999  相似文献   

7.
Agroinfection and nucleotide sequence of cloned wheat dwarf virus DNA   总被引:3,自引:0,他引:3  
Cloned DNA of the geminivirus wheat dwarf virus (WDV) was successfully used to infect seedling wheat plants. The clone was derived from circular double-stranded viral DNA isolated from naturally infected tissue. The initiation of infection was mediated by Agrobacterium tumefaciens using cloned dimeric WDV genomes in a binary Agrobacterium vector. The WDV DNA which comprised the infectious clone was sequenced and is compared with the published sequence of a Swedish isolate of the same virus. The results confirm that the single WDV genome component of 2.75 kb carries all the information necessary for production of viral symptoms, virus particles and viral double- and single-stranded DNA forms.  相似文献   

8.
9.
Summary As an initial step towards developing a transposon mutagenesis system in tomato, the maize transposable element Ac was transformed into tomato plants via Agrobacterium tumefaciens. Southern analysis of leaf tissue indicated that in nine out of eleven transgenic plants, Ac excised from the T-DNA and reintegrated into new chromosomal locations. The comparison of Ac banding pattern in different leaves of the same primary transformant provided evidnece for transposition during later stages of transgenic plant development. There was no evidence of Ds mobilization in tomato transformants.  相似文献   

10.
A collection of transposon Ac/Ds enhancer trap lines is being developed in rice that will contribute to the development of a rice mutation machine for the functional analysis of rice genes. Molecular analyses revealed high transpositional activity in early generations, with 62% of the T0 primary transformants and more than 90% of their T1 progeny lines showing ongoing active transposition. About 10% of the lines displayed amplification of the Ds copy number. However, inactivation of Ds seemed to occur in about 70% of the T2 families and in the T3 generation. Southern blot analyses revealed a high frequency of germinal insertions inherited in the T1 progeny plants, and transmitted preferentially over the many other somatic inserts to later generations. The sequencing of Ds flanking sites in subsets of T1 plants indicated the independence of insertions in different T1 families originating from the same T0 line. Almost 80% of the insertion sites isolated showing homology to the sequenced genome, resided in genes or within a range at which neighbouring genes could be revealed by enhancer trapping. A strategy involving the propagation of a large number of T0 and T1 independent lines is being pursued to ensure the recovery of a maximum number of independent insertions in later generations. The inactive T2 and T3 lines produced will then provide a collection of stable insertions to be used in reverse genetics experiments. The preferential insertion of Ds in gene-rich regions and the use of lines containing multiple Ds transposons will enable the production of a large population of inserts in a smaller number of plants. Additional features provided by the presence of lox sites for site-specific recombination, or the use of different transposase sources and selectable markers, are discussed.This report is dedicated to the loving memory of our colleague Dr J. Harry C. Hoge  相似文献   

11.
Analysis of transposition products generated after Activator (Ac) excision from the P locus in maize suggest that Ac excises either during or after replication of the P locus. The frequency of excision of the non-autonomous Ac derivative, Dissociation ( Ds ), from extrachromosomal replicating and nonreplicating vector DNAs in transfected black mexican sweet maize protoplasts was compared to assess directly a role of extrachromosomal vector DNA replication in Ds excision. Replicating (rep+) and non-replicating (rep) vector DNAs comprised a Ds element that harbored a geminivirus, wheat dwarf virus (WDV), origin of replication and WDV genes required for viral DNA replication (rep+) or mutant, inactive derivatives of these genes (rep). Excision of Ds was detected only in those cell nuclei co-transfected with the replicating Ds -vector DNA and a transposase expression vector. Quantitative reconstruction experiments showed that Ds excised at least 3 × 105-fold more frequently from replicating vector DNA as compared with nonreplicating vector DNA. Therefore, these results provide direct evidence for a coupling of Ds excision from extrachromosomal vector DNA to vector DNA replication in maize.  相似文献   

12.
Summary Modified Ac and Ds elements, in combination with dominant markers (to facilitate monitoring of excision, reinsertion and segregation of the elements) were introduced into Arabidopsis thaliana ecotype Landsberg erecta. The frequencies of somatic and germinal transactivation of the Ds elements were monitored using a streptomycin resistance assay. Transactivation was significantly higher from a stable Ac (sAc) carrying a 537 by deletion of the CpG-rich 5 untranslated leader of the transposase mRNA than from a wild-type sAc. However, substitution of the central 1.77 kb of the transposase open reading frame (ORF) with a hygromycin resistance marker did not alter the excision frequency of a Ds element. -Glucuronidase (GUS) or iaaH markers were linked to the transposase source to allow the identification of plants in which the transposase source had segregated away from the transposed Ds element, eliminating the possibility of somatic or germinal re-activation. Segregation of the excision marker, Ds and sAc was monitored in the progeny of plants showing germinal excision of Ds. 29% of the plants inheriting the excision marker carried a transposed Ds element.  相似文献   

13.
14.
Summary We have previously shown that the maize transposable element Ds1 introduced into maize plants by agroinfection can be excised from the genome of geminivirus maize streak virus (MSV). Excision depended strictly on the presence of an active Ac element in the plants. In this study, the excision products or footprints left in the MSV genome after Ds1 excision were extensively characterized and the effects of flanking sequences on Ds1 excision were analysed. Most types of footprints obtained were comparable to those described for Ds1 excision in the maize genome, and could be explained by the models proposed for excision of plant transposable elements. In two revertants, however, some terminal sequences of the Ds1 element were found to have been left behind at the excision site. The finding of this novel type of Ds1 footprint indicated that gene conversion events occurred during and/or after Ds1 excision from the MSV genome. A partial deletion of one copy of the 8 by duplications flanking the Ds1 element had no effect on the frequency or on the types of footprints of Ds1 excision from the MSV genome. Thus, the duplicated 8 by sequences flanking the transposable element are not involved in Ds1 excision. These results, as well as a statistical analysis of the modifications of the bases flanking the Ds1 element after excision, are discussed in terms of excision models.  相似文献   

15.
16.
 The coding region of the eighth largest segment (S8) of the rice dwarf virus (RDV) was obtained from a RDV Fujian isolate. It was then cloned into pTrcHisA for expression in E. coli and into vector pE3 for plant transformation. By using callus derived from mature rice embryos as the target tissue, we obtained regenerated rice plants after bombardment of the former with plasmid pE3R8 containing the RDV S8 gene and the marker gene neomycin phosphotransferase (NPT II). Southern blotting confirmed the integration of the RDV S8 gene into the rice genome. The expression of the outer coat protein in both E. coli and rice plants was confirmed by western blotting. The recovery of transgenic rice plants expressing S8 gene is an important step towards studying the function of the RDV genes and obtaining RDV-resistant rice plants. Received: 1 March 1996 / Accepted: 2 August 1996  相似文献   

17.
18.
Summary The Bz2 locus of Zea mays has been cloned, utilizing the presence of the transposable element Dissociation (Ds) at the locus as a gene tag. The Ds element inserted in the bz2-m allele was identified among many members of the Ac/Ds family in a Southern blot analysis of a population segregating for bz2-m and Bz2. After cloning a DNA fragment from the bz2-m allele, sequences flanking the Ds insertion were shown to be Bz2-specific and were used to isolate a homologous fragment from a wild-type Bz2 line. The Ds insertion in the bz2-m allele was found to be a Ds2 element identical to the Ds insertion in adh1-2F11.  相似文献   

19.
Calcineurin B-like protein-interacting protein kinases (CIPKs) are a group of typical Ser/Thr protein kinases that mediate calcium signals. Extensive studies using Arabidopsis plants have demonstrated that many calcium signatures that activate CIPKs originate from abiotic stresses. However, there are few reports on the functional demonstration of CIPKs in other plants, especially in grasses. In this study, we used a loss-of-function mutation to characterize the function of the rice CIPK gene OsCIPK31. Exposure to high concentrations of NaCl or mannitol effected a rapid and transient enhancement of OsCIPK31 expression. These findings were observed only in the light. However, longer exposure to most stresses resulted in downregulation of OsCIPK31 expression in both the presence and absence of light. To determine the physiological roles of OsCIPK31 in rice plants, the sensitivity of oscipk31::Ds, which is a transposon Ds insertion mutant, to abiotic stresses was examined during germination and seedling stages. oscipk31::Ds mutants exhibited hypersensitive phenotypes to ABA, salt, mannitol, and glucose. Compared with wild-type rice plants, mutants exhibited retarded germination and slow seedling growth. In addition, oscipk31::Ds seedlings exhibited enhanced expression of several stress-responsive genes after exposure to these abiotic stresses. However, the expression of ABA metabolic genes and the endogenous levels of ABA were not altered significantly in the oscipk31::Ds mutant. This study demonstrated that rice plants use OsCIPK31 to modulate responses to abiotic stresses during the seed germination and seedling stages and to modulate the expression of stress-responsive genes.  相似文献   

20.
We describe the use of plasmid rescue to facilitate studies on the behaviour ofDs andAc elements in transgenic tomato plants. The rescue ofDs elements relies on the presence of a plasmid origin of replication and a marker gene selective inEscherichia coli within the element. The position within the genome of modifiedDs elements, rescued both before and after transposition, is assigned to the RFLP map of tomato. Alternatively to the rescue ofDs elements equipped with plasmid sequences,Ac elements are rescued by virtue of plasmid sequences flanking the element. In this way, the consequences of the presence of an (active)Ac element on the DNA structure at the original site can be studied in detail. Analysis of a library ofAc elements, rescued from the genome of a primary transformant, shows thatAc elements are, infrequently, involved in the formation of deletions. In one case the deletion refers to a 174 bp genomic DNA sequence immediately flankingAc. In another case, a 1878 bp internalAc sequence is deleted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号